

Building Applications
Release 8.6.00

CA 2E

This documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as
the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2011 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

If you would like to provide feedback about CA Technologies product documentation,
complete our short customer survey, which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Documentation Changes

The following documentation updates have been made since the last release of this
documentation.

■ Defining Parameters with the Edit Function Parameters Panel (see
page 263)—Added new fields, functions, and several subsections describing
non-unique and duplicate parameters.

■ Defining the Parameter’s Usage and Role (see page 272)—Added new fields and
functions.

■ Using Arrays as Parameters (see page 276)—Added new information and the new
Multiple-instance Restrictions subsection.

■ Understanding Action Diagrams (see page 422)—Added new fields and information.

■ ARR (see page 525)—Added this new context function.

■ Web Services Limitations (see page 193)—Added a new note concerning the
YCRTWS and YUNSWS commands.

■ Added the following sections for the *MOVE ARRAY built-in function:

■ Move Array Subfield

■ Move Array

■ Enhanced Array Support (see page 526)—Added this new section.

■ I (Insert) (see page 544)—Added the new I=M subfile option.

■ How to Create a Deployable Web Service Using a Multiple-instance Array (see
page 727)—Added this new Appendix.

Contents 5

Contents

Chapter 1: An Introduction to Functions 23

Organization ... 23

Terms Used in This Module .. 24

Acronyms .. 24

Values .. 25

Abbreviations .. 25

Understanding Functions ... 26

Function Types ... 27

Standard Functions ... 27

Function Fields .. 30

Message Functions .. 30

Basic Properties of Functions ... 31

Function Names .. 31

Function Components ... 31

Function Options ... 31

Parameters .. 31

Device Designs .. 32

Action Diagrams .. 32

Default Device Function Processing .. 32

Functions and Access Paths.. 33

Additional Processing ... 33

Integrity Checking ... 33

Domain Integrity Checking .. 34

Referential Integrity Checking ... 34

Field Validation ... 34

Linking Functions ... 35

Building Block Approach, an Overview .. 35

Top-Down Application Building ... 36

Chapter 2: Setting Default Options for Your Functions 39

Model Values Used in Building Functions .. 39

User Interface Manager (UIM) .. 50

Window Borders ... 51

Changing Model Values .. 51

Function Level ... 51

Model Level ... 52

6 Building Applications

Changing a Function Name .. 52

Function Key Defaults .. 53

Chapter 3: Defining Functions 55

Navigational Techniques and Aids ... 55

Display All Functions ... 56

Getting to Shipped Files and Fields ... 56

Database Functions .. 57

Understanding Database Functions .. 58

Internal Database Functions and PHY Access Paths ... 58

Array Processing .. 65

Device Functions .. 65

Understanding Device Functions .. 65

Defining Device Functions ... 65

Device Functions’Standard Features ... 67

Standard Features—User Interface .. 68

Standard Features—Processing Techniques ... 68

Device Function Program Modes .. 69

Classification of Standard Functions by Type .. 69

User Functions .. 70

Understanding User Functions .. 71

Defining Free-Form Functions ... 71

Defining User-Coded Functions .. 72

Messages .. 72

Understanding Messages .. 73

Basic Properties of Messages .. 73

Defining Message Functions ... 74

Specifying Message Functions Details .. 74

Specifying Parameters for Messages .. 75

Specifying Second-Level Message Text ... 75

Function Fields ... 76

Understanding Function Fields ... 76

Basic Properties of Function Fields ... 77

Design Considerations ... 78

Defining Function Fields .. 78

Function Types, Message Types, and Function Fields .. 78

Database Function .. 79

CNT Function Field .. 81

CRTOBJ Database Function .. 82

DFNSCRFMT Device Function .. 83

DFNRPTFMT Device Function .. 86

Contents 7

DLTOBJ Database Function ... 88

DRV Function Field .. 89

DSPFIL Device Function ... 90

DSPRCD Device Function ... 94

DSPRCD2 Device Function ... 97

DSPRCD3 Device Function ... 99

DSPTRN Device Function ... 102

EDTFIL Device Function ... 107

EDTRCD Device Function ... 111

EDTRCD2 Device Function ... 114

EDTRCD3 Device Function ... 116

EDTTRN Device Function ... 119

EXCEXTFUN User Function .. 123

EXCINTFUN User Function ... 128

EXCMSG Message Function... 129

EXCUSRPGM User Function... 131

EXCUSRSRC User Function .. 132

Overall User Source Considerations .. 132

MAX Function Field ... 143

Function Field .. 144

MTRCD Device Function .. 145

PRTFIL Device Function ... 147

PRTOBJ Device Function .. 151

RTVMSG Message Function .. 152

RTVOBJ Database Function ... 153

SELRCD Device Function .. 154

SNDCMPMSG Message Function .. 157

SNDERRMSG Message Function.. 158

SNDINFMSG Message Function .. 160

SNDSTSMSG Message Function .. 161

SUM Function Field ... 161

USR Function Field .. 162

Default Prototype Functions ... 162

Chapter 4: ILE Programming 163

Choosing RPGIV as the Default Language .. 163

ILE Features That Affect CA .. 164

Program Creation .. 165

Program Calling ... 166

Generating RPGIV Source ... 167

Control (H) Specifications .. 167

8 Building Applications

Compiling RPGIV Source ... 167

Option O .. 168

Option T .. 168

RPGIV User Source ... 169

Model Value YRP4SGN ... 171

RPGIV Generator Notes .. 172

Service Program Design and Generation ... 172

Service Program Overview .. 173

Service Program Functions .. 174

Edit Function Details Panel ... 176

Adding Modules and Procedures .. 177

The YBNDDIR Model Value ... 182

Specifying *NONE.. 182

Specifying a Value Other Than *NONE ... 183

Chapter 5: Web Service Creation 185

Approach .. 185

Installation Requirements .. 186

Required IBM PTFs .. 187

PCML in Module .. 187

Architecture ... 190

Web Services Limitations ... 193

Sample Flow ... 194

Commands ... 201

YCRTWS (Create Web Service Instance).. 202

YUNSWS (Uninstall Web Service) .. 204

Web Service Remote Deployment ... 205

References .. 209

Chapter 6: IBM i Database Trigger Support 211

Implementing Triggers ... 212

Typical Trigger Implementation .. 213

CA 2E Trigger Implementation .. 214

CA 2E Model Support ... 216

Performing Administrative Tasks .. 217

Creating Trigger Functions .. 217

Editing Trigger Functions ... 219

Editing Trigger Parameters .. 221

Using Trigger Commands .. 221

Model to Run-Time Conversion ... 227

Run-Time Support .. 227

Contents 9

Trigger Router ... 227

Trigger Server .. 228

Trigger Runtime Externalization .. 228

Chapter 7: Modifying Function Options 229

Understanding Function Options ... 229

Specifying Function Options ... 229

Choosing Your Options .. 230

Identifying Standard Function Options .. 230

Database Changes ... 230

Create .. 230

Change .. 231

Delete .. 231

Display Features .. 231

Confirm ... 231

Initial Confirm Value ... 232

Standard Header/Footer Selection ... 232

If Action Bar, What Type? ... 232

Subfile Select ... 232

Subfile End Implementation ... 233

Dynamic Program Mode ... 233

Exit After Add .. 233

Repeat Prompt .. 233

Bypass Key Screen ... 234

Post Confirm Pass .. 234

Send All Messages Option ... 234

Exit Control .. 235

Reclaim Resources .. 235

Closedown Program .. 235

Copy Back Messages ... 236

Commitment Control .. 236

Using Commitment Control .. 236

Exception Routine ... 237

Generate Exception Routine ... 237

Generation Options ... 237

Generation Mode .. 237

Generate Help ... 238

Help Type for NPT ... 238

Generate as a Subroutine ... 238

Share Subroutine... 239

Screen Text Constants ... 239

10 Building Applications

Execution Location .. 239

Overrides if Submitted Job .. 239

Environment .. 240

Workstation Implementation.. 240

Distributed File I/O Control ... 241

Null Update Suppression ... 242

Identifying Standard Header/Footer Function Options ... 243

Standard Header/Footer Function Options .. 243

132 Column Screen ... 243

Enable Selection Prompt Text ... 244

Allow Right to Left/Top to Bottom .. 244

Function Options for Setting Header/Footer Defaults .. 244

Use As Default for Functions ... 245

Is This an Action Bar .. 245

Is This a Window ... 245

Design and Usage Considerations ... 246

Chapter 8: Modifying Function Parameters 249

Understanding Function Parameters ... 249

Identifying the Basic Properties ... 249

Name ... 249

Usage Type .. 249

Flag Error Status .. 251

Understanding the Role of the Parameter .. 253

Device Design with Restricted Virtual Fields ... 259

Positioner Parameter .. 261

Vary Parameter ... 261

Allowed Parameter Roles .. 262

Defining Function Parameters .. 263

Defining Parameters with the Edit Function Parameters Panel .. 263

Defining the Parameter’s Usage and Role .. 272

Defining Parameters While in the Action Diagram ... 275

Specifying Parameters for Messages .. 276

Using Arrays as Parameters .. 276

Chapter 9: Modifying Device Designs 279

Understanding Device Designs ... 280

Basic Properties of Device Designs ... 280

Design Standard .. 281

Presentation Convention for CA 2E Device Designs .. 281

Default Device Design ... 282

Contents 11

Device Design Formats .. 283

Device Design Fields .. 283

Function Parameters ... 284

Panel Design Elements ... 285

Panel Body Fields .. 286

General Rules for Panel Layout ... 286

Panel Layout Subfiles .. 287

Panel Layout Field Usage .. 287

Default Layout of a Single-Record Panel Design ... 288

Default Layout of a Multiple-Record Panel Design ... 289

Default Layout of a Single- and Multiple-Record Panel Design... 290

National Language Design Considerations ... 291

Device Design Conventions and Styles ... 292

CUA Text .. 292

Windows ... 293

CUA Text Window ... 293

Action Bar .. 293

CUA Text Action Bar .. 294

CUA Entry .. 294

CUA ... 295

System 38 ... 295

CUA Device Design Extensions .. 295

Rightmost Text .. 297

Panel Defaults for Rightmost Text .. 297

Standard Headers/Footers ... 299

Function Keys ... 299

IGC Support Function Key ... 300

Function Key Explanations .. 301

Specifying Function Keys ... 302

Subfile Selector Values .. 302

Panel Design Explanatory Text .. 303

Positioning of the Explanatory Text .. 304

Function Key Explanatory Text .. 304

Subfile Selector Value Explanatory Text ... 305

Form of the Explanatory Text .. 306

CUA Entry Format ... 307

CUA Text Format ... 307

Specifying Panel Design Explanatory Text ... 307

Changing the Number of Function Key Text Lines ... 308

Table of Panel Design Attributes ... 308

Editing Device Designs ... 309

Editing the Device Design Layout .. 310

12 Building Applications

From the Edit Database Relations Panel ... 310

From the Open Functions Panel .. 310

From the Edit Function Details Panel .. 310

From the Edit Model Object List Panel ... 310

Changing Fields ... 311

Hiding/Dropping Fields ... 315

Setting the Subfile End Indicator ... 315

Editing Device Design Function Keys ... 316

Modifying Field Label Text .. 317

Changing Display Length of Output-Only Entries .. 317

Displaying Device Design Formats .. 318

Editing Device Design Formats .. 318

Viewing and Editing Format Relations .. 319

Adding Function Fields .. 321

Modifying Function Fields ... 322

Deleting Function Fields .. 322

Adding Constants .. 323

Deleting Constants .. 323

Modifying Action Bars ... 323

CUA Text Standard Action Bars ... 324

File ... 324

Function .. 324

Selector ... 325

Help ... 325

Modifying Windows .. 326

Modify the defaults to meet your requirements. Modifying Display Attributes and Condition Fields 328

Editing Panel Design Prompt Text ... 330

Function Key Text .. 330

Subfile Selector Text ... 331

Selector Role ... 332

Add SFLFOLD/SFLDROP to a Subfile Function ... 333

ENPTUI for NPT Implementations .. 337

Creating Menu Bars ... 338

Assigning Sequence Numbers for Actions ... 339

Working with Choices ... 339

Specifying a Drop-Down Selection Field ... 340

Defaulting of Prompt Type .. 342

Some Specifics of Drop-Down Lists ... 343

Mnemonics ... 343

National Language .. 343

Assigning Cursor Progression .. 344

Cursor Progression and Subfiles .. 344

Contents 13

Setting an Entry Field Attribute ... 344

Assigning Multi-Line Entry .. 345

Using an Edit Mask .. 346

Edit Mask - ZIP + 4 Example .. 347

Editing Report Designs ... 348

Standard Report Headers/Footers .. 348

Understanding PRTFIL and PRTOBJ ... 349

PRTFIL .. 349

PRTOBJ .. 349

Modifying Report Design Formats .. 350

Automatic Choice of Report Formats .. 352

Automatic Choice of Report Fields .. 353

Defining Report Designs .. 355

Suppressing Formats ... 355

Modifying Spacing Between Formats ... 356

Specifying Print on Overflow ... 357

Changing Indentation .. 357

Modifying Indentation .. 358

Defining the Overall Report Structure .. 359

Modifying the Overall Report Structure.. 359

Defining Print Objects Within Report Structure .. 360

Using Line Selection Options ... 360

Linking Print Functions .. 361

Zooming into Embedded Print Objects ... 362

Using Function Fields on Report Design .. 364

Report Design Example ... 365

Example 1: Simple Report Design ... 365

Example 2: Extended Report Design ... 371

Device User Source .. 381

When to Use Device User Source ... 381

Understanding Device User Source ... 382

Attachment Levels .. 382

Special Field-Level Attachment ... 383

Defining a Device User Source Function ... 383

Attaching Device User Source to a Device Design .. 385

Entry-Level Device User Source .. 387

Explicitly Attaching Entry-Level Device User Source ... 388

Attaching Device User Source to a Field ... 388

Working with Inherited Entry-Level Attachments .. 390

Overriding an Inherited Entry-Level Attachment .. 391

Merger Commands for Device User Source .. 393

Command Syntax .. 393

14 Building Applications

Alphabetical List of Merger Commands .. 395

Device User Source Example ... 402

Copying Functions That Contain Attached Device User Source .. 409

Reference Field ... 409

Documenting Functions .. 410

Guidelines for Using Device User Source .. 410

Understanding Extents .. 411

Visualizing Extents ... 413

Examples of ‘Painting’ Functions .. 414

Contents of Extents ... 415

Device Source Extent Stamp (DSES) .. 418

Examples of Device Source Extent Stamp ... 419

Chapter 10: Modifying Action Diagrams 421

Understanding Action Diagrams .. 422

The Edit Database Relations Panel .. 422

The Open Functions Panel .. 422

The Edit Function Details Panel ... 423

The Display All Functions Panel ... 423

Specifying an Action in an Action Diagram ... 423

Adding an Action ... 424

Specifying a Function as an Action .. 424

Naming a Function as an Action ... 425

Specifying Parameters for an Action Function .. 426

User Points ... 428

Understanding Constructs .. 429

Sequential ... 430

Conditional .. 430

Iterative ... 431

Capabilities of Constructs .. 432

Understanding Built-In Functions ... 433

Add .. 433

Commit .. 434

Compute .. 435

Defining a Compute Expression .. 436

Concatenation ... 438

Convert Variable ... 441

Date Details ... 443

Selection Parameters for Date Built-In Functions ... 446

Considerations for Date and Time Field Types.. 466

Calculation Assumptions and Examples for Date Built-In Functions ... 482

Contents 15

Business and Everyday Calendars ... 482

*DATE INCREMENT Rules and Examples ... 483

*DURATION Rules and Examples .. 486

Understanding Contexts ... 489

Database Contexts .. 489

Move from a Field to a Structure .. 491

Move from a Structure to a Field .. 492

Device Contexts ... 493

Literal Contexts ... 503

System Contexts .. 506

Differences in Subfile Processing Between EDTTRN and DSPTRNs Compared to DSPFIL, EDTFIL, and
SELRCDs ... 518

Function Contexts ... 520

Understanding Conditions .. 535

Condition Types .. 536

Compound Conditions .. 538

Defining Compound Conditions .. 539

Understanding Shared Subroutines ... 540

Externalizing the Function Interface ... 541

Understanding the Action Diagram Editor ... 542

Selecting Context .. 542

Entering and Editing Field Conditions ... 542

Line Commands ... 543

Adding an Action —IA Command .. 546

Deleting Constructs—D Line Commands .. 547

Moving a Construct—M and A Line Commands ... 547

Function Keys .. 547

Using NOTEPAD .. 548

NOTEPAD Line Commands .. 548

NI (NOTEPAD Insert) ... 549

NA or NAA (NOTEPAD Append) .. 549

NR or NRR (NOTEPAD Replace) ... 549

User-Defined *Notepad Function ... 550

*, ** (Activate/Deactivate) .. 551

Protecting Action Diagram Blocks .. 552

Protecting a Block ... 553

Using Bookmarks .. 554

Submitting Jobs Within an Action Diagram .. 556

Inserting a SBMJOB in an Action Diagram ... 557

Defining SBMJOB Parameter Overrides .. 558

Source Generation Overrides .. 559

Dynamic Overrides .. 561

16 Building Applications

Special SBMJOB Considerations .. 561

Advantage of SBMJOB Over Execute Message ... 561

Viewing a Summary of a Selected Block .. 562

Using Action Diagram Services ... 563

Scanning for Specified Criteria or Errors ... 564

Calling Functions Within an Action Diagram ... 566

Additional Action Diagram Editor Facilities .. 568

Editing the Parameters ... 568

Toggling to Device Designs .. 569

Full Screen Mode .. 569

Toggling Display for Functions and Messages ... 570

Starting Edits for Multiple Functions .. 570

Starting an Edit for Another Function ... 571

Copying from One Function’s Action Diagram to Another Using NOTEPAD ... 572

Modifying Function Parameters .. 572

Switching from Action Diagram Directly to Function Device Design .. 573

Exiting Options ... 573

Exiting a Single Function ... 573

Exiting All Open Functions .. 574

Exiting a Locked Function .. 574

Interactive Generation or Batch Submission .. 574

Understanding Action Diagram User Points ... 575

Change Object (CHGOBJ) .. 575

Create Object (CRTOBJ) ... 576

Delete Object (DLTOBJ) ... 577

Display File (DSPFIL) .. 577

Display Record (DSPRCD) .. 579

Display Transaction (DSPTRN) ... 581

Edit File (EDTFIL) .. 583

Edit Record (EDTRCD) .. 586

Edit Transaction (EDTTRN) .. 588

Print File (PRTFIL) – Print Object (PRTOBJ) .. 591

Prompt and Validate Record (PMTRCD) .. 592

Retrieve Object (RTVOBJ) .. 594

Select Record (SELRCD) ... 595

Understanding Function Structure Charts ... 596

Chapter 11: Copying Functions 597

Creating a New Function from One That Exists .. 597

From the Edit Functions Panel .. 598

From a Template Function .. 598

Contents 17

From the Exit Panel ... 599

Cross-Type Copying ... 599

What Copying Preserves ... 600

Output/Input Fields ... 600

What to Revisit .. 600

Device Design .. 601

Action Diagram User Points .. 601

Function Templates .. 601

Understanding Function Templates .. 602

Creating a Template Function ... 603

Special Considerations for EDTTRN/DSPTRN Template Functions.. 603

Using a Template Function to Create a New Function .. 604

Copying Internally-Referenced Template Functions ... 604

Creating and Naming Referenced Functions ... 605

Assigning Access Paths for Referenced Functions .. 607

Defaulting Parameters for Referenced Functions ... 607

Device Designs .. 607

Chapter 12: Deleting Functions 609

Deleting a Function .. 610

Chapter 13: Generating and Compiling 613

Requesting Generation and Compilation ... 613

The Display Services Menu ... 614

The Edit Functions Panel ... 614

The Exit Function Definition Panel .. 615

The Edit Model Object List Panel .. 615

Compile Preprocessor .. 616

Chapter 14: Documenting Functions 617

Printing a Listing of Your Functions .. 617

Including Narrative Text .. 618

Comparing Two Functions... 618

Chapter 15: Tailoring for Performance 619

Building an Application .. 620

Using Display File, not Menu Options ... 621

Determining Program Size ... 621

Optimizing Program Objects ... 622

18 Building Applications

Fine Tuning ... 623

Selecting the Function Type ... 623

Specifying the Right Level of Relations Checking ... 624

Action Diagram Editing .. 624

Construct Resolution in Code ... 624

Using Single Compound Conditions .. 625

Selecting the Proper User Points .. 626

Chapter 16: Creating Wrappers to Reuse Business Logic 627

Selecting Action Diagram Statements .. 628

Selecting Function Name and Type .. 630

Automatic Parameter Interface Generation .. 631

Original Contexts ... 632

The Newly Created Function ... 633

The Newly Created Array .. 634

The Parameter Definitions .. 635

The Control Context .. 636

The Record Context ... 637

The WRK Context .. 638

The New Action Diagram .. 639

Appendix A: Function Structure Charts 641

Change Object .. 641

Create Object ... 642

Delete Object ... 642

Display File (Chart 1 of 5) ... 643

Display File (Chart 2 of 5) ... 644

Display File (Chart 3 of 5) ... 645

Display File (Chart 4 of 5) ... 645

Display File (Chart 5 of 5) ... 646

Display Record (Chart 1 of 5) .. 647

Display Record (Chart 2 of 5) .. 648

Display Record (Chart 3 of 5) .. 648

Display Record (Chart 4 of 5) .. 649

Display Record (Chart 5 of 5) .. 650

Display Record– 2 Panels (Chart 1 of 7) ... 651

Display Record – 2 Panels (Chart 2 of 7) .. 652

Display Record – 2 Panels (Chart 3 of 7) .. 653

Display Record – 2 Panels (Chart 4 of 7) .. 654

Display Record – 2 Panels (Chart 5 of 7) .. 655

Display Record – 2 Panels (Chart 6 of 7) .. 656

Contents 19

Display Record – 2 Panels (Chart 7 of 7) .. 656

Display Record – 3 Panels (Chart 1 of 8) .. 657

Display Record – 3 Panels (Chart 2 of 8) .. 658

Display Record – 3 Panels (Chart 3 of 8) .. 659

Display Record – 3 Panels (Chart 4 of 8) .. 660

Display Record – 3 Panels (Chart 5 of 8) .. 661

Display Record – 3 Panels (Chart 6 of 8) .. 662

Display Record – 3 Panels (Chart 7 of 8) .. 663

Display Record – 3 Panels (Chart 8 of 8) .. 664

Display Transaction (Chart 1 of 6) .. 665

Display Transaction (Chart 2 of 6) .. 666

Display Transaction (Chart 3 of 6) .. 667

Display Transaction (Chart 4 of 6) .. 668

Display Transaction (Chart 5 of 6) .. 669

Display Transaction (Chart 6 of 6) .. 670

Edit File (Chart 1 of 7) ... 671

Edit File (Chart 2 of 7) ... 672

Edit File (Chart 3 of 7) ... 673

Edit File (Chart 4 of 7) ... 674

Edit File (Chart 5 of 7) ... 675

Edit File (Chart 6 of 7) ... 676

Edit File (Chart 7 of 7) ... 677

Edit Record (Chart 1 of 5) ... 678

Edit Record (Chart 2 of 5) ... 679

Edit Record (Chart 3 of 5) ... 680

Edit Record (Chart 4 of 5) ... 681

Edit Record (Chart 5 of 5) ... 682

Edit Record – 2 Panels (Chart 1 of 9) .. 683

Edit Record – 2 Panels (Chart 2 of 9) .. 684

Edit Record – 2 Panels (Chart 3 of 9) .. 685

Edit Record – 2 Panels (Chart 4 of 9) .. 686

Edit Record – 2 Panels (Chart 5 of 9) .. 687

Edit Record – 2 Panels (Chart 6 of 9) .. 688

Edit Record – 2 Panels (Chart 7 of 9) .. 689

Edit Record – 2 Panels (Chart 8 of 9) .. 690

Edit Record – 2 Panels (Chart 9 of 9) .. 691

Edit Record – 3 Panels (Chart 1 of 10) .. 692

Edit Record – 3 Panels (Chart 2 of 10) .. 693

Edit Record – 3 Panels (Chart 3 of 10) .. 694

Edit Record – 3 Panels (Chart 4 of 10) .. 695

Edit Record – 3 Panels (Chart 5 of 10) .. 696

Edit Record – 3 Panels (Chart 6 of 10) .. 697

20 Building Applications

Edit Record – 3 Panels (Chart 7 of 10) .. 698

Edit Record – 3 Panels (Chart 8 of 10) .. 699

Edit Record – 3 Panels (Chart 9 of 10) .. 700

Edit Record – 3 Panels (Chart 10 of 10) .. 701

Edit Transaction (Chart 1 of 8) ... 702

Edit Transaction (Chart 2 of 8) ... 703

Edit Transaction (Chart 3 of 8) ... 704

Edit Transaction (Chart 4 of 8) ... 705

Edit Transaction (Chart 5 of 8) ... 706

Edit Transaction (Chart 6 of 8) ... 707

Edit Transaction (Chart 7 of 8) ... 708

Edit Transaction (Chart 8 of 8) ... 709

Prompt and Validate Record (Chart 1 of 2) .. 710

Prompt and Validate Record (Chart 2 of 2) .. 711

Print File (Chart 1 of 5) ... 712

Print File (Chart 2 of 5) ... 713

Print File (Chart 3 of 5) ... 714

Print File (Chart 4 of 5) ... 715

Print File (Chart 5 of 5) ... 716

Print Object (Chart 1 of 5) .. 717

Print Object (Chart 2 of 5) .. 718

Print Object (Chart 3 of 5) .. 719

Print Object (Chart 4 of 5) .. 720

Print Object (Chart 5 of 5) .. 721

Retrieve Object... 722

Select Record (Chart 1 of 4) ... 723

Select Record (Chart 2 of 4) ... 724

Select Record (Chart 3 of 4) ... 725

Select Record (Chart 4 of 4) ... 726

Appendix B: How to Create a Deployable Web Service Using a
Multiple-instance Array 727

Define the Files ... 729

Define the Order Details Array ... 731

Create an EXCEXTFUN to Retrieve the Order Header and Order Details ... 732

Retrieve the Order Header .. 734

RTV Order Detail (*Arrays) .. 735

CRT Order Detail (*Arrays) .. 736

Load Order Detail Array (Order detail) .. 737

EEF RTV Order (Order detail) .. 740

Set the EXCEXTFUN to a Module .. 745

Contents 21

Generate and Compile the Module .. 746

Create a Service Program ... 746

Add the Module to the Service Program .. 747

Generate and Compile the Service Program .. 747

Create a Web Service Function .. 748

Deploy the Web Service Instance ... 749

*MOVE ARRAY (*ALL) ... 750

Index 753

Chapter 1: An Introduction to Functions 23

Chapter 1: An Introduction to Functions

This chapter provides an overview to Building Applications. Its purpose is to help you
understand the CA 2E (formerly known as CA 2E) concepts for using functions in your
model. This guide provides you with instructions on building functions in CA 2E
including:

■ Setting system default values

■ Defining, copying, documenting, generating and compiling, and deleting functions

■ Modifying function options, function parameters, device designs, and action
diagrams

■ Tailoring functions for performance

Each chapter is designed to provide you with the information you need to perform the
identified task. Review the entire guide or see the chapter relating to the specific task
you want to perform.

This section contains the following topics:

Organization (see page 23)
Terms Used in This Module (see page 24)
Understanding Functions (see page 26)
Function Types (see page 27)
Basic Properties of Functions (see page 31)
Functions and Access Paths (see page 33)
Additional Processing (see page 33)
Building Block Approach, an Overview (see page 35)

Organization

This chapter provides you with a high-level overview of the CA 2E concepts for building
functions. The remaining chapters contain conceptual material and instructions on the
specific tasks required to complete each step of the process.

Where necessary, these chapters also reference other topics and chapters in this guide
or other guides containing related material.

Terms Used in This Module

24 Building Applications

We recommend that before you build your functions, you read or review the material in
the following CA 2E guides:

■ Overview

■ Implementation

■ Defining a Data Model

■ Building Access Paths

■ Generating and Implementing Applications

Terms Used in This Module

Descriptions of the acronyms, values, and abbreviations used in this guide are defined
here and again the first time they are appearing in text. Thereafter, only the acronym,
value, or abbreviation is used.

Acronyms

The following acronyms appear in this guide:

Acronym Meaning

CBL COBOL

CL Control Language

CSG Client Server Generator

DDS Data Description Specifications

DRDA Distributed Relational Database Architecture

ESF External Source Format

HLL High Level Language

IBM International Business Machines Corporation

NPT Non-Programmable Terminal

OS Operating System

RPG Report Program Generator

SAA Systems Application Architecture

SQL Structured Query Language

UIM User Interface Manager

Terms Used in This Module

Chapter 1: An Introduction to Functions 25

Values

The following values appear in this guide:

Value Meaning

CPT Capture File

PHY Physical Access Path

QRY Query Access Path

REF Reference File

RSQ Resequence Access Path

RTV Retrieval Access Path

SPN Span Access Path

STR Structure File

UPD Update Access Path

Abbreviations

The following abbreviations appear in this guide:

Abbreviation Meaning

CHGOBJ Change object

CNT Count

CRTOBJ Create Object

DLTOBJ Delete Object

DRV Derived

DSPFIL Display File

DSPRCD Display Record

DSPRCD2 Display Record 2

DSPRCD3 Display Record 3

DSPTRN Display Transaction

EDTFIL Edit File

EDTRCD Edit Record

EDTRCD2 Edit Record 2

Understanding Functions

26 Building Applications

Abbreviation Meaning

EDTRCD3 Edit Record 3

EDTTRN Edit Transaction

EXCEXTFUN Execute External Function

EXCINTFUN Execute Internal Function

EXCMSG Execute Message

EXCUSRPGM Execute User Program

EXCUSRSRC Execute User Source

MAX Maximum

MIN Minimum

PMTRCD Prompt Record

PRTFIL Print File

PRTOBJ Print Object

RTVMSG Retrieve Message

RTVOBJ Retrieve Object

SELRCD Select Record

SNDCMPMSG Send Completion Message

SNDERRMSG Send Error Message

SNDINFMSG Send Information Message

SNDSTSMSG Send Status Message

SUM Sum

USR User

Understanding Functions

A function defines a process that operates on files and fields in your database. CA 2E
allows you to link functions together to create larger processes that become the
building blocks of your application. You can link functions together as components to
define an application system. You can implement several separate functions as a single
HLL program. There are two ways to implement a function:

■ External—the function is implemented as a separate HLL program

■ Internal— the function is implemented as source code within the calling function

Function Types

Chapter 1: An Introduction to Functions 27

Function Types

There are a number of different function types that fall into the following four classes:

■ Standard functions

■ Built-In functions

■ Function fields

■ Message functions

Standard Functions

Standard functions specify entire programs or subroutines. User-defined processing can
be specified to take place at appropriate points within all standard functions. Standard
functions are intended to provide ready-made building blocks that, when put together,
make up your application system. The standard functions are divided into the categories
described below.

Database Functions

Database functions specify basic routines for updating the database. There are four
different database functions, each defining a subroutine to either create, change,
delete, or retrieve data. Database functions are implemented as part of an external
standard function. All database functions are internal functions. Once you define a
database function you can use it in many different functions.

The database functions are:

■ Create Object (CRTOBJ)

■ Change Object (CHGOBJ)

■ Delete Object (DLTOBJ)

■ Retrieve Object (RTVOBJ)

For more information on database functions, see the chapter Defining Functions (see
page 55).

Function Types

28 Building Applications

Device Functions

Device functions specify interactive programs of a number of types and report
programs. These programs consist of either a panel design or report design and an
action diagram. Device functions are external functions with the exception of Print
Object (PRTOBJ), which is an internal function. You implement device functions as
programs that operate over databases. The device functions are:

■ Display Record (DSPRCD)

■ Display Record 2 panels (DSPRCD2)

■ Display Record 3 panels (DSPRCD3)

■ Prompt Record (PMTRCD)

■ Edit Record (EDTRCD)

■ Edit Record 2 panels (EDTRCD2)

■ Edit Record 3 panels (EDTRCD3)

■ Display File (DSPFIL)

■ Edit File (EDTFIL)

■ Select Record (SELRCD)

■ Display Transaction (DSPTRN)

■ Edit Transaction (EDTTRN)

■ Print File (PRTFIL)

■ Print Object (PRTOBJ)

For more information on device functions, see the chapter Defining Functions (see
page 55).

User Functions

User functions specify additional building blocks of user-written processing. User
functions provide a means of incorporating user programs and subroutines into CA 2E
generated applications. Their processing steps can be specified with action diagrams or
user-written HLL. They can be implemented as inline code (internal functions) or calls to
separate programs (external functions). The user functions are:

■ Execute Internal Function (EXCINTFUN)

■ Execute External Function (EXCEXTFUN)

■ Execute User Program (EXCUSRPGM)

■ Execute User Source (EXCUSRSRC)

For more information on user functions, see the chapter Defining Functions (see
page 55).

Function Types

Chapter 1: An Introduction to Functions 29

Built-In Functions

Built-in functions execute common low-level functions such as arithmetic operations,
character string manipulations, and control operations such as commitment control and
program exit. Built-in functions are specified within action diagrams and are
implemented as inline source code within calling functions. The built-in functions are:

Function Meaning

*ADD Add

*COMMIT Commit

*COMPUTE Compute

*CONCAT Concatenation

*CVTVAR Convert Variable

*DATE DETAILS Date Details

*DATE INCREMENT Date Increment

*DIV Divide

*DIV WITH REMAINDER Divide with Remainder

*DURATION Date Duration

*ELAPSED TIME Elapsed Time

*EXIT PROGRAM Exit Program

*MODULO Modulo

*MOVE Move

*MOVE ALL Move All

*MOVE ARRAY Move array subfield

*MULT Multiply

*QUIT Quit

*ROLLBACK Rollback

*RTVCND Retrieve Condition

*RTVFLDINF Retrieve Field Information

*SET CURSOR Set Cursor

*SUB Subtract

*SUBSTRING Substring

*TIME DETAILS Time Details

Function Types

30 Building Applications

Function Meaning

*TIME INCREMENT Time Increment

For more information on built-in functions see the chapter Modifying Action Diagrams
(see page 421).

Function Fields

A function field is a field whose value is not physically stored in the database, but is
derived from other fields or files. Function fields are always associated with only one
result parameter, the derived field itself, along with a variable number of input
parameters that are used to derive the calculation.

CA 2E also provides a number of ready-made function fields such as summing or
counting that you can call from within a function. Once the function field is defined, CA
2E automatically incorporates its associated processing logic when it is used. The
function fields are:

■ Sum (SUM)

■ Maximum (MAX)

■ Minimum (MIN)

■ Count (CNT)

■ Derived (DRV)

■ User (USR)

For more information on function fields refer to the chapter Defining Functions (see
page 55).

Message Functions

Message functions define messages that you want to appear at a workstation using
special CA 2E facilities, or they define other variables for use by the function. Message
functions are specified in a similar way to other function types, but are implemented
using i OS message descriptions and are sent by a call to a standard CL subroutine. Their
implementation as i OS message descriptions allows them to be changed for translation
to another national language without affecting the calling program. They can make
direct references to fields in your data model. You can also use Message functions to
execute i OS command requests. The message functions are:

■ Send Error Message (SNDERRMSG)

■ Send Information Message (SNDINFMSG)

Basic Properties of Functions

Chapter 1: An Introduction to Functions 31

■ Send Complete Message (SNDCMPMSG)

■ Send Status Message (SNDSTSMSG)

■ Retrieve Message (RTVMSG)

■ Execute Message (EXCMSG)

For more information on message functions refer to the chapter Defining Functions (see
page 55).

Basic Properties of Functions

CA 2E functions have the following properties.

Function Names

The name of each function can contain up to 25 characters including any embedded
blanks, and must be unique within a given file.

Function Components

Functions generally consist of the following components: function options, parameters,
device designs, and action diagrams.

Function Options

Function options enable you to customize the features of your functions including
database changes, display features, exit control, commitment control, exception
routines, generation options, and environment options.

For more information on function options, refer to the chapter Modifying Function
Options (see page 229).

Parameters

Parameters specify which field values will be passed into the function at execution and
which fields will be returned from the function on completion. In addition, parameters
are used to define local variables for the function.

For more information on parameters, see the chapter Modifying Function Parameters
(see page 249).

Basic Properties of Functions

32 Building Applications

Device Designs

Device designs specify the visual presentation of the two types of devices used by
functions:

■ Panel (display)

■ Report

For more information on device designs, see the chapter Modifying Device Designs (see
page 279).

Action Diagrams

Action diagrams specify the processing steps for the program function logic. This is a
combination of default (CA 2E supplied) logic and optional user-defined processing logic.

The following table shows which component applies to each function type:

Function Class Parameters Device
Design

Action
Diagrams

Function
Options

Device Functions

Database Functions

User Functions

Y

Y

Y

Y

N

N

Y

N

Y,N (1)

Y

Y,N

Y,N (3)

Messages

Function Fields

Y

Y

N

N

N

Y, N (2)

N

N

Built-in Functions Y N N N

1. \EXCINTFUN and EXCEXTFUN have action diagrams. EXCUSRSRC and EXCUSRPGM
do not have action diagrams.

2. Only DRV function fields have action diagrams; all other function fields do not.

3. EXCUSRSRC is the only user function that has no function option.

For more information on action diagrams, see the chapter Modifying Action Diagrams
(see page 421).

Default Device Function Processing

A default device function generates and compiles into a working program with a default
device design and a default action diagram. Additional logic is required only to achieve
the specific functionality required for the application. User points are provided in the
default action diagram where the logic can be inserted. You can also make changes to
the default device design, parameters, and function options.

Functions and Access Paths

Chapter 1: An Introduction to Functions 33

In addition to the working program, default device design, and action diagram, CA 2E
provides default processing such as file-to-file validation, database checking, and
prompt logic.

For more information:

■ On the action diagram editor, see the chapter Modifying Action Diagrams (see
page 421).

■ On editing the device design, see the chapter Modifying Device Designs (see
page 279).

■ On standard functions, see the chapters Defining Functions (see page 55) and
Modifying Function Options (see page 229).

Functions and Access Paths

Functions that operate on a file are always attached to the file by an access path.
Records are automatically read from the file using the access path, which specifies the
order and selection criteria in which records from the file are processed. Since the
access path can be based on several files, a function can process data from more than
one file. In addition, a generated program can be composed of several functions, each
processing different access paths. Default panel and report formats are derived from
the function’s access path.

For more information:

■ Function types, see the chapter Defining Functions (see page 55).

■ Access paths, see the Building Access Paths Guide.

Additional Processing

CA 2E automatically supplies additional processing logic when building functions in your
model including integrity checking, validating data entered in the fields, and linking
functions.

Integrity Checking

CA 2E automatically includes logic to perform domain and referential integrity checking
in the default processing of the interactive function types.

Additional Processing

34 Building Applications

Domain Integrity Checking

Domain integrity checking ensures that when a field is used in place of another field,
these fields are similar. This is enforced by ensuring that the fields share the same
reference fields. Fields that have the same domain have the same set of allowed values
for conditions.

When assigning parameters to a function within the action diagram editor, CA 2E
verifies that the field you are passing and the field that is specified as the input
parameter have the same domain. Fields of the same type and length do not necessarily
have the same domain. Domains can be shared by fields through referencing (REF). If
the domains do not match, you receive a warning message. To ignore the warning, press
Enter.

Referential Integrity Checking

This check ensures that the relations specified in the model are satisfied. For example, if
you specify the relation Order Refers to Customer, the HLL source code generated to
implement a maintenance function on the Order file includes a read to the Customer file
to check that a record for the specified Customer Code exists. You can adjust the actual
referential integrity checking that is performed in any given function.

For more information on relations, refer to the the chapter "Understanding Your Data
Model" in the Defining a Data Model guide.

Field Validation

Validation attributes specify how data entered into the field is to be validated.
Validation includes both the attributes supported by i OS, such as uppercase lowercase
checking, modulus checking, i OS valid name checking, and validation through a check
condition. You can define additional field validation logic for any field type and
automatically incorporate it in any function using the field.

For more information about field type, see Defining a Data Model, Using Fields topic in
the chapter "Understanding Your Data Model."

Building Block Approach, an Overview

Chapter 1: An Introduction to Functions 35

Linking Functions

CA 2E automatically links certain functions together. For external update functions, CA
2E automatically links to the database functions that update data. CA 2E also
automatically provides the linkage to functions that allow lookup capabilities. You can
use action diagrams to specify further links between functions.

For more information on action diagrams, refer to the chapter Modifying Actions
Diagrams (see page 421).

When HLL code is generated to implement several connected internal functions, such as
functions that are implemented as inline code, the HLL used to generate the functions is
determined by the source type of the external function, which calls the internal function
or functions.

If you connect Execute User Source (EXCUSRSRC) functions together with other
functions, you must ensure that the connected functions all have the same HLL
implementation types (that they are all RPG or all COBOL functions.)

Although CA 2E does not impose any limitation on the recursive linking of external
functions, some high-level languages do. For example, the same RPG program may not
appear twice in a job's invocation stack. This means that you should avoid having a
function calling itself, either directly or via another function.

Building Block Approach, an Overview

Building an application is a matter of defining or choosing the right functions and
putting them together to meet your requirements. CA 2E functions serve as the
components for applications. When implemented, several functions may work together
as a single HLL program. Functions can also call other functions, based on default
connections or action diagram specifications.

The process of designing your application should include the step of breaking down your
operations into simple building blocks. Each CA 2E function performs a unique, defined
task. Correlating your operations with these functions is called function normalization.
The structure of CA 2E provides the means for normalizing functions and for
constructing more complex functions from the simple building blocks.

Function normalization encourages the use of a single function to perform a single
defined action. More complex functions can then be constructed by linking together
lower level functions. This approach allows for development and testing to be
incremental and reduces the overall development and maintenance effort.

Building Block Approach, an Overview

36 Building Applications

For example, to construct a routine to calculate the days between two dates you should
first construct a function to convert a date into one absolute day number. You can then
use this function to convert the from and to dates to an equivalent numeric value. Then
you can use subtraction to yield the difference. This same low level function can also be
used in other functions that add, drop, or subtract days from a date, without the need
to redevelop or repeat logic.

The CA 2E building block approach gives you categories of functions, and each category
has a specific implementation as follows:

■ Standard device functions—Specify interactive or report programs. These functions
have device designs attached to them. These functions work together with the
database functions to view, add, change, or delete data in your files.

■ Internal functions—Are implemented as source code within calling functions.

■ External functions—Are implemented as HLL programs such as batch processing
and device functions.

■ Built-in functions—Execute common low-level functions and such tasks as
arithmetic operations and commitment control.

■ Function fields—Specify how to calculate derived fields. A derived field is any field
with a value that is calculated from other fields when accessed in a routine, rather
than physically stored in the database.

■ User-written functions—Specify user-written processes with either action diagrams
or RPG or COBOL subroutines or programs.

For more information:

■ About adding functions, see the chapter Defining Functions (see page 55).

■ About action diagrams, see the chapter Modifying Action Diagrams (see page 421).

Top-Down Application Building

If you are developing a new application, a top-down approach is a good way to design
the functions for your application. This approach, which assumes that your data model
and access paths are defined, includes

■ Identifying the functions to be called from points in processing

■ Working top-down to define functions and function parameters as needed

Building Block Approach, an Overview

Chapter 1: An Introduction to Functions 37

■ Specifying top level constructs and the logic flow of user points

■ Filling in user point details

For more information about:

■ The functions you will select for your application, see the chapter Defining
Functions (see page 55).

■ Getting the best performance from your application, see the chapter Tailoring for
Performance (see page 619).

Chapter 2: Setting Default Options for Your Functions 39

Chapter 2: Setting Default Options for Your
Functions

This chapter identifies the model values specific to functions and shows you how to
change them, how to change the default names that CA 2E assigns to functions, and
function key defaults.

This section contains the following topics:

Model Values Used in Building Functions (see page 39)
Changing Model Values (see page 51)
Changing a Function Name (see page 52)
Function Key Defaults (see page 53)

Model Values Used in Building Functions

This topic covers the model values used by functions. Function options can affect the
device design and processing defaults. Model values are shipped as defaults for the
Create Model Library (YCRTMDLLIB) command.

Many function options are derived from model values. If you find that you often change
these options at the function level, you may want to review the settings in your model
and change them at the model level.

For more information about:

■ Model values you can change at the function level, see the section Changing Model
Values (see page 51).

■ Descriptions of each model value, YCHGMDLVAL, see the Command Reference
guide.

Model Values Used in Building Functions

40 Building Applications

YABRNPT

The YABRNPT value is only for NPT generation, and enables you to choose between
creations of CA 2E Action Bars or DDS Menu Bars for a given function. The default is DDS
Menu Bars for models created as of r5.0 of COOL:2E. For existing models upgraded to
r5.0, the default is Action Bars.

We recommend that you migrate to DDS Menu Bars over time since DDS Menu Bars
make use of the new i OS ENPTUI features, which allow the menu bars to be coded in
the DDS for the display file. The CA 2E Action Bars require that an external program be
called to process the action bar. As a result, the DDS Menu Bars are faster, have more
functionality, and create more efficient CA 2E functions.

For more information about NPT user interface options, see ENPTUI in the chapter
Modifying Device Designs (see page 279).

YACTCND

The Action Diagram Compound Symbols (YACTCND) model value defines the symbols
used in editing and displaying compound condition expressions.

The format for modifying this design option is:

YCHGMDLVAL MDLVAL(YACTCND) VALUE('& AND | OR ^ NOT (()) c c')

For more information about compound conditions, see Entering and Editing Compound
Conditions in the chapter Modifying Action Diagrams (see page 421).

YACTFUN

The Action Diagram Compute Symbols (YACTFUN) model value defines the symbols used
in editing compute expressions, which include + - * / \ () x. You are only likely to change
these defaults if you have national language requirements. The binary code values for
these symbols can map to different values, depending on the code page in use. For
example, a forward slash (/) on the US code page would map to a cedilla in a French
National code page.

For more information on compute expressions, see Entering and Editing Compound
Conditions in the the chapter Modifying Action Diagrams (see page 421).

YACTSYM

The Action Diagram Structure Symbols (YACTSYM) model value defines the symbols
used in action diagrams. The shipped default is *SAA. The Action Diagram Editor and the
Document Model Functions (YDOCMDLFUN) command use this design option.

Model Values Used in Building Functions

Chapter 2: Setting Default Options for Your Functions 41

YACTUPD

The Action Diagram Update (YACTUPD) model value defines the default value for the
Change/create function option on the Exit Function Definition panel. The shipped
default is *YES. The value *CALC sets the Change/create function option to Y only when
a change to the function’s action diagram or panel design is detected.

YALCVNM

The Automatic Name Allocation (YALCVNM) model value indicates whether CA 2E
should automatically allocate DDS and object names. The shipped default is *YES.

For more information on name allocation, see the Implementation Guide.

YBNDDIR

Specifies a binding directory that can resolve the location of any previously compiled
RPGIV modules. Use this model value while compiling RPGIV programs with the
CRTBNDRPG command.

Note: For more information, see the section The YBNDDIR Model Value in the Chapter
ILE Programming.

YCNFVAL

The Confirm Value (YCNFVAL) model value determines the initial value for the confirm
prompt. The shipped default is *NO.

For more information on function options, see the chapter Modifying Function Options
(see page 229).

YCPYMSG

The Copy Back Messages (YCPYMSG) model value specifies whether, at program
termination, outstanding messages on the program message queue are copied to the
message queue of the calling program. The shipped default is *NO.

For more information on function options, see the chapter Modifying Function Options
(see page 229).

Model Values Used in Building Functions

42 Building Applications

YCRTENV

The Creation Environment (YCRTENV) model value determines the environment in
which you intend to compile source is the iSeries. The shipped default is the iSeries.

For more information about:

■ Controlling design, see the Implementation Guide.

■ Environments, see the Generating and Implementing Applications guide, in the
chapter "Preparing for Generation and Compilation".

YCUAEXT

The CUA Device Extension (YCUAEXT) model value determines whether the text on the
right side text is used for device designs. The shipped default is *DEFAULT, which results
in no right text and no padding or dot leaders.

The YCUAEXT value, *C89EXT (for CUA Text), provides CUA design features on top of
those which the model value YSAAFMT provides, such as defaulting and alignment of
right side text, padding or dot leaders to connect fields with field text, and prompt
instruction lines on all device function types.

For more information on field attributes and right side text defaults, see the chapter,
"Modifying Device Designs," Device Design Conventions and Styles.

YCUAPMT

The CUA Prompt (YCUAPMT) model value controls the CUA prompt (F4). If enabled, this
design option enables end users to request a list display of allowed values by pressing
F4. The value *CALC provides additional F4 functionality by processing the CALC: user
points in the function where F4 is pressed—for example, to provide Retrieve Condition
functionality.

The default value for YCUAPMT is *MDL. This value directs CA 2E to enable the CUA
prompt at the model level if the YSAAFMT model value is *CUATEXT or *CUAENTRY.

For more information about:

■ Setting display defaults, see the chapter, "Modifying Device Designs"

■ On the *CALC value, see the Command Reference, the YCHGMDLVAL command

Model Values Used in Building Functions

Chapter 2: Setting Default Options for Your Functions 43

YCUTOFF

The Year Cutoff (YCUTOFF) model value specifies the first of the hundred consecutive
years that can be entered using two digits. It is specified as 19YY, which represents the
hundred years: 19YY to 20YY-1. Values between YY and 99 are assumed to be in the
20th century; namely, 19YY to 1999; values between 00 and YY-1 are assumed to be in
the 21st century; namely 2000 to 20YY-1. The default is 1940. The YCUTOFF value is
retrieved at run time and applies to all date field types: DTE, D8#, and DT#.

YDATFMT

The Date Format (YDATFMT) model value works in conjunction with the model value
YDATGEN. If YDATGEN is *VRY. The setting for YDATFMT determines the order of the
date components at run time; for example, MMDDYY or DDMMYY.

YDATGEN

The Date Validation Generation (YDATGEN) model value determines the type of date
editing source code CA 2E generates. With YDATGEN set to *VRY, you can change the
date format for an application with the YDATFMT model value. No recompilation of
functions is necessary.

YDBFGEN

The Database Implementation (YDBFGEN) model value defines the method for database
file generation and implementation: DDS or SQL.

YDFTCTX

The Parameter Default Context (YDFTCTX) model value specifies the default context to
use for a given function call in the action diagram editor when no context is supplied:
LCL or WRK. The shipped default is *WRK.

YDSTFIO

The Distributed File I/O Control (YDSTFIO) model value, together with model value
YGENRDB, provides DRDA support. The shipped default value is *NONE, indicating that
CA 2E will not generate distributed functionality.

For more information on DRDA, see Generating and Implementing Applications in the
chapter "Distributed Relational Database Architecture."

Model Values Used in Building Functions

44 Building Applications

YERRRTN

For RPG-generated functions, the Error Routine (YERRRTN) indicates whether CA 2E will
generate an error handling routine (*PSSR) in the program that implements the
function. The shipped default value is *NO.

Note: For EXCUSRPGM functions, this value specifies whether an error-handling routine
should be generated in the calling program to check the value of the *Return code on
return from the EXCUSRPGM (if the EXCUSRPGM does not have the *Return code as a
parameter, this check will not be generated).

YEXCENV

The call to a CL program that implements an EXCMSG function uses an i OS program.
The Execution Environment (YEXCENV) model value determines the default
environment, QCMD (i OS), in which Execute Message (EXCMSG) functions execute.

For more information about:

■ EXCMSG functions, see Function Types, Message Types, and Function Fields in the
chapter, "Defining Functions"

■ QCMD and QCL, see Generating and Implementing Applications— Managing Your
Work Environment in the chapter "Preparing for Generation and Compilation"

YGENCMT

The time required to generate a function can be significantly improved if comments are
not required for the generated source code. The YGENCMT model value lets you specify
whether or not comments are placed in the resulting generated source code. You can
specify that all comments (*ALL), 'standard' comments (*STD), only header comments
(*HDR), or no comments (*NO) be generated. The shipped default is *ALL.

YGENHLP

The Generate Help Text (YGENHLP) model value allows you to specify whether help text
is generated for a particular function. You can specify generation of the function only
(*NO), help text only (*ONLY), or both the function and help text (*YES). This value can
be overridden at the function level. The shipped default is *YES.

YGENRDB

The Generation RDB Name (YGENRDB) model value provides the DRDA support for
specifying a default database. When you execute the CRTSQLxxx command, this
database is used in creation of the SQL package. The default value for YGENRDB is
*NONE, which means that DRDA compilation is not enabled.

For more information about DRDA, see Generating and Implementing Applications in
the chapter "Distributed Relational Database Architecture."

Model Values Used in Building Functions

Chapter 2: Setting Default Options for Your Functions 45

YHLLGEN

The HLL to Generate (YHLLGEN) model value identifies the default HLL type for new
functions. The HLLGEN parameter on YCRTMDLLIB sets this model value.

Note: To default to the value for model value YSYSHLL, select *SYSHLL for the parameter
HLLGEN.

YHLLVNM

The HLL Naming Convention (YHLLVNM) model value determines the HLL conventions
for new function names. The HLLVNM parameter on YCRTMDLLIB sets this model value.
The default is *RPGCBL, allocation of names that both RPG and COBOL compilers
support.

For more information about converting HLLs, see Generating and Implementing
Applications—Converting a Model from One HLL to Another, in the chapter "Preparing
for Generation and Compilation."

YHLPCSR

The Generate Cursor Sensitive Text (YHLPCSR) model value gives you the option of
generating your function with cursor-sensitive help. That is help- specific to the context
(cursor position) from which the end user requests it. The shipped default is Y (Yes).

YLHSFLL

The Leaders for Device Design (YLHSFLL) model value refers to the symbols to usedas
leaders between text and input or output fields on panels. The shipped default value is
*SAA, for SAA default left-hand filler characters. You can change any of these characters
using the YCHGMDLVAL command.

YNPTHLP

The NPT Help Default Generation Type (YNPTHLP) model value determines the type of
help text to generate for NPT functions. All CA 2E functions are NPT unless the functions
are being generated for a GUI product. The types are UIM or TM. The shipped default
for YNPTHLP is *UIM.

For more information about UIM support, see Objects from UIM Generation in the
chapter "Implementing Your Application."

Model Values Used in Building Functions

46 Building Applications

YNLLUPD

The Null Update Suppression (YNLLUPD) model value sets the default for whether
CHGOBJ functions update or release the database record if the record was not changed.
This can be overridden with a matching function option. The shipped default is *NO.

■ *NO

CHGOBJ functions do not check whether the record has changed before updating
the database. In other words, null update suppression logic is not generated in
CHGOBJ functions.

■ *AFTREAD

CHGOBJ checks whether the record changed between the After Data Read and Data
Update user points.

■ *YES

CHGOBJ checks whether the record changed both after the Data Read and after the
Data Update’ user points.

For more information about:

■ CHGOBJ database function, refer to the chapter, "Defining Functions"

■ Suppressing null updates, see Understanding Contexts, PGM in the chapter
"Modifying Action Diagrams"

YOBJPFX

The Member Name Prefix (YOBJPFX) model value specifies the prefix (up to two
characters) CA 2E uses to generate object names. The shipped default is UU. If you
change this prefix, do not use Q, #, and Y because they are reserved characters for CA
2E.

For more information about naming prefixes, see the Implementation Guide.

YPMTGEN

The Prompt Implementation (YPMTGEN) model value specifies whether the text on your
device designs is generated, implemented, and stored in a message file, making it
available for national language translation. The shipped default value is *OFF. The
parameter PMTGEN on the YCRTMDLLIB command initially sets the YPMTGEN model
value.

For more information about:

■ National Language Support, see Generating and Implementing Applications in the
chapter "National Language Support"

■ YCRTMDLLIB, see the Command Reference

Model Values Used in Building Functions

Chapter 2: Setting Default Options for Your Functions 47

YPMTMSF

The Prompt Message File (YPMTMSF) model value specifies the message file into which
device text message IDs are stored. CA 2E retrieves the messages from this message file
at execution time.

For more information about National Language Support, see Generating and
Implementing Applications in the chapter "National Language Support."

YPUTOVR

The DDS Put With Override (YPUTOVR) model value is a function generation option. It
enables you to specify use of the DDS PUTOVR keyword in the generated DDS. This
keyword, in effect, reduces the amount of data that needs transmission between the
system and its workstations. Its use can improve performance, particularly on remote
lines.

For more information about system performance, see the IBM i Programming: Data
Description Specifications Reference.

YRP4HSP

Used by the RPGIV Generator for the contents of the Control (H) specification for
objects of type *PGM. The allowed values are any RPGIV H-specification keywords, for
example:

■ DATEDIT(*YMD) DEBUG(*YES)

■ DATFMT(*YMD)

Note: If you need to enter a value that is longer than 80 characters, you should use the
command YEDTDTAARA DTAARA(YRP4HSPRFA)

YRP4HS2

Used by the RPGIV Generator for the contents of the Control (H) specification for
objects of type *MODULE. The allowed values are any RPGIV H-specification keywords,
for example:

■ H DATFMT(*YMD)

■ DATEDIT(*YMD) DEBUG(*YES)

■ Note: If you need to enter a value that is longer than 80 characters, you should use
the command YEDTDTAARA DTAARA(YRP4HS2RFA)

Model Values Used in Building Functions

48 Building Applications

YRP4SGN

The RPGIV generator includes some source generation options that you can set at a
model level. These options are in the model value YRP4SGN in a data area called
YRP4SGNRFA (RPGIV source generation options). YRP4SGNRFA is a 16-character data
area.

Note: For more information, see the section Model Value YRP4SGN in the Chapter ILE
Programming.

YSAAFMT

The SAA Format (YSAAFMT) model value controls the design standard for panel layout.
This standard can be CUA. *CUAENTRY is the shipped default.

The DSNSTD parameter on the YCRTMDLLIB command controls the initial YSAAFMT
value. You can override the header or footer for a function from the Edit Function
Options panel. You can also change the value of YSAAFMT using the YCHGMDLVAL
command.

For more information about:

■ Using YSAAFMT options, see Device Design Conventions and Styles in the chapter
"Modifying Device Designs"

■ YSAAFMT values, see YCHGMDLVAL in the Command Reference

YSFLEND

The Subfile End (YSFLEND) model value controls whether the + sign or
More. . . is displayed in the lower right location of the subfile to indicate that the subfile
contains more records. This feature is available for all subfile functions. The shipped
default is *PLUS. To change to *TEXT everywhere, change the model value and
regenerate your subfile functions.

The setting of YSFLEND is resolved in the following areas:

■ Generated applications

■ Device designs

■ Animated functions

■ Function documentation (YDOCMDLFUN)

Model Values Used in Building Functions

Chapter 2: Setting Default Options for Your Functions 49

YSHRSBR

The Share Subroutine (YSHRSBR) model value specifies whether generated source code
for subroutines are shared and whether the subroutine’s interface is internal or
external. This model value and its associated function option are available on the
CHGOBJ, CRTOBJ, DLTOBJ, RTVOBJ, and EXCINTFUN function types.

YSNDMSG

For new functions, the Send Error Message (YSNDMSG) model value specifies whether
to send an error message for only the first error found or for every error. In either case,
outstanding messages clear when the end user presses Enter. The shipped default value
is *NO, do not send all error messages; send only the first error message.

YSQLLCK

The SQL Locking (YSQLLCK) model value specifies whether a row to be updated is locked
at the time it is read or at the time it is updated. The default is *UPD, lock rows at time
of update.

YSQLWHR

The SQL Where Clause (YSQLWHR) model value specifies whether to use OR or NOT
logic when generating SQL WHERE clauses. The default is *OR.

For more information about the YSQLLCK and YSQLWHR model values, see the
Implementation Guide.

Model Values Used in Building Functions

50 Building Applications

YWSNGEN

The Workstation Generation (YWSNGEN) model value defines whether interactive CA 2E
functions operate on non-programmable terminals (NPT) or on programmable
workstations (PWS) communicating with an iSeries host. For programmable
workstations, you also specify the PC runtime environment. YWSNGEN can be
overridden by a function option. The possible values are:

■ *NPT

Generates CA 2E functions for non-programmable terminals (NPT) communicating
with an iSeries host system.

■ *GUI

Generates CA 2E functions for non-programmable terminals together with a
Windows executable running in a Windows environment under emulation to the
host.

■ *JVA

Generates CA 2E functions for non-programmable terminals together with a
Windows executable running in a Windows environment under emulation to the
host and a Java executable running in a Windows environment using a Web
browser with emulation to the host.

■ *VB

Generates CA 2E functions for non-programmable terminals together with a Visual
Basic executable running in a Windows environment under emulation to the host.

User Interface Manager (UIM)

Three model values provide options for UIM help text generation:

■ The Bidirectional UIM Help Text (YUIMBID) model value provides national language
support of languages with both left-to-right and right-to-left orientations

■ The Default UIM Format (YUIMFMT) model value provides paragraph or line tags

■ The UIM Search Index (YUIMIDX) model value provides search for the index name
derived from Values List prefix

Changing Model Values

Chapter 2: Setting Default Options for Your Functions 51

Window Borders

Three model values provide design options for the appearance of the border on
windows:

■ The Window Border Attribute (YWBDATR) model value provides shadow or no
shadow

■ The Window Border Characters (YWBDCHR) model value provides dot/colon
formation

■ The Window Border Color (YWBDCLR) model value provides CUA default (Blue) or
another color

For more information on Modifying Windows, see Editing Device Designs in the chapter
Modifying Device Designs (see page 279).

Changing Model Values

This topic summarizes changing model values for a function of your model.

Function Level

You can override model value settings that determine function options at the function
level from the Edit Function Options panel. You can reach this panel by zooming into the
function from the Edit Functions panel, then pressing F7 (Options) from the Edit
Function Details panel.

The model values that have corresponding fields on the Edit Function Options panel are:

Values Meaning

YABRNPT Create CA 2E Action Bars or DDS Menu Bars for NPT generation

YCNFVAL Initial value for the confirm prompt

YCPYMSG Copy back messages

YDBFGEN Generation mode

YDSTFIO Distributed file I/O control

YERRRTN Generate error routine

YGENHLP Generate help text

YNPTHLP Type of help text to be generated

YPMTGEN Screen text implementation

Changing a Function Name

52 Building Applications

Values Meaning

YSNDMSG Send all error msgs (messages)

YSFLEND Subfile end

YWSNGEN Type of workstation

For more information about:

■ Options applicable to each function see Function Types, Message Types, and
Function Fields in the chapter Defining Functions (see page 55).

■ On step-by-step procedures, see Specifying Function Option in the chapter
Modifying Function Options (see page 229).

Model Level

You can change the setting of a model value for your model by executing the Change
Model Value (YCHGMDLVAL) command. Be sure to use YCHGMDLVAL, rather than the i
OS command, Change Data Area (CHGDTAARA). Changing model values involves more
than changing data areas; many internal model changes are made by YCHGMDLVAL.

You should always exit from your model entirely when changing model values. Although
the command can appear to run successfully while you are in the model, there is no
guarantee that a full update has taken place.

For more information on using the YCHGMDLVAL command, see the Command
Reference guide.

Changing a Function Name

To change a function name

1. Select the file. From the Edit Database Relations panel, type F next to the specific
file and press Enter.

The Edit Functions panel appears, listing the functions for that file.

2. Zoom into the function details. Type Z next to the specific function and press Enter.

The Edit Function Details panel appears, showing the function name at the top.

3. Request to change the function name. Press F8 (Change name).

The function whose name you want to change appears underlined on the panel.

4. Change the function name. Type the specific name. If you want, you can change any
other underlined names to better correspond to the new function name . Press
Enter, then F3 to exit.

Function Key Defaults

Chapter 2: Setting Default Options for Your Functions 53

Function Key Defaults

CA 2E assigns the standard function key usage of your design standard. You can specify
additional function keys in action diagrams or modify existing function key default
values.

For more information about function keys, see the chapter Modifying Device Designs
(see page 279).

The following table shows the shipped device design defaults for the iSeries.

Meaning iSeries default

*Help F01/HELP

Prompt F04

Reset F05

*Change mode request F09

*Change mode to Add F09

*Change mode to Change F09

*Delete request F11

*Cancel F12

*Exit F03

*Exit request F03

*Key panel request/*Cancel F12

*IGC support F18

Change RDB F22

*Previous page request F07/ROLLDOWN

*Next page request F08/ROLLUP

The default is determined by the design standard selected. The iSeries default is used if
the YSAAFMT model value is set to *CUATEXT or *CUAENTY.

Chapter 3: Defining Functions 55

Chapter 3: Defining Functions

This chapter is to describe the basic implementation of functions in CA 2E. The following
information describes the various function types and gives a functional overview of
what is involved in the function development process.

Before you define your functions, you should be familiar with the information in the
following CA 2E guides:

■ Implementation

■ Defining a Data Model

■ Building Access Paths

This section contains the following topics:

Navigational Techniques and Aids (see page 55)
Database Functions (see page 57)
Device Functions (see page 65)
User Functions (see page 70)
Messages (see page 72)
Function Fields (see page 76)
Function Types, Message Types, and Function Fields (see page 78)

Navigational Techniques and Aids

CA 2E provides certain fast path panels that allow you to display the existing functions in
a design model. In this manner, you have access to the functions attached to the design
model files and can perform various operations on all functions in the model from a
single panel. The Display All Functions panel lists the existing functions in a design
model.

Navigational Techniques and Aids

56 Building Applications

Display All Functions

You access the list by pressing F17 to get to the Services Menu from which you select
the Display All Functions option. You can use the positioner fields in the top portion of
the display to scan for a particular file name, function name, function type, or
implementation (or generation) name. You can further filter the functions on display by
specifying one application area. Also, you can use any of the various command line
options and function keys to

■ Access the function’s action diagrams, device designs, report structures,
parameters, and narrative text

■ Display function usage, associated access paths, and locks

■ Delete and document functions

The following is an example of the Display All Functions panel.

Getting to Shipped Files and Fields

The CA 2E shipped files contain all of the default shipped data such as built-in functions,
arrays, field types, job data, messages, program data, standard headers and footers, and
template functions. The shipped files hold information that you use or reference in the
application during the function building process.

For example, you can change the default values for fields such as return codes or
confirm prompts or you can change the default functions for headers and footers.

Database Functions

Chapter 3: Defining Functions 57

To access the shipped files and fields

1. At the Edit Database Relations panel, type * followed by blanks on the Objects field
(subfile positioner field for objects) and DFN at the relations level to show a list of
files only and not the file relations. Press Enter.

The list of shipped files appears.

2. Optionally, specify a portion of the particular file’s name.

For example by typing *St and leaving the Rel level field blank the list starts from
the *Standard header/footer shipped file’s relations.

Database Functions

CA 2E provides you with standard functions including the database functions described
below.

Database Functions

58 Building Applications

Understanding Database Functions

Database functions provide the means of performing actions on the database. There are
four different database functions each defining a HLL subroutine that creates, changes,
deletes, or retrieves data. Database functions are implemented as part of an external
standard function.

The four database functions are:

■ Create Object (CRTOBJ)—Defines a routine to add a record to a file. It includes
processing to check that the record does not already exist before writing to the
database.

■ Change Object (CHGOBJ)—Defines a routine to update a record on a file. It includes
processing to check that the record already exists before updating the database
record.

■ Delete Object (DLTOBJ)—Defines a routine to delete a record from a database file.
It includes processing to check that the record is still on the file before deleting it.

■ Retrieve Object (RTVOBJ)—Defines a routine to retrieve one or more records from
a database file. Processing can be specified for each record read by modifying the
action diagram for the function.

A default version of the Create Change and Delete database functions is defined for all
database files (REF and CPT). You must create the Retrieve Object function if you need
it.

The following table includes the standard database functions.

Function Purpose Access Path

CRTOBJ Add a single record UPD, PHY

CHGOBJ Update a single record UPD, PHY

DLTOBJ Delete a single record UPD,PHY

RTVOBJ Read a records or record RTV,RSQ,PHY

All the CA 2E database functions have action diagrams that you can use to specify
additional processing before and after the accessing the database .

Internal Database Functions and PHY Access Paths

This section contains the fields, functions, and PHY access paths

Database Functions

Chapter 3: Defining Functions 59

*Relative record number Field

The *Relative record number field is a 9.0 numeric field with the internal name RRN.
When a program uses a physical file, a relative record number (RRN) field is assigned to
that file. The *Relative record number field can be a key to access a specific record in
that file, regardless of the contents of each field in that record. A different RRN field is
assigned to each physical file that a program uses.

In the CHGOBJ, CRTOBJ, and DLTOBJ internal database functions built over a PHY access
path, the RRN is available in the DB1 context and can be manipulated to retrieve or
update a specific record.

Internal Database Functions

This section describes what happens when the following internal database functions are
created over physical (PHY) access paths: Retrieve object (RTVOBJ), Change object
(CHGOBJ), Delete object (DLTOBJ), and Create object (CRTOBJ).

Retrieve object (RTVOBJ)

A RTVOBJ created over a PHY access path has one *Relative record number (RRN)
parameter by default:

Parameters Usage Role (default) Default

*Relative record number I RST/POS (POS) Y

Any other fields Any none none

This *Relative record number parameter can be used as a "key" to the physical file
as follows:

RRN as a Restrictor Parameter (I, B, or N) to a PHY RTVOBJ—If the RRN for a
RTVOBJ function built over a PHY access path is a Restrictor parameter, only the
record with RRN equal to the parameter value is read.

RRN as a Positioner Parameter (I, B, or N) to a PHY RTVOBJ—If the RRN for a
RTVOBJ function built over a PHY access path is a Positioner parameter, only
records with RRN greater than or equal to the parameter value are read.

Database Functions

60 Building Applications

RRN as an Output Parameter from a PHY RTVOBJ—If the RRN for a RTVOBJ
function built over a PHY access path is an Output parameter, all records in the
access path are read, starting with record 1. The RRN of the last record read from
the file is passed as the parameter value.

RRN as a Neither Parameter to a PHY RTVOBJ—If the RRN for a RTVOBJ function
built over a PHY access path is a Neither parameter, the RRN first used to access the
file is the current value of the Neither parameter. The Neither parameter is
accessible from the RTVOBJ in the PAR context. Although the parameter is
initialized to 1 in the RTVOBJ, it can be changed to any numeric value in the User
Exit Point USER: Initialize routine. The value following that User Exit Point is used to
access the file initially.

Deleting the RRN Parameter to a PHY RTVOBJ—If the default RRN parameter is
deleted, two outcomes are possible:

■ If USER: Process data record User Point contains user logic, all records in the
access path starting with record 1 are read.

■ If USER: Process data record User Point does not contain user logic, only record
1 is read.

Note: You can add other parameters besides RRN to PHY RTVOBJ functions, but
RRN must be passed first.

The following is a quick reference table for processing the *Relative record number
parameter:

Usage Role Initialized in
RTVOBJ?

Record Processing Value Returned

I RST No Single None

I POS No Single or multiple* None

B RST No Single RRN of last record
read

B POS No Single or multiple* RRN of last record
read

N RST Neither PAR Single None

N POS Neither PAR Single or multiple* None

O n/a 1 Single or multiple* RRN of last record
read

Not used n/a 1 Single or multiple* None

■ Depends on processing in the USER: Process data record User Exit Point.

Database Functions

Chapter 3: Defining Functions 61

Change object (CHGOBJ)

In a normal CHGOBJ, the processing includes these steps:

1. USER: Processing before data read.

2. Load key fields to record format.

3. Access file to check if record exists.

4. USER: Processing if data record not found.

5. If record not found, send error message and quit.

6. If record locked, send error message and quit.

7. USER: Processing after data read.

8. Load non-key fields to record format.

9. USER: Processing before data update.

10. Update record.

11. If update failed, send error message and quit.

12. USER: Processing after data update.

In a CHGOBJ built over a PHY access path, the processing includes these steps:

1. Load key and non-key fields to record format.

2. USER: Processing before data update.

3. Update record.

4. If update failed, send error message and quit.

5. USER: Processing after data update.

The following notes apply to these situations:

■ The pre-update file access is not generated. This is normally generated as an
RPG CHAIN or as a COBOL READ statement.

■ Any action diagram code in the following User Points is ignored, and no code is
generated for them:

– USER: Processing before data read

– USER: Processing if data record not found

– USER: Processing after data read

■ A CHGOBJ created over a PHY access path can be attached only to a RTVOBJ
built over the same PHY access path. This is because of the i OS requirement
that a record to be changed must have been read previously.

Database Functions

62 Building Applications

Delete object (DLTOBJ)

In a normal DLTOBJ, the processing includes these steps:

1. USER: Processing before data update.

2. Access file to check if record still exists.

3. If record already deleted, send error message and quit.

 If record locked, send error message and quit.

5. Delete record.

6. If delete failed, send error message and quit.

7. USER: Processing after data update.

In a DLTOBJ built over a PHY access path, the processing includes these steps:

1. USER: Processing before data update.

2. Delete record.

3. If delete failed, send error message and quit.

4. USER: Processing after data update.

The following notes apply to these situations:

■ A DLTOBJ created over a PHY access path is created with no parameters. You
must ensure that the record to be deleted was read in a RTVOBJ built over the
same PHY access path. Thus, the DLTOBJ should be inserted only in the USER:
Process data record User Exit Point in the RTVOBJ.

■ The pre-delete file access is removed. This is normally generated as an RPG
CHAIN or as a COBOL READ statement.

■ Any code in the USER: Processing if data record already exists User Point is
ignored.

■ A DLTOBJ built over a PHY access path can be attached only to a RTVOBJ built
over the same PHY access path.

Database Functions

Chapter 3: Defining Functions 63

Create object (CRTOBJ)

In a normal CRTOBJ, the processing includes these steps:

1. Load parameters to record format.

2. USER: Processing before data update.

3. Access file to check if record already exists.

4. USER: Processing if data record already exists.

5. If record already exists, send error message and quit.

6. Write record.

7. USER: Processing if data update error.

8. If write failed, send error message and quit.

9. USER: Processing after data update

In a CRTOBJ built over a PHY access path, the processing includes these steps:

1. Load parameters to record format.

2. USER: Processing before data update.

3. Write record.

4. USER: Processing if data update error.

5. If write failed, send error message and quit.

6. USER: Processing after data update.

The following notes apply to these situations:

■ The pre-create file access is removed.

■ Any code in the USER: Processing if data record already exists User Point is
ignored.

■ A CRTOBJ built over a PHY access path cannot be used in any function that also
contains a RTVOBJ built over the same PHY access path. This is because the file
definition requirements of a PHY access path used for CRTOBJ are different
from those used for CHGOBJ, DLTOBJ, or RTVOBJ. However, the Action Diagram
Editor registers an error only if you attempt to attach the CRTOBJ to a RTVOBJ
directly. If you attach a CRTOBJ to, for example, an EXCEXTFUN that also
contains a PHY RTVOBJ, the Editor does not register an error, but the function
compilation will fail.

Database Functions

64 Building Applications

Using Functions Built Over PHY Access Paths

This is a quick reference table with information about functions built over PHY
access paths:

Database Function Attaching to: Allowed by
Compiler?

Action Diagram
Editor Error?

Retrieve object CRTOBJ over same
PHY access path

No Yes

Retrieve object Other function Yes n/a

Change object RTVOBJ over same
PHY access path

Yes n/a

Change object Other function No Yes

Delete object RTVOBJ Yes n/a

Delete object Other function No Yes

Create object RTVOBJ over same
PHY access path

No Yes

Create object Other function
containing RTVOBJ

No No

Create object Other function Yes n/a

Consider the following points when using functions built over PHY access paths:

■ Because some error checking has been removed from these functions, the
application designer must ensure that applications using these functions do not
run at the same time as other functions that use these files. Otherwise, locks
may be placed on records that these functions need to read.

■ CHGOBJ and DLTOBJ functions built over a PHY access path can be used only in
a RTVOBJ built over the same PHY access path. This ensures that the record to
be changed or deleted has just been read in the RTVOBJ.

■ A CRTOBJ function built over a PHY access path can be used only in a function
that does not contain a RTVOBJ, CHGOBJ, or DLTOBJ built over the same PHY
access path. We suggest that you create an Execute external function
(EXCEXTFUN) with the same parameters as the CRTOBJ, include only the
CRTOBJ in that function, and access the PHY CRTOBJ by using that function.

■ Although the generators create code differently for the RTVOBJ, CHGOBJ,
DLTOBJ, and CRTOBJ functions, the action diagram for each function does not
change. This may cause confusion, because User Points are visible in the action
diagram and statements can be entered in them, but those User Points may
not be generated.

Device Functions

Chapter 3: Defining Functions 65

Array Processing

To add, delete, modify, or retrieve entries in a particular array over which they are
defined, use the following database functions:

■ Create Object (CRTOBJ)

■ Delete Object (DLTOBJ)

■ Change Object (CHGOBJ)

■ Retrieve Object (RTVOBJ)

A DLTOBJ with no parameters clears an array.

Although arrays are not implemented as database files, CA 2E allows you to use the
same techniques as database files when working with arrays.

Note: You must define a key for an array even if the array holds a single element.

Device Functions

In addition to the database functions, CA 2E also provides standard device functions as
follows.

Understanding Device Functions

Device functions are interactive panels or reports. Panel device functions present the
interactive user interface between the end user and the application. Report device
functions provide a method of defining a written presentation of data. All device
functions, with the exception of PRTOBJ, are implemented as external functions. PRTOBJ
is an internal function.

Defining Device Functions

CA 2E provides comprehensive interactive design facilities that allow you to specify a
panel or report layout. CA 2E interactive device design editor allows you to define field
attributes, positioning, conditioning, user function keys, and panel or report literals for
interactive display or written presentation.

You access this interactive editor from the Edit Functions, Edit Function Devices, or the
Display All Functions panels.

Device Functions

66 Building Applications

The device standard header device functions are:

■ Define Screen Format (DFNSCRFMT)—This function allows you to define a standard
screen header and footer for use by other functions that have screen designs
attached to them

■ Define Report Format (DFNRPTFMT)—This function allows you to define a standard
report header and footer for your Print File report functions

The single-record device functions are:

■ Prompt Record (PMTRCD)—Defines a program to prompt for a list of fields defined
by a specified access path. The validated values can be passed to any other
function.

■ Display Record (DSPRCD)—Defines a program to display a single record from a
specified database file. If no key is supplied, a key panel prompts for a key.

■ Display Record 2 panels (DSPRCD2)—Defines a program that is identical to the
DSPRCD function, except that it allows the database record details to extend to two
separate display device pages.

■ Display Record 3 panels (DSPRCD3)—Defines a program that is identical to the
DSPRCD function, except that it allows the database record details to extend to
three separate display device pages.

■ Edit Record (EDTRCD)—Defines a program to maintain (add, change, and delete)
records on a specified file, one at a time. If no key is supplied, a key panel prompts
for a key.

■ Edit Record 2 panels (EDTRCD2)—Is identical to the Edit Record function, except
that it allows the record details to extend to two separate display pages.

■ Edit Record 3 panels (EDTRCD3)—Is identical to the Edit Record function, except
that it allows the record details to extend to three separate display pages.

The multiple-record device functions are:

■ Display File (DSPFIL)—Defines a program to display the records from a specified
file, many at a time, using a subfile. The subfile is loaded a page at a time when you
press Rollup or F8.

■ Select Record (SELRCD)—Defines a program that displays the records from a
specified file, many at a time, using a subfile. The program allows you to select one
of the records. The selected record is returned to the calling program. This function
is called from a function that requested a selection list.

■ Edit File (EDTFIL)—Defines a program to maintain the records on a specified file,
many at a time, using a subfile. The subfile is loaded a page at a time when you
press Rollup or F8.

Device Functions

Chapter 3: Defining Functions 67

The single- and multiple-record device functions are:

■ Display Transaction (DSPTRN)—Defines a program to display the records from a
specified pair of database files. The pair must be connected by an Owned by or
Refers to relation.

■ Edit Transaction (EDTTRN)—Defines a program to maintain the records on a
specified pair of header and detail files. The pair must be connected by an Owned
by or Refers to relation.

The printer device functions are:

■ Print File (PRTFIL)—Defines a program to print records from a specified access path.

■ Print Object (PRTOBJ)—Defines a particular report fragment which prints the
records from a specified access path at any point within a Print File function. Print
Object functions can be embedded within other Print Object functions.

Device Functions’Standard Features

All HLL programs that implement device functions use standard techniques for each of
the following aspects of interactive programs.

Device Functions

68 Building Applications

Standard Features—User Interface

■ Diagnostic messages—If an error is detected in a CA 2E generated program, a
message is sent to the program’s message queue. All interactive programs have a
message subfile to show the pending messages on the program’s message queue.
This message handling technique makes full use of the sophisticated message
handling capabilities of i OS, allowing both second level text and substitution
variables. It also ensures that applications can be translated easily into other
national languages.

■ Highlighting of errors—Any field found to be in error is highlighted in reverse
image. The cursor is positioned at the first of these fields.

■ On-line Help text—All the interactive programs generated by CA 2E include
processing to call a program to display Help text when the Help key or F1 is pressed.

■ Print key—The print key is enabled to allow panel prints. The name of the print key
spool file can be controlled with the YPKYVNM model value.

■ Selection columns—Subfiles that allow selection of individual items always have
the selection column on the left.

■ Function key usage—Function key usage is standardized to follow CUA standards:
for example, F3 is exit.

For more information on function key usage, see Function Key Defaults in the
chapter "Setting Default Options for Your Functions."

■ Positioning facilities—When appropriate, programs that use subfiles have a
positioning field on the subfile control record that you can use to control which
records are shown in the subfile.

Standard Features—Processing Techniques

■ Single Page Subfile (SFL) load up—Programs that use SFLs only load the SFL on a
demand basis. Normally, this means only when the Rollup key or F8 is pressed. This
makes their performance more efficient. However, the device function types that
need to read all of a restricted number of records (namely the EDTTRN and DSPTRN
functions) reads more than a page of records at a time if appropriate.

■ Concurrency checking and record locking—Programs that update the database do
not generally hold a lock on the database while the changes to the database are
being entered and validated; that is, between reading an existing record and
updating it. Instead, they include processing at the point of update to check that
records were not altered by other users since the record was first accessed by the
updating program. This approach prevents locking out any concurrent users or
batch processes who or which may also need to update the file.

■ Overflow handling—CA 2E generated report functions include exception handling
to cope with page overflow. You can specify whether headings are reprinted or not.

Device Functions

Chapter 3: Defining Functions 69

Device Function Program Modes

Each of the programs specified by CA 2E standard device functions operate in one or
more modes, depending on the function type. Program modes give the user a simple
way of controlling program behavior.

The following table shows the program modes by function type.

Function Type *ADD *CHANGE *SELECT *DISPLAY *ENTER

PMTRCD - - - Y

DSPRCD1,2,3 - - - Y -

DSPFIL - - - Y -

EDTRCD1,2,3 Y Y - - -

EDTFIL Y Y - - -

SELRCD - - Y - -

DSPTRN - - - Y -

EDTTRN Y Y - - -

Note: Program modes do not apply to report functions.

Classification of Standard Functions by Type

The following table lists the standard function types.

Function Type Abbreviatio
n

Class Imp Dev Action
Diagram

Param
s

Function
Option

Retrieve Object RTVOBJ dbf int - Y Y Y

Change Object CHGOBJ dbf int - Y Y Y

Create Object CRTOBJ dbf int - Y Y Y

Delete Object DLTOBJ dbf int - Y Y Y

Define Screen
Header

DFNSCRDSN dfn scr int - - - Y

Define Report
Header

DFNRPTDSN dfn rpt int - - - Y

Prompt and Validate PMTRCD dev scr ext Y Y O Y

Display Record DSPRCD dev scr ext Y Y O Y

User Functions

70 Building Applications

Function Type Abbreviatio
n

Class Imp Dev Action
Diagram

Param
s

Function
Option

Display Record (2
panels)

DSPRCD2 dev scr ext Y Y O Y

Display Record (3
panels)

DSPRCD3 dev scr ext Y Y O Y

Edit Record EDTRCD dev scr ext Y Y O Y

Edit Record (2
panels)

EDTRCD2 dev scr ext Y Y O Y

Edit Record (3
panels)

EDTRCD3 dev scr ext Y Y O Y

Display File DSPFIL dev scr ext Y Y O Y

Select Record SELRCD dev scr ext Y Y O Y

Edit File EDTFIL dev scr ext Y Y O Y

Display Transaction DSPTRN dev scr ext Y Y O Y

Edit Transaction EDTTRN dev scr ext Y Y O Y

Print File PRTFIL dev rpt ext - Y O Y

Print Object PRTOBJ dev rpt int Y Y O Y

Execute Internal
Funct.

EXCINTFUN usr int - Y O Y

Execute External
Funct.

EXCEXTFUN usr ext - Y O Y

Execute User
Program

EXCUSRPG
M

usr ext - - O Y

Execute User Source EXCUSRSRC usr int - - O -

dbf = database

file dev = device

dfn = define

ext =
external

int =
internal

O =
Optional

 rpt =
report

scr
=screen

usr = use

User Functions

CA 2E provides you with standard user functions as described in the following sections.

User Functions

Chapter 3: Defining Functions 71

Understanding User Functions

User functions provide the means of implementing additional user processing within an
existing function or as an independent implementation used in conjunction with an
existing function. There are four basic user functions: Execute External Function,
Execute Internal Function, Execute User Program, and Execute User Source.

Function Action Diagram Implementation

EXCEXTFUN Yes External

EXCINTFUN Yes Internal

EXCUSRPGM No External

EXCUSRSRC No Internal

Defining Free-Form Functions

Free-form user functions provide the means of specifying actions that can be used
within a function or called from a function to perform a series of procedures. These
functions do not conform to any predefined structure and the contexts of these
functions are entirely composed of actions. You define these function types at the Edit
Functions panel. The processing logic for these functions is defined with the Action
Diagram Editor.

The free-form functions are:

■ Execute Internal Function (EXTINTFUN)—This function allows you to specify a
section of an action diagram for repeated use in other functions.

■ Execute External Function (EXCEXTFUN)—This function allows you to specify a HLL
program using an action diagram.

Messages

72 Building Applications

Defining User-Coded Functions

User coded functions are functions that are user-written in a HLL. They can be called
from another function or embedded within a function.

The user-written coded functions are:

■ Execute User Program (EXCUSRPGM)—This function allows you to describe the
interface to a user written HLL program so that it can be referenced by functions.
Parameters can be specified on the call.

■ Execute User Source (EXCUSRSRC)—This function specifies either:

– User-written HLL code to perform an arbitrary function that is to be included
within the source generated by CA 2E for an HLL program.

– Device language statements, for example, DDS that can be applied to a device
function to customize the associated device design.

You define these function types at the Edit Functions panel. The user-coded functions
are called or referenced by any function. However, they do not have an associated
action diagram. You can edit the source directly from within CA 2E.

An EXCUSRPGM function generally is an existing program that you integrate into your
application. This process typically requires you to rename the default name for the
function to the name of the existing user program. DDS names must match for
EXCUSRPGM or source copied into functions.

EXCUSRSRC function types must be of the same HLL source type as that of any functions
that call them.

Messages

CA 2E provides you with standard message functions. They are described below.

Messages

Chapter 3: Defining Functions 73

Understanding Messages

An i OS message file is an i OS object that contains individual message descriptions. A
message description is a unit within the message file that contains specific information.
The message description includes the message identifier, the message text, and other
details about the message. You specify substitution variables that allow data to be
inserted within the text when the message is used.

The message functions allow the user to

■ Define messages of varying types

■ Specify different message files to which the message is attached

■ Specify substitution variable parameters

■ Change message identifiers

Basic Properties of Messages

CA 2E provides default system names for messages and provides the means to override
the message file names and message identifiers. CA 2E provides six message types:
completion, error, execution, information, retrieval, and status. Parameters can be
defined for message functions. Parameters correspond to fields or files.

CA 2E provides default messages that correspond to default logic processing inherent in
CA 2E external functions. These messages include default existence and not found
messages created for all files.

The message functions are:

■ Send Error Message (SNDERRMSG)—This function specifies that an error message
be sent to a calling function. Normally, this function is used to provide diagnostic
messages arising from user validation.

■ Send Information Message (SNDINFMSG)—This function specifies that an
informational message be sent to the message queue of a calling program.

■ Send Completion Message (SNDCMPMSG)—This function specifies that a
completion message be sent to the function that called a standard function.
Typically, completion messages are used to indicate that a process completed
successfully.

■ Send Status Message (SNDSTSMSG)—This function specifies that a status message
be sent to a calling function. Normally, this function is used to provide information
about the progress of a long-running process.

■ Retrieve Message (RTVMSG)—This function specifies that message text be
retrieved from the message file into a function.

■ Execute Message (EXCMSG)—This function specifies that a request message be
executed. The request can be any CL command.

Messages

74 Building Applications

Defining Message Functions

You define your message functions using the following instructions.

Specifying Message Functions Details

Message functions are defined at the Edit Message Functions panel.

1. At the Edit Database Relations panel, type *M in the Object field and press Enter to
get to the message subfile.

The *MESSAGES file appears.

2. Type F next to a relation for the selected file.

The Edit Message Functions panel appears.

3. Press F9 to define a new message.

4. Go to a blank subfile line on the Edit Message Functions panel.

5. Enter the message function name and message type from one of the available
option types described previously. If you are uncertain of the type of message, type
? in the Type field to display a list of valid values.

Note: You can define and modify messages while editing an action diagram.

Messages

Chapter 3: Defining Functions 75

Specifying Parameters for Messages

A parameter is used within the text portion of a message. During generation, the
parameter’s value displays. Parameters can be specified for a message function using
the following instructions:

1. Use the previous instructions to get to the Edit Message Functions panel.

2. Type P next to the selected message function.

The Edit Function Parameters panel appears.

3. Define the parameter.

Note: When the data type of a parameter allows value mapping, such as all date and
time fields, the parameter is generally converted to its external format before the
message is sent. However, due to limitations within i OS, the parameter data for the TS#
data type is passed in its internal format, namely, YYYY-MM-DD-HH.MM.SS.NNNNNN.

A parameter can be defined for a message function to allow substitution of the
parameter’s value into the text portion of the message identifier.

For example, to insert a field’s value in an error message when the credit limit is
exceeded for a customer, enter the following:

Credit limit exceeded for &1.

The parameter value &1 is inserted into the message text at execution time. You must
then define &1 as an input parameter value to the message function. If this is an error
message, it also causes the field associated with the parameter &1 to display using the
error condition display attribute for the field. By default, this is reverse image.

Specifying Second-Level Message Text

Second-level text defines a full panel of information that you can choose to display for
any message that is issued. It is also used to define the text of messages to executed on
a platform-by-platform basis. To specify second-level message text:

1. Use the previous instructions to get to the Edit Message Functions panel.

2. Type Z next to the selected message function.

The Edit Message Function Details panel appears.

3. Press F7.

The Edit Second Level Message Text panel appears.

4. Specify the second-level message text.

Function Fields

76 Building Applications

Function Fields

CA 2E provides function fields. They are described in the following sections.

Understanding Function Fields

Function fields are special types of fields that you can use in device designs and action
diagrams. The attributes of a function field are typically based on other fields. In
addition, to specify the field definition you can optionally specify processing for a
particular function field based on the function field usage.

Function Fields

Chapter 3: Defining Functions 77

Basic Properties of Function Fields

There are six different types or usages of function fields. The following four usages
provide standard field level functions:

■ Sum (SUM)

■ Count (CNT)

■ Maximum (MAX)

■ Minimum (MIN)

The other two fields enable you to define your own function fields, either with or
without a user-specified calculation to derive the field. These function field usage types
are:

■ Derived (DRV)

■ User (USR)

Function field parameters specify which field values are passed into the function at
execution time and, inversely, which field is returned from the function as the result
field.

Derived (DRV) function fields must have one output parameter and can have many input
parameters.

Maximum (MAX), Minimum (MIN), Count (CNT) and Sum (SUM) function fields have
only one output parameter (the field itself) and only one input parameter that defines a
field on which the calculation is based.

USR usage function fields have no associated parameters. These fields are typically used
as work fields in an action diagram.

DRV usage function fields have associated action diagrams. A free-form action diagram
shell (such as for EXCINTFUN) is associated with the derived function field to specify
processing steps.

Function Types, Message Types, and Function Fields

78 Building Applications

Design Considerations

Function fields can be pulled into a panel display or a report. The function fields appear
on the device design. However, the special characteristics inherent in each function field
type allow you to specify unique processing.

For example, a user could specify a SUM function field to sum a computed total for all of
the detail lines on an EDTTRN function called Edit Orders display. The SUM field is used
to compute a value from an occurrence of a field in a detail format, with the result
placed in the summation field in a header format.

Note: The totaling function fields, MIN, MAX, SUM, and CNT are only valid for header or
detail display functions such as Display Transaction and Edit Transaction as well as print
functions (Print Object and Print File).

Defining Function Fields

Function fields are defined in the same way that database fields are defined by using the
Define Objects panel. You can access this panel by pressing F10 on the Edit Database
Relations panel or by pressing F10 on the Display All Fields panel.

Because you can access the Display All Fields panel while editing an action diagram or
device design, you can define function fields while performing other activities.

For more information on defining function fields, refer to this module, in the chapter,
"Modifying Device Designs."

Function fields that require the specification of parameters are DRV, SUM, MIN, MAX,
and CNT. The function field that requires an action diagram is DRV.

For more information on function fields, refer to this module, in the chapter, "Modifying
Action Diagrams."

Function Types, Message Types, and Function Fields

The CA 2E function types, message types, and function fields are listed in alphabetical
order on the following pages with a detailed description of each.

For more information on the specific user points for these function types, see the
Understanding User Points topic in the chapter, "Modifying Action Diagrams."

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 79

Database Function

CHGOBJ The Change Object (CHGOBJ) function defines a routine to update a record in a
file. The CHGOBJ function includes the processing to check that the record exists before
updating the database record.

There are no device files associated with the CHGOBJ function. However, it does have
action diagram user points. This function must be attached to an update access path.

Note: For more information on PHY, see the section Internal Database Functions and
PHY Access Paths.

The default CHGOBJ function is used to update all fields in the database record. If you
want to change only a subset of the fields on the file, you must define a new CHGOBJ
function specifying each field to be excluded as a Neither parameter or define a CHGOBJ
based on a different access path containing only those fields.

A CHGOBJ function is provided for every database file and is based on the primary
update access path. It is inserted in the Change DBF Record user point in edit functions
that update changed records.

Note: When a CHGOBJ is inserted in the Change DBF Record user point, code is
generated to check if the record was changed (by another user) before the record is
updated. However, if a CHGOBJ is inserted in any other user point of any function type,
this checking is not generated.

All fields on the access path must be provided as Neither, Input, or Both parameters and
cannot be dropped.

The following table shows the parameters available.

Parameters Usage Role Default Option

All fields from access path I - Y R

Any other fields Any - - O

The following table shows the function options available.

Option Default Value Other Values

Null Update Suppression M(YNLLUPD) N, Y, A

Share Subroutine M(YSHRSBR) N, Y

Function Types, Message Types, and Function Fields

80 Building Applications

Null Update Suppression Logic

The null update suppression logic generated in CHGOBJ functions determines whether
to update the database record as shown in the following steps:

1. Before the After Data Read user point, CHGOBJ saves an image of the original data
record and initializes the *Record data changed PGM context field to ‘ ‘.

2. CHGOBJ performs the following checks.

■ Compares the saved image and the current image of the record to determine
whether the data record has changed

■ Checks whether logic in the preceding user point explicitly set the *Record data
changed PGM context field to *NO in order to force suppression of the data
update

If the images differ and the *Record data changed field is not *NO, CHGOBJ sets the
*Record data changed field to *YES.

Note: Where and how often the previous checks are done within the CHGOBJ
depends on whether YNLLUPD is *AFTREAD or *YES. If *YES, check is done both
after the After Data Read and after the Before Data Update user points. If
*AFTREAD, the check is done only after the After Data Read user point.

3. Before updating the database record, CHGOBJ checks the *Record data changed
PGM context field. If it is *YES, the database record is updated, otherwise the
record is released.

For more information about:

■ YNLLUPD values, see the CHGMDLVAL command in the Command Reference.

■ The *Record data changed field and an example, see, Understanding Contexts, PGM
in the chapter "Modifying Action Diagrams"

It is possible to change the primary key of a file using CHGOBJ. However, this is only
valid for RPG/DDS and this generally violates relational database principles. Changing
the primary key should be performed using DLTOBJ function followed by a CRTOBJ
function. In COBOL or SQL, a primary key change must be performed in this way.

For a given based-on access path, if you want to update all database fields in some
functions but only a subset of fields in other functions, create a second CHGOBJ function
by copying the default CHGOBJ function. On the second CHGOBJ, specify the fields you
do not want to update as Neither (N) parameters. Only fields specified as Input (I)
parameters are updated in the database record. Use the second CHGOBJ instead of the
default CHGOBJ in the functions where you want to update the subset of the database
fields.

For more information about:

■ How to use a DLTOBJ function, see DLTOBJ later in this chapter

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 81

■ The user points for the CHGOBJ function, see the chapter "Modifying Action
Diagrams"

CNT Function Field

The Count (CNT) function field is a field usage type used within certain functions
(EDTTRN, DSPTRN, PRTFIL, and PRTOBJ) to define a count of a set of records. The CNT
function field must be based on one of the fields in the record format.

In order for CNT to determine which records to count, you must point it to a record on
the device. To do this, CNT must reference one of the fields in the record. The actual
field selected and the values in that field do not affect the result of the CNT function.
The CNT field itself must be a numeric field.

CNT function fields always have two parameters:

■ A result parameter—This is the actual field itself containing the results of a
summation. You must place the field on a totaling format of the function that uses
the CNT function field.

■ An input parameter—This represents a summation of the number of instances or
occurrences of the field being passed. Your input parameter must be on a field on
the detail or subfile record format of the function using the CNT function field.

Note: If you reference this function field to another field, that field defaults to the input
parameter of the CNT function field.

Examples of Count fields:

■ Number of employees in a company

■ Number of order lines in an order

Function Types, Message Types, and Function Fields

82 Building Applications

CRTOBJ Database Function

The Create Object (CRTOBJ) function defines a routine to add a record to a database file.
The CRTOBJ function includes the processing to check that the record does not already
exist prior to being written to the database. There are no device files associated with
the CRTOBJ function; however, it does have action diagram user points.

A CRTOBJ function is provided by default for every database file. All CRTOBJ functions
are attached to an Update (UPD) access path, or can be attached to a Physical (PHY)
path.

Note: For more information on PHY, see the section Internal Database Functions and
PHY Access Paths

The following table shows the parameters available.

Parameters Usage Role Default Option

All fields from access path I - Y R

Any other fields Any - - O

The following table shows the function options available.

Option Default Value Other Values

Share Subroutine M(YSHRSBR) N,Y

All fields from the UPD access path must be declared as parameters to the CRTOBJ
function. To exclude certain fields from being written, you should specify them as
Neither parameters. These fields are not automatically initialized. If you use Neither
parameters, you should initialize the fields with blank or zero.

If the UPD access path to which the CRTOBJ function is attached does not contain all of
the fields in the based-on file, the missing fields are set to blank or zero. You can change
this by specifying a value on the Default Condition field of the Edit Field Details panel.

For more information on user points, see the chapter, "Modifying Action Diagrams."

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 83

DFNSCRFMT Device Function

The Define Screen Format (DFNSCRFMT) function defines a standard panel header and
footer for use by other functions that have panel designs attached to them.

There are three default Define Screen Format functions shipped as standard
header/footer formats for the device function panel design:

■ *STD SCREEN HEADINGS (CUA) function follows the SAA CUA Entry Model standards

■ *STD CUA WINDOW function follows CUA standards for window panels.

■ *STD CUA ACTION BAR function follows CUA standards for action bar panels

You can modify these shipped versions as well as add your own DFNSCRFMT functions
for use in specific function panel designs. You can use the Edit Function Options panel of
any panel function to change the DFNSCRFMT function used for that particular function.

When a model is created, the defaults depend on the value given to the DSNSTD
parameter on the Create Model Library command, YCRTMDLLIB.

Use the function options for the DFNSCRFMT functions to set the defaults to be used by
newly created device functions.

Attach the DFNSCRFMT function to the physical (PHY) file access path of the *Standard
header/footer file. This function type does not allow parameters. It does not have an
action diagram.

If you define an additional DFNSCRFMT function, all the fields from the *Standard
header/footer file are available on both formats of the function. You can rearrange or
suppress these fields.

By default, the header and footer formats are as follows:

■ For CUA Entry panels, the title is at the top and the command area at the bottom;
for CUA Text, the panel includes an action bar. You can change the location of the
command area using the Edit Screen Format Details panel.

■ The fields that can be included in the design of a DFNSCRFMT function are included
in the CA 2E shipped file, *Standard header/footer.

Header and footer formats have instruction lines that are hidden by default.

The following is an example of a CUA Entry Standard panel.

Function Types, Message Types, and Function Fields

84 Building Applications

The following is an example of a CUA Text Standard panel.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 85

The following is an example of a CUA Text Standard window.

For more information on the function options available, see Identifying Standard
Header/Footer Function Options in the chapter, "Modifying Function Options."

Function Types, Message Types, and Function Fields

86 Building Applications

DFNRPTFMT Device Function

The Define Report Format (DFNRPTFMT) function defines a standard report header and
footer for your Print File report functions.

A default DFNRPTFMT function is shipped with CA 2E to define standard header/footer
formats for device function report designs. You can modify the shipped version or add
your own DFNRPTFMT functions for use in specific function report designs. Any new
report device function created by CA 2E uses the shipped DFNRPTFMT function by
default, unless you nominate a different default. To use your own DFNRPTFMT, you can
change the DFNRPTFMT for any report function using the Edit Function Options panel.

The fields that can be included in the design of a DFNRPTFMT function are included in
the CA 2E shipped file called *Standard header/footer.

Attach the DFNRPTFMT function to the physical (PHY) file access path of the *Standard
header/footer file.

This function type does not allow parameters. It does not have an action diagram.

By default, the header format for the report starts on line one. This value can be
changed using the Edit Device Format Details panel.

The shipped standard report page header is for a report that is 132 characters wide. To
define a DFNRPTFMT function with a different report width, specify a different value for
the PAGESIZE parameter on the overrides to the i OS Create Print File command
(CRTPRTF) for the function. You do this using the overrides prompt available from the
Edit Function Details panel (F19 function key).

Use the function options for the DFNRPTFMT function to set the default header to be
used by newly created report functions.

The fields of the header are shown in this example in two lines (in practice, the header
extends beyond the limit of one panel).

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 87

Note: Any changes that you want to make to a report header and footer of a report
function must be made by modifying the DFNRPTFMT function associated with the
function. The header fields of report formats shown on the report function itself are
protected.

For more information on the function options available, see Identifying Standard
Header/Footer Function Options in the chapter, "Modifying Function Options.".

Function Types, Message Types, and Function Fields

88 Building Applications

DLTOBJ Database Function

The Delete Object (DLTOBJ) function defines a routine to delete a record from a
database file. The DLTOBJ function includes processing to check that the record is still
on the file before deleting it. You can add processing to a DLTOBJ function such as
processing that performs a cascade delete of any associated records.

The DLTOBJ function does not have device files or function options. However, it has
action diagram user points.

A DLTOBJ function is provided for all files. By default, it is normally inserted into the
Delete DBF Record user point in all edit functions.

Note: When a DLTOBJ is inserted in the Delete DBF Record user point, code is generated
to check if the record has been changed (by another user) before the record is deleted.
However, if a DLTOBJ is inserted in any other user point in any function type, this
checking is not generated.

The DLTOBJ function must be attached to an Update (UPD) access path, or can be
attached to a Physical (PHY) access path. The primary key(s) of the UPD access path
must be declared to the Delete Object function; other parameters can also be added.

Note: For more information on PHY, see the section Internal Database Functions and
PHY Access Paths

The following table shows the parameters available.

Parameters Usage Role Default Option

Key fields from access path I - Y R

Other fields Any - - O

The following table shows the function options available.

Option Default Value Other Values

Share Subroutine M(YSHRSBR) N, Y

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 89

You can add your own checks to the action diagram of the DLTOBJ function to ensure
that no record is deleted that is referenced elsewhere in the database, ensuring
referential integrity. You would use a Retrieve Object function to check for the existence
of referenced records.

For example, you can allow Customers to be deleted from the Customer file but only if
the Customer is not referenced in an order on the Order file. You could modify the
DLTOBJ function for the Customer file to include this check by calling a Retrieve Object
function on the Order file. If an Order is found that references the Customer, the
condition Error is moved to the program’s *Return code and tested on return to the
Delete Object function:

 > USER: Processing before DBF update
 :—
 : Retrieve object – Order * <<<
 : .-CASE<<< <<<
 : |-PGM. *Return code is Error <<< <<<
 : |,—QUIT<<< <<<
 : ,-ENDCASE<<< <<<
 '—

Array DLTOBJ

You can use a DLTOBJ to delete one element of an array or to clear the contents of an
array. To clear the entire array, define a DLTOBJ over the array and delete all parameter
entries from the DLTOBJ. When this special type of DLTOBJ executes, it clears the
associated array.

DRV Function Field

The Derived (DRV) function field usage is a special field used within functions to perform
a user-defined action to derive the result field. An empty action diagram is initially
associated with the function field.

A DRV field always has one output parameter: the derived field itself. You can specify as
many additional input parameters as required.

Example of a Derived Function Field

An example of a DRV field is a total value field that contains the result of the calculation
of the Quantity multiplied by Price fields. Other examples include retrieval of data from
an access path.

For example, rather than having a virtual field in a file, you could use a derived function
field that includes a RTVOBJ to read the file and return a value to the field.

Function Types, Message Types, and Function Fields

90 Building Applications

Example of a Compound Condition with Derived Fields

A DRV function field can be used to encapsulate a compound condition. The result
would be a true/false condition. This can be used in an action diagram or to condition a
device field. Similarly, DRV function fields can be used to encapsulate a compute
expression.

■ Derived fields are equivalent to a function call that returns a single variable.

■ Derived fields can be used in any function type and are not restricted to device
functions.

For more information on function fields, see Function Field presented earlier in this
chapter.

DSPFIL Device Function

The Display File (DSPFIL) function defines a program to display a list of records from a
specified file using a subfile. The subfile is loaded one page at a time when the scroll
keys are pressed.

The DSPFIL function also allows you to select specific field values within a file by using
fields in the subfile control area of the panel. For each field on the subfile record, an
associated input-capable field is, by default, present on the subfile control area of the
panel design.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 91

Effects of Parameters

Restrictor Parameters are only for key fields. Specifying restricted key (RST) parameters
to the DSPFIL function restrict the records that are written to the subfile for display.
Only records from the based-on access path with key values that match exactly these
values appear. Restrictor parameters are output only.

Positioner Parameters are only for key fields. The effect of positioner key fields is that
only records from the based-on access path with key values greater than or equal to the
specified positioner key values appear in the subfile. Any key field that is defined to the
DSPFIL function as an Input/Mapped parameter acts as a positioner for the subfile
display.

Selector Parameters are only for non-key fields. The effect of selector fields is that only
records from the based-on access path with data values that match the precise value
specified on the selector field display. You can define the specific criterion for the
selector field on the Edit Screen Entry Details panel.

The choices of selector criteria are:

■ Equal to (EQ)

■ Not equal to (NE)

■ Less than (LT)

■ Less than or equal to (LE)

■ Greater than or equal to (GE)

■ Contains (CT)

■ Greater than (GT)

Any non-key field that is defined as an Input/Mapped parameter acts as a selector for
the subfile display. You should drop, not hide, any fields from the control format that
you do not want to use as selectors. You should drop all positioners and selectors from
the device that you do not require for your function or additional processing can occur
that is not required.

A DSPFIL function can be attached to a Retrieval (RTV), Resequence (RSQ), or Query
(QRY) access path. The access path determines which records are displayed by this
function. Further selection of records can be made by specifying whether a record is
selected in the appropriate point in the action diagram. The QRY access path lets you
specify virtuals as key fields. There is no default update processing on this function.

If you modify the action diagram of a DSPFIL function to call a subsidiary function that
adds or changes the records on the subfile, the changes do not display unless you force
a subfile reload. This can be done by moving the condition *YES to the Subfile Reload
field in the PGM context.

Function Types, Message Types, and Function Fields

92 Building Applications

You cannot use a DSPFIL function to change or update records unless you add the
specific logic to do so.

The DSPTRN function differs from the DSPFIL function in that DSPTRN loads an entire
subfile. The DSPFIL function loads only one page of a subfile at a time. For this reason,
the SUM, MAX, MIN, and CNT function fields are only valid in the DSPTRN function.

Note: For the same reason, SUM, MAX, MIN, and CNT are also valid in the Edit
Transaction (EDTTRN) function and not in the Edit File (EDTFIL) function. To do this type
of calculation with a DSPFIL function, you can use a RTVOBJ function to read the records
and accumulate the calculation into a work field.

The following is an example of a Display File.

The following table shows the parameters available.

Parameters Usage Role Default Option

Return code B - Y R

Part/fully restricted key I RST – O

Key fields I MAP – O

Other fields Any -/MAP - O

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 93

Any key field defined to the DSPFIL function as an Input/Mapped parameter acts as a
positioner for the subfile display. Any non-key field defined as an Input/Mapped
parameter acts as a selector for the subfile.

The following table shows the function options available.

Options Default Value Other Values

Subfile selection Y N

Subfile end M(YSFLEND P,T

Send all error messages M(YSNDMSG) Y, N

Confirm prompt N Y

Confirm initial value M(YCNFVAL) Y, N

Post confirm pass N Y

If action bar, what type? M(YABRNPT) A, D

Commit control N (*NONE) M(*MASTER), S(*SLAVE)

Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N

Generation mode A D, S, M

Screen text constants M(YPMTGEN) L, I

Generate help M(YGENHLP) Y, N, O

Help type for NPT M(YNPTHLP) T, U

Workstation implementation M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
V(VB)

Distributed File I/O Control M(YDSTFIO) S, U, N

If the DSPFIL function is attached to an CA 2E access path with a multipart key, the
display can be restricted on the major key by passing this key as a restrictor parameter.
The effect of this on the display is to move the restricted key field(s) and the associated
virtuals onto the subfile control and to hide them on the subfile record.

Function Types, Message Types, and Function Fields

94 Building Applications

*Reload Subfile

If you modify the action diagram of the DSPFIL function to call a subsidiary function that
adds to or changes the records on the subfile, the changes are not displayed unless you
force a subfile reload. This can be achieved by moving the condition *YES to the *Subfile
reload field in the PGM context; for example:

 > USER: command keys

 .-CASE <<<
 | -CTL.*CMD key is *Change to 'ADD’ <<<
 | Add new records function <<<
 | PGM.*Reload subfile = CND.*YES <<<
 ’-ENDCASE <<<

Post-Confirm Pass Function Option

A Post-Confirm Pass function option is available for this function and can be used to
process the subfile records twice. Such a situation might arise if you have added
function fields to the screen, which would be validated in the first (pre-confirm) pass. If
you then wanted to use these values in further processing, you could specify this in the
post-confirm pass.

For more information about:

■ Post-confirm pass, see DSPTRN later in this chapter

■ On user points, see the chapter "Modifying Action Diagrams"

DSPRCD Device Function

The Display Record (DSPRCD) function defines a program to display a single record from
a specified database file. If you do not supply a key value to the function during
execution, or if you supply only a partial key, a key value panel prompts you for the key
value(s). After supplying the key value(s), the remaining fields in the record appear. All
or some of the keys can be supplied as restrictor parameters. If the parameter list
contains all the key fields as restrictors, the key panel is bypassed.

All fields on the DSPRCD panel design are output capable only, by default.

You can attach a DSPRCD function to Retrieval (RTV) or Resequence (RSQ) access paths.
The access path determines which fields and which records are available for display.
There is no default update processing in this function.

The DSPRCD function executes in *DISPLAY mode only. There are two display panels for
this function type: a key panel which prompts for the key values and a detail panel
which displays the remaining fields as defined by the device design and the access path.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 95

Design Considerations

For a single record display panel such as DSPRCD, CA 2E places the fields on the panel
design in the following manner.

■ Key fields from the based-on access path are placed, one field per line, on both key
and detail panels

■ Non-key fields from the based-on access path are placed, one field per line, on
detail panel designs

The following is an example of a Key panel.

The following is an example of a Detail panel.

Function Types, Message Types, and Function Fields

96 Building Applications

The following table shows the parameters available.

Parameters Usage Role Default Option

Return code B - Y R

Part/fully restricted key I RST - O

Other fields Any -/MAP - O

Parameter fields with a role of Map, which cannot be mapped to any existing field are
placed on the display before the other fields.

The following table shows the function options available.

Options Default Value Other Values

Confirm prompt N Y

Confirm initial value M(YCNFVAL) Y, N

Send all error messages M(YSNDMSG) Y, N

If action bar, what type? M(YABRNPT) A, D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)

Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N

Generation mode A D, S, M

Screen text constants M(YPMTGEN) L, I

Generate help M(YGENHLP) Y, N, O

Help type for NPT M(YNPTHLP) T, U

Workstation
implementation

M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
V(VB)

Distributed file I/O Control M(YDSTFIO) S, U, N

For more information about:

■ Function options see the chapter, "Setting Default Options for Your Functions"

■ User points see the chapter, "Modifying Action Diagrams"

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 97

DSPRCD2 Device Function

The Display Record (2 panels) (DSPRCD2) function defines a program that is identical to
the Display Record function except that it allows the database record details to extend
into two separate display device panels. You can use the scroll keys to move between
the panels of details. This function type would be suitable to use with files that contain
many fields.

The DSPRCD2 function executes in *DISPLAY mode only. There are three display panels
associated with this function type: a key panel that prompts for the key values, and two
detail panels which display, by default, all of the fields from the based-on access path.
On any panel, you can hide any fields that you do not want to appear. In addition, the
same field can appear on more than one detail panel.

This panel is used to display a record that has more fields than currently fit into a single
panel. All of the considerations that apply to Display Record also apply to DSPRCD2.

The following is an example of Key panel.

Function Types, Message Types, and Function Fields

98 Building Applications

The following is an example of Detail Panel 1.

The following is an example of Detail Panel 2.

Note: For more information, see the Knowledge Base article The working and limitations
of EDTRCD2, EDTRCD3, DSPRCD2 and DSPRCD3 function types.

https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 99

DSPRCD3 Device Function

The Display Record (3 panels) (DSPRCD3) function defines a program that is identical to
the Display Record function except that it allows the database record details to extend
into three separate display device panels. You can use the scroll keys to move between
the panels of details. This function type is suitable to use with files that contain many
fields.

The DSPRCD3 function executes in *DISPLAY mode only. There are four display panels
associated with this function type: a key panel that prompts for the key values, and
three detail panels that display, by default, all of the fields from the based-on access
path. On any panel, you can hide the fields that you do not want to appear. In addition,
the same field can appear on more than one detail panel.

This panel is used to display a record that has more fields than currently fit into a single
panel.

All of the considerations that apply to Display Record also apply to DSPRCD3.

The following is an example of a Key panel.

Function Types, Message Types, and Function Fields

100 Building Applications

The following is an example of a Detail panel 1.

The following is an example of a Detail panel 2.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 101

The following is an example of a Detail panel 3.

Note: For more information, see the Knowledge Base article The working and limitations
of EDTRCD2, EDTRCD3, DSPRCD2 and DSPRCD3 function types.

https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632

Function Types, Message Types, and Function Fields

102 Building Applications

DSPTRN Device Function

The Display Transaction (DSPTRN) function defines a program that displays the records
from two distinct but related database files. The files must connect by a file-to-file
relation. The relation that connects the files must be an Owned by or a Refers to
relation.

The DSPTRN function has two distinct record formats:

■ A header or master record format that corresponds to the owned by or referred to
file and is in the subfile control portion of the panel

■ A detail record format that corresponds to the owned by, referred to, or referring
file and appears as a subfile

The DSPTRN function loads the entire subfile, and is suitable for using SUM, MIN, CNT,
and MAX function fields.

A typical use of DSPTRN is to display an Order Header at the top of the panel with a
subfile of the associated Order Details below.

The key fields in the header format are input-capable. All non-key fields in the header
format are by default output only, .

All fields in the detail format are by default output capable.

If no key, or a partial key is supplied to the DSPTRN function, the key fields from header
format appear, prompting you for the remainder of the key in order to identify the file.

The DSPTRN function must be attached to a Span (SPN) access path. The SPN access
path connects two record formats with a common partial key. There is no default
update processing for this function type.

In order to be able to create a Span access path:

■ An Owned by or Refers to relation must exist between the header and the detail
files

■ The SPN access path must be created over the owning file or the referred to file

■ The access path must be created explicitly to the SPN access path

The following is an example of a DSPTRN panel.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 103

The panel has the default design for a single and multiple style panel.

The following table shows the parameters available.

Parameters Usage Role Default Option

Return code B - Y R

Part/fully restricted key hdr key I RST - O

Other fields Any -/MAP - O

The following table shows the function options available.

Options Default Value Other Values

Subfile selection Y N

Subfile end M(YSFLEND) P, T

Send all error messages M(YSNDMSG) Y, N

Confirm prompt N Y

Confirm initial value M(YCNFVAL) Y, N

Post-confirm pass N Y

If action bar, what type? M(YABRNPT) A, D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)

Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Function Types, Message Types, and Function Fields

104 Building Applications

Options Default Value Other Values

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N

Generation mode A D, S, M

Screen text constants M(YPMTGEN) L, I

Generate help M(YGENHLP) Y, N, O

Help type for NPT M(YNPTHLP) T, U

Workstation
implementation

M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
V(VB)

Distributed file I/O Control M(YDSTFIO) S, U, N

For more information on function options, see the chapter "Setting Default Options for
Your Functions."

If no key, or a partial key is supplied to the DSPTRN function, the key fields from the
header format (which are input-capable) display. These fields prompt for the remainder
of the key so that the header record to display can be identified. If the parameter list
contains all of the key fields as restrictors, this step is bypassed.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 105

Post-Confirm Pass Function Option

A Post-Confirm Pass function option is available for this function, and can be used to
process the transaction a second time to carry out additional processing. Such a
situation might arise if you have added derived function fields to the control record,
calculated in the pre-confirm pass that you want to use in further calculations for each
subfile line. You could specify these further calculations in a post-confirm pass.

For example, a function field of type SUM can be added to the header format of a
Display Transaction panel to total a value displayed in the detail lines. If a line-by-line
percentage of this total is required, it cannot be achieved in one pass. Calculation of the
SUM field is only completed at the end of the first (pre-confirm) pass, for example:

> USER: Header update processing
:—
: Total detail lines <<<
'—

> USER: Subfile record update processing
:—
: WRK. Pct total = CTL. Total detail lines * RCD. Pct <<<
: RCD. Pct total = WRK. Pct total / CON. 100 <<<
'—

For more information on user points, see the chapter "Modifying Action Diagrams."

Function Types, Message Types, and Function Fields

106 Building Applications

Automatic Line Numbering

A common requirement when using Edit Transaction functions is to have line numbers
for the subfile records issued automatically.

For example, Order and Order Line files could be defined as follows:

FIL Order CPT Known by FLD Order CDE
FIL Order CPT Has FLD Order date DTE

FIL Order line CPT Owned by FIL Order CPT
FIL Order line CPT Known by FLD Order date DTE
FIL Order line CPT Refers to FIL Product REF
FIL Order line CPT Has FLD Order quantity QTY

If an EDTTRN type function called Edit Order is created over the Order and Order Line
files, you might want the order line numbers issued automatically. This can be done as
follows:

1. Change the Edit Order function:

a. Use the Edit Device Design panel to add a function field of type MAX to the
order header format (F19), the Highest Line number. This field should be
defined as a REF field, based on the line number, so that it calculates the
highest line number used so far. Neither the MAX field nor the line number
fields need appear on the screen, but can be hidden.

b. Use the Edit Action Diagram panel to change the call the Create Order Line
function so that the Highest Line number field from the CTL context is passed
to the Order Line number parameter of the CRTOBJ function.

2. Change the Create Order line function:

a. Use the Edit Function Parameters panel to change the Order Line number
parameter to be a Both parameter rather than Input parameter so that the
incremented value is returned to the Highest Line number field.

b. Use the Edit Action Diagram panel to increment the Highest line number field
by one before writing to the database. Return the incremented value to the
order line number parameter after writing the record to the database.

For more information on user points, see the chapter "Modifying Action Diagrams."

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 107

EDTFIL Device Function

The Edit File (EDTFIL) function defines a program to maintain records in a file, many at a
time, using a subfile. The subfile is loaded a page at a time when you press the scroll
keys.

For each key field on the subfile record, there is an equivalent field on the subfile
control header format. Key fields can be used as positioner parameters in the subfile
control format to specify which fields are displayed in the subfile. The subfile has, by
default, all records in the access path as input-capable.

Function Types, Message Types, and Function Fields

108 Building Applications

Effects of Parameters

■ If the high order keys are restrictor fields (RST), only records with keys matching the
parameters display.

■ If the high order keys are mapped positioner fields (POS), subfile records display on
the first subfile page starting with the key values that you entered. If the subfile
control field is output only or hidden, it functions as a restrictor field.

■ Parameter fields that have a role of MAP are placed on the subfile control format
and not on the subfile record format.

An EDTFIL function can be attached to a Retrieval (RTV) or a Resequence (RSQ) access
path.

If specified in the function options, an EDTFIL function contains calls to the Create
Object, Delete Object, and Change Object functions. To remove functions associated
with these actions, change the function options. You can also modify the default
functions called from the Edit File by editing the action diagram.

For more information on function options, see the chapter, "Modifying Function
Options."

If the EDTFIL function is in *ADD mode, an empty subfile appears. If it is in *CHANGE
mode, a page of records from the based-on access path appear as modifiable fields. You
can change the default function logic for this function type by modifying the action
diagram, and changing the function options. In the resultant program, you can alternate
between *ADD and *CHANGE mode by pressing F9.

The following is an example of an EDTFIL panel.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 109

The following table shows the parameters available.

Parameters Usage Role Default Option

Return code B - Y R

Part/fully restricted key I RST – O

Other fields Any -/MAP _ O

The following table shows the function options available.

Options Default Value Other Values

Create record Y N

Change record Y N

Delete record Y N

Dynamic program mode Y N

Subfile selection Y N

Subfile end M(YSFLEND) P, T

Send all error messages M(YSNDMSG) Y, N

Confirm prompt Y N

Confirm initial value M(YCNFVAL) Y, N

If action bar, what type? M(YABRNPT) A, D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)

Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N

Generation mode A D, S, M

Screen text constants M(YPMTGEN) L, I

Generate help M (YGENHLP) Y, N, O

Help type for NPT M(YNPTHLP) T, U

Workstation
implementation

M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
V(VB)

Distributed file I/O Control M(YDSTFIO) S, U, N

Function Types, Message Types, and Function Fields

110 Building Applications

For more information about:

■ Function options see the chapter "Setting Default Options for Your Functions"

■ User points see the chapter "Modifying Action Diagrams"

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 111

EDTRCD Device Function

The Edit Record (EDTRCD) function defines a program that maintains records in a
specified file, one record at a time.

The EDTRCD function executes in either *ADD or *CHANGE mode. There are two display
panels for this function type: a key panel that prompts for the key values and a detail
panel that displays all the fields from the based-on access path.

The EDTRCD function has the following default logic:

■ It accepts the key panel (or key values if the key panel was bypassed) and checks for
record existence

■ In *ADD mode, it displays a panel with blank input-capable fields if the record does
not exist

■ In *CHANGE mode, it retrieves the record through a RTV or RSQ access path and
displays the record as modifiable, input-capable fields

If no key value, or a partial key value, is supplied as a restrictor parameter, the key panel
prompts for the remainder of the key. By specifying the elements of a composite key as
restrictor (RST) parameters, the key panel is bypassed and the function exits when the
record is changed and Enter is pressed.

The EDTCD function is in *CHANGE mode when first called unless there are no records
existing in the file. If you set the function option Dynamic program mode to Y, the
function automatically chooses the correct mode. You can toggle between *ADD and
*CHANGE modes by pressing F9 on the key panel.

An EDTRCD function can be attached to a Retrieval (RTV) or a Resequence (RSQ) access
path.

By default, an EDTRCD function contains calls to the CRTOBJ, DLTOBJ, and CHGOBJ
functions based on the function options.

You can disable these calls by changing the function options.

The following is an example of a Key panel.

Function Types, Message Types, and Function Fields

112 Building Applications

The following is an example of a Detail panel.

The following table shows the parameters available.

Parameters Usage Role Default Option

Return code B - Y R

Part/fully restricted key I RST - O

Other fields Any -/MAP - O

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 113

The following table shows the function options available.

Options Default Value Other Values

Create record Y N

Bypass key screen N Y

Exit after add N Y

Change record Y N

Delete record Y N

Dynamic program mode N Y

Send all error messages M(YSNDMSG) Y, N

Confirm prompt Y N

Confirm initial value M(YCNFVAL) Y, N

If action bar, what type? M(YABRNPT) A, D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)

Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N

Generation mode A D, S, M

Screen text constants M(YPMTGEN) L, I

Generate help M(YGENHLP) Y, N, O

Help type for NPT M(YNPTHLP) T, U

Workstation
implementation

M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
V(VB)

Distributed file I/O Control M(YDSTFIO) S, U, N

For more information about:

■ Function options, see the chapter "Setting Default Options for Your Functions"

■ User point, the chapter, "Modifying Action Diagrams"

Function Types, Message Types, and Function Fields

114 Building Applications

EDTRCD2 Device Function

The Edit Record (2 panels) (EDTRCD2) function is identical to the Edit Record function
except that it allows the record details to extend to two separate display panels. You
can use the scroll keys to move between the pages of detail. This function type is
suitable for files containing many fields.

The EDTRCD2 function executes in either *ADD or *CHANGE mode. There are three
display panels for this function type: a key panel that prompts for the key values, and
two detail panels that display, by default, all of the fields from the based-on access path.
On any panel, you can hide fields that you do not want to appear. In addition, the same
field can appear on more than one detail panel.

All of the considerations that apply to the Edit Record function also apply to EDTRCD2.

The following is an example of a Key panel.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 115

The following is an example of a Detail panel 1.

The following is an example of a Detail panel 2.

Note: For more information, see the Knowledge Base article The working and limitations
of EDTRCD2, EDTRCD3, DSPRCD2 and DSPRCD3 function types.

https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632

Function Types, Message Types, and Function Fields

116 Building Applications

EDTRCD3 Device Function

The Edit Record (3 panels) (EDTRCD3) function is identical to the Edit Record function
except that it allows the record details to extend to three separate display panels. You
can use the scroll keys to move between the panels of detail. This function type is
suitable for files containing many fields.

The EDTRCD3 function executes in either *ADD or *CHANGE mode. There are four
display panels for this function type: a key panel that prompts for the key values and
three detail panels that display, by default, all of the fields from the based-on access
path. On any panel, you can hide fields that you do not want to appear. In addition, the
same field can appear on more than one detail panel.

All of the considerations that apply to the Edit Record function also apply to EDTRCD3.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 117

The following is an example of a Detail panel 1.

The following is an example of a Detail panel 2.

Function Types, Message Types, and Function Fields

118 Building Applications

The following is an example of a Detail panel 3.

Note: For more information, see the Knowledge Base article The working and limitations
of EDTRCD2, EDTRCD3, DSPRCD2 and DSPRCD3 function types.

https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 119

EDTTRN Device Function

The Edit Transaction (EDTTRN) function defines a program that maintains the records on
a specified pair of header and detail files. The files must be connected by a file-to-file
relation. The relation that connects the files must be an Owned by or a Refers to
relation.

The EDTTRN function has two distinct record formats: a header, or master record
format that corresponds to the owning or referred to file and is in the subfile control
portion of the panel; and a detail record format that corresponds to the owned by, or
referring file, and appears as a subfile. The EDTTRN function loads the entire subfile, and
is suitable for using SUM, MIN, CNT, and MAX function fields.

The EDTTRN function has the following default function logic:

■ In *ADD mode, the header keys are accepted as parameters, if provided. By
specifying the keys as restrictor (RST) parameters, the key fields are output only on
the panel. The panel appears with blank input-capable fields in the header master
file and detail subfile record formats. You can then enter data in the header record
format and the detail record format subfile for validation.

■ In *CHANGE mode, the header keys are accepted as parameters. If no key, or a
partial key is supplied to the EDTTRN function, the key fields from the header
format display to prompt for the remainder of the key. If the parameter list
contains a fully restricted key, this step does not occur.

■ All detail records matching the header record keys are loaded into the subfile. The
panel displays the header record file and the first page of the detail file as a subfile.
You can add, change, or delete subfile records as you want. After successful
validation the file is updated.

Function Types, Message Types, and Function Fields

120 Building Applications

An EDTTRN function includes calls to the CRTOBJ, DLTOBJ, and CHGOBJ functions by
default for both header and detail formats. These default functions are included in the
action diagram for the function. To remove this default processing, you change the
function options. These functions use the associated Update (UPD) access path update.
There can be six separate calls to these internal functions: three calls for the header
format file; three calls for the detail format file.

The EDTTRN function must be attached to a Span (SPN) access path. The SPN access
path connects two record formats with a common partial key.

In order to be able to create a Span access path:

■ An Owned by or Refers to relation must exist between the header and the detail
files

■ The SPN access path must be created over the owning file or the referred to file

■ The access path formats must be added explicitly to the SPN access paths

The typical use of an EDTTRN is to display an Order Header at the top of the panel with a
subfile of the associated Order Detail below.

The EDTTRN function differs from the EDTFIL function in that the EDTTRN function loads
an entire subfile. The EDTFIL function only loads one page of a subfile at a time.

The following is an example of an Edit Transaction panel.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 121

The following table shows the parameters available.

Parameters Usage Role Default Option

Return Code B - Y R

Part/fully restricted key hdr key I RST - O

Other fields Any -/MAP - O

The following table shows the function options available.

Options Default Value Other Values

Create transaction Y N

Change transaction Y N

Create record Y N

Delete record Y N

Delete transaction Y N

Dynamic program mode N Y

Subfile selection Y Y, N

Subfile end M(YSFLEND) P, T

Send all error messages M(YSNDMSG) Y, N

Confirm prompt Y N

Confirm initial value M(YCNFVAL) Y, N

If action bar, what type? M(YABRNPT) A, D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)

Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program N Y

Copy back messages M(YCPYMSG) Y, N

Generation mode A D, S, M

Screen text constants M(YPMTGEN) L, I

Generate help M(YGENP) Y, N, O

Help type for NPT M(YNPTHLP) T, U

Function Types, Message Types, and Function Fields

122 Building Applications

Options Default Value Other Values

Workstation implementation M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
V(VB)

Distributed file I/O control M(YDSTFIO) S, U, N

For more information on function options, see the chapter "Setting Default Options for
Your Functions."

Automatic Line Numbering

A common requirement when using Edit Transaction functions is to have line numbers
for the subfile records issued automatically.

For example, Order and Order Line files could be defined as follows:

FIL Order CPT Known by FLD Order CDE
FIL Order CPT Has FLD Order date DTE
FIL Order line CPT Owned by FIL Order CPT
FIL Order line CPT Known by FLD Order date DTE
FIL Order line CPT Refers to FIL Product REF
FIL Order line CPT Has FLD Order quantity QTY

If an EDTTRN type function called Edit Order is created over the Order and Order Line
Files, you might want the order line numbers issued automatically. This can be done as
follows:

1. Change the Edit Order function:

a. Use the Edit Device Design panel to add a function field of type MAX to the
order header format (F19), the Highest Line number. This field should be defis a
REF field, based on the line number, so that it calculates the highest line
number used so far. Neither the MAX field or the line numbers fields appear on
the screen, but can be hidden.

b. Use the Edit Action Diagram panel to change the call the Create Order Line
function so that the Highest Line number field from the CTL context is passed
to the Order Line number parameter of the CRTOBJ function.

2. Change the Create Order line function:

a. Use the Edit Function Parameters panel to change the Order line number
parameter to be a Both parameter rather than Input parameter so that the
incremented value is returned to the Highest Line number field.

b. Use the Edit Action Diagram panel to increment the Highest Line number field
by one before writing the database. Return the incremented value to the order
line number parameter after writing the record to the database.

For more information on user points, see the chapter "Modifying Action Diagrams."

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 123

EXCEXTFUN User Function

The Execute External Function (EXCEXTFUN) allows you to specify a high-level program
using an action diagram. You can also use an EXCEXTFUN as a user-defined *Notepad
function that can serve as a repository of standardized action diagram constructs that
you can easily copy into the action diagrams of other functions.

For more information on user-defined *Notepad functions, see Using NOTEPAD in the
chapter "Modifying Action Diagrams"

The function is implemented as a separate program and has its own action diagram. The
function can be created with an access path of *NONE. You can submit an EXCEXTFUN
function for batch processing from within an action diagram.

The EXCEXTFUN has no default logic. It presents an empty action diagram. Any function
or set of functions of any type can be included in an EXCEXTFUN and compiled so that it
can be executed as a program.

For documentation purposes, the EXCEXTFUN can be optionally attached to Retrieval
(RTV), Resequence (RSQ), or Update (UPD) access paths.

A good practice is to have only a single action diagram construct with an EXCEXTFUN.
This single construct is a call to an internal function (EXCINTFUN) that contains all the
functionality required. Both functions define the same parameters. This way, you can
choose to reference an EXCEXTFUN (function you can call) or EXCINTFUN without
duplicating the action diagram constructs.

The following table shows the parameters available.

Parameters Usage Role Default Option

Return code B – Y R

Other fields Any – – O

Parameters of role Varying (VRY) are allowed for this function type.

The following table shows the function options available.

Options Default Value Other Values

Send all error messages M(YSNDMSG) Y, N

Confirm prompt Y N

Confirm initial value M(YCNFVAL) Y, N

Commit control N(*NONE) M(*MASTER), S(*SLAVE)

Generate error routine M(YERRRTN) Y, N

Function Types, Message Types, and Function Fields

124 Building Applications

Options Default Value Other Values

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N

Generation mode A D, S, M

Overrides if submitted job * F

Workstation implementation M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
V(VB)

Distributed file I/O Control M(YDSTFIO) S, U, N

For more information on function options, see the chapter, "Setting Default Options for
Your Functions."

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 125

Using Batch Processing

The following information is an example of how to use an EXCEXTFUN to process
records using a batch process:

Assume the following:

■ Each Order has a status containing a condition that reflects the current processing
stage of the order

■ Orders for which payments have yet to be received have an Order Status of Unpaid

■ Each Order also has an associated Customer Code identifying the customer who
placed the Order, and an Order Total Value indicating the amount due for the Order

■ The requirement to process all unpaid Orders and to update the corresponding
customers unpaid value (held in the Customer file) with the total amount owed by
the customer

■ Each Order, once processed, has its status changed to Processed

Use the RTVOBJ function, Process All Unpaid Orders, to process the records in the Order
file. The access path attached to the RTVOBJ determines the order in which the records
on the order file are read.

Assume that the Retrieval access path of the Order file is keyed by Order Number. It
would not be advisable to use this access path for the RTVOBJ as there is no need to
process all the Orders in the Order file.

Consequently, you can create and use alternative access paths such as the following:

1. A Retrieval (RTV) access path with select or omit criteria selecting only Unpaid
Orders.

2. A Resequence (RSQ) access path keyed by Order status and Customer code.

The second access path is preferable because a restrictor parameter of Order Status
with a supplied condition EQ Unpaid for the RTVOBJ has the equivalent select or omit
effect on the records retrieved.

Furthermore, having the Customer code as the secondary key presents Unpaid Order
records for each Customer in sequence. This allows the change of Customer code to
indicate the end of a list of Order records belonging to a customer.

This allows the total unpaid value for a Customer to be accumulated and the
corresponding Customer record updated only when all Unpaid Orders for that Customer
are processed resulting in a significant reduction in database I/O.

The logic required in the RTVOBJ, Process All Unpaid Orders, is as follows:

Function Types, Message Types, and Function Fields

126 Building Applications

 .> USER: Process Data record
 ..—
...-CASE
.. |-DB1.Customer code EQ WRK. Saved Customer code
.. | Continue to accumulate ...
..| WRK.Cust. value unpaid Orders = WRK.Cust. value unpaid orders
.. | + DB1. Order total value
.. |-*OTHERWISE
.. | Update Cust.unpaid value – Customer *
.. | | Customer code = WRK.Saved Customer code
.. | B Cust. value unpaid Orders = WRK.Cust. value unpaid Orders
.. | Save new customer code ...
.. | WRK.Saved Customer code = DB1.Customer code
.. | Reset accumulator ...
.. | WRK.Cust. value unpaid Orders = DB1.Order total value
.. '-ENDCASE
.. Set Order status to ‘P’ (Still unpaid but Customer updated) ...
.. Change Order – Order *
.. | Order number = DB1.Order number
.. | Customer code = DB1.Customer code
.. | Order status = CND.Unpaid(Customer updated)
.. | Order total value = DB1.Order total value
.'—

Since the value for a customer is only updated for a change in Customer, the last
customer record must be accounted for as follows:

. USER: Exit processing

..—

.. Update last Customer ...

.. Update Cust. unpaid value - Customer *

.. I Customer code = WRK.Saved Customer code

.. B Cust. value unpaid orders = WRK.Cust. value unpaid order

.'—

The CHGOBJ Change Order is the default CHGOBJ for the function with no additional
user logic.

The CHGOBJ Update Cust. unpaid value has the following user logic to ensure that the
total value is accumulated onto what is already present for the customer on file as
follows:

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 127

> USER: Processing after Data read
 .—
 . Add to Customers unpaid value ...
 . PAR. Cust. value unpaid Orders = PAR.Cust. value unpaid Orders
 . + DB1.Cust. value unpaid Orders
 '—

Once the functions and logic have been defined, the RTVOBJ, Process All Unpaid Orders,
can be embedded within an EXCEXTFUN Batch process, Unpaid Orders as follows:

> Batch process unpaid orders
 .—
 . Restrict to process only UNPAID orders (i.e. Order status = 'U') ...
 . Process all unpaid orders - Orders *
 . I RST Order status= CND.Unpaid
 '—

After generating and compiling the EXCEXTFUN, it can be executed in batch using the i
OS SBMJOB or equivalent command. You can choose to execute this command from
another function, such as a PMTRCD acting as a menu, by using the Execute Message
function to submit the function to batch.

For more information about:

■ Submitting jobs from within an action diagram, see Submitting Jobs Within an
Action Diagram in the chapter "Modifying Action Diagrams"

■ Using the Execute Message function, see EXCMSG Message Function later in this
chapter

Function Types, Message Types, and Function Fields

128 Building Applications

EXCINTFUN User Function

The Execute Internal Function (EXCINTFUN) allows you to specify a portion of an action
diagram that can be used repeatedly in other functions. You can also use an EXCINTFUN
as a user-defined *Notepad function, which can serve as a repository of standardized
action diagram constructs that you can easily copy into the action diagrams of other
functions.

For more information on user-defined *Notepad functions, see Using NOTEPAD in the
chapter "Modifying Action Diagrams."

The EXCINTFUN is implemented as inline source code (or a macro function) within the
source code of the calling function. That is, whenever you make a call to this function
type, it is embedded in the source code of the calling function at the point where you
made the call.

You cannot attach an EXCINTFUN to an access path. When defining this function type
specify *NONE for the access path.

You might use the EXCINTFUN to perform a calculation routine that will be used
repeatedly within a function or several functions.

Try to encapsulate as much of each action diagram as possible in the EXCINTFUN rather
than in native code. This encourages functional normalization and improves
maintainability. In addition, it improves the time it takes to load the action diagram of
the referencing functions.

The following table shows the parameters available.

Parameters Usage Role Default Option

Any field Any - - O

The following table shows the function options available.

Options Default Value Other Values

Execution location W S

Generate as subroutine? N Y

Share subroutine M(YSHRSBR) N, Y

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 129

Example

An example of EXCINTFUN could be in performing a calculation, such as working out a
percentage that you want to call several times in different functions. You could:

1. Define an EXCINTFUN, attached to a database file, with access path *NONE.

2. Define input parameters of the function, such as Number and Total and the output
parameters, such as Percentages.

3. Define actions required in the supplied action diagram.

EXCMSG Message Function

The CA 2E Execute Message (EXCMSG) function allows a request message to be
executed by the calling function. A request message is generally a CL (control language)
command.

You enter the request string in the second-level text of the message function. The
command can be executed in the iSeries native environment.

The EXCMSG function is attached to a special CA 2E shipped system file called
*Messages.

To implement the EXCMSG function, you define an EXC type message function. Once
you define the command to execute, you insert a call to the EXCMSG function from a
user point within the action diagram of a calling function. The EXCMSG function is then
implemented as a call to a CL program supplied by CA 2E.

The following table shows the parameters available.

Parameter Usage Role Default Option

Return code B - Y R

Message id I - Y R

Message data I - Y R

Field to receive message text I - - 0

The following table shows other properties.

Options Default Value Other Values

Message severity 20 00-99

Second level text - System request

Function Types, Message Types, and Function Fields

130 Building Applications

The EXCMSG function is implemented by a call to a CL program. The default
environment is controlled by the model value YEXCENV, but can be overridden for
individual Execute Message functions. The text of the message can be tailored to the
environment.

It is not possible to use the i OS override commands: Override Database File (OVRDBF),
Override Display file (OVRDSPF), and Override Print File (OVRPRTF) with the EXCMSG
function because the resulting overrides are only in effect in the invocation level of the
implementing CA 2E CL program.

If you use the i OS commands OPNDBF and OPNQRYF as the request message text, you
must specify a value of TYPE(*PERM) for these commands in order to prevent the
closure of the file on return from the implementing CA 2E CL program.

You can invoke the i OS command prompt by pressing F4 after entering the command
string. Although CA 2E allows you to use message substitution data variables, (&1, &2),
within the string, i OS does not accept these values within the string. To overcome this
restriction replace the ampersand (&) symbol with an at (@) symbol.

Advantage of SBMJOB over Execute Message

Alternatively, you can submit EXCEXTFUN, EXCUSRPGM, and PRTFIL functions for batch
execution from within an action diagram. This method has the following advantages:

■ Numeric parameters can be passed

■ The complexities of constructing the submit job command string are hidden

■ References to submitted functions are visible by CA 2E impact analysis facilities.

For more information on submitting jobs from within an action diagram, see Building
Applications, Submitting Jobs Within an Action Diagram in the chapter, "Modifying
Action Diagrams."

Specifying EXCMSG

To specify an EXCMSG function, define an EXC type message function:

1. At the Edit Message Function Details panel, type Z and press F7 to access second
level text.

The Edit Second Level Message Text panel appears.

2. Specify the name of the command to execute. If you are unsure of parameters, you
can prompt for the names by pressing F4.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 131

EXCUSRPGM User Function

The Execute User Program (EXCUSRPGM) function allows you to specify the connection
to a user-written high-level language program that is called by CA 2E functions. You can
specify parameters on the call to this function. You can also submit an EXCUSRPGM
function for batch processing from within an action diagram.

You can attach the EXCUSRPGM function to any access path or you can specify *NONE
for the access path. You should normally attach the EXCUSRPGM function to a file
containing some or all of the function parameters.

You cannot specify Neither (N) type parameter for this function type; however, you may
specify Varying (VRY) role parameters. There is no *Return Code parameter for this
function type unless you explicitly define it.

There is no action diagram or device design associated with this function type.

When you create an EXCUSRPGM function, CA 2E assigns a source member name for
the program. You can override this to be the name of the HLL program that you want to
call. You need to do this if the program already exists and you are now defining it to the
model.

You should declare all the parameters required by your EXCUSRPGM function.
Parameters can be declared in the normal fashion using the Edit Function Parameters
panel. However, you should first determine the domain of the parameter fields in your
user-written program to ensure that they correspond to the parameters of your calling
function.

Example

The EXCUSRPGM function can be used to call IBM supplied programs such as the
QDCXLATE program to translate a string.

The program translates a given string of a given length to uppercase using the
QSYSTRNTBL table. A system-supplied table carries out lowercase to uppercase
conversion.

The following table shows the parameters available.

Parameters Usage Role Default Option

Any field required by program I/O/B -/VRY - O

The following table shows the function options available.

Options Default Value Other Values

Execution location W S

Function Types, Message Types, and Function Fields

132 Building Applications

Options Default Value Other Values

Generate error routine M(YERRRTN) Y, N

Overrides if submitted job * F

EXCUSRSRC User Function

The Execute User Source (EXCUSRSRC) function specifies either:

■ User-written high-level language source code is to be included within the source
code generated by a calling function.

■ Device language statements, for example, DDS that can be applied to a device
function to customize the associated device design.

For more information on device user source, see this module, in the chapter, "Modifying
Device Designs," Device User Source topic.

The HLL source code of the EXCUSRSRC function must be the same as that of the calling
function; that is, a function implemented in RPG can only call an EXCUSRSRC function
that is RPG.

You can attach the EXCUSRSRC function to any access path, or you can specify *NONE
for the access path. You should normally attach the EXCUSRSRC function to a file
containing some or all of the function parameters. If there are no suitable files, it may
be worth considering defining a dummy file using a Defined as relation.

For example:

FIL User source REF Defined as FIL User source REF

Overall User Source Considerations

You cannot specify Neither (N) type parameters for this function type. The following
table shows the allowed parameters.

Parameters Usage Role Default Option

Any field I/O/B - - O

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 133

No action diagram, device design, or function options are associated with this function
type.

Although the EXCUSRSRC function provides flexibility, for ease of maintenance, you
should use action diagram programming whenever possible.

The HLL source is held in the source member that CA 2E assigns. CA 2E provides a source
member name which you can override with the name of the source member that you
want to call. Change the source name at the Edit Function Details panel.

The source member must reside in the appropriate source file. The source file must be
in the library list of any job that generates source for CA 2E functions that call the
EXCUSRSRC function. The files are as follows:

■ For RPG functions, the source member must reside in the file QRPGSRC.

■ For COBOL functions, the source member must reside in the file QCBLSRC or
QLBLSRC.

Parameters must be passed in accordance with the instance code that you generate in
the EXCUSRSRC function. To define parameters for the user source:

■ Define the EXCUSRSRC function and optionally attach it to an existing access path or
else specify *NONE for the access path.

■ Type P next to the function from the Edit Functions panel and define the
parameters accordingly.

For more information on defining parameters, refer to this module, in the chapter,
"Modifying Function Parameters."

Substitution Variables

The following substitution variables let you embed source generation information into
user source that is then resolved into the actual values in the final program source. One
use of this feature is to define generic preprocessing programs.

Variable Name Description

*MBR Program source member name

*FILE Program source file name

*LIB Program source file library name

*TYPE Source type (*RPG/*COBOL)

Function Types, Message Types, and Function Fields

134 Building Applications

RPG Source Considerations

You can include all RPG specification types in the source member, except an H
specification. CA 2E sorts the different specification types into their appropriate
positions within a program:

■ CA 2E codes the source in the normal order for RPG specifications, which is:

– H specification (obtained from model values YRPGHSP for RPG, YRP4HSP for
RPGIV Program, and YRP4HS2 for RPGIV Module)

– F and K specifications

– E specifications

– I specifications

– C specifications

– O specifications

■ CA 2E treats the first RPG calculation specifications, which are not part of a
subroutine, as the instance code. If there are repeated calls to an EXCUSRSRC
function, CA 2E generates the code on every call to the function at the point
indicated by the action diagram.

CA 2E automatically inserts any C-specifications that follow a subroutine, but are not
part of a subroutine, in the ZZINIT subroutine.

The order of specification is

■ Instance code C-specifications

■ C-specifications for subroutines called by instance code

■ Initialization C-specifications

Parameter fields are only recognized in the factor one, factor two, and result positions
of the RPG calculation specifications that form part of the instance code.

Parameters must take the form #UMMMM where U is the parameter usage defined on
the function (I, O, or B), and MMMM is the mnemonic name (DDS name) of the formal
parameter. For example:

C #IORVL ADD #BLNVL #OTLVL

CA 2E checks usage of parameters within the instance code both for correspondence
with the formal parameter and for use within the user RPG code. For example if field
ORCD is alphanumeric, CA 2E would not allow the following:

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 135

C Z-ADD ZERO #BORCD

The letter U is reserved as the initial letter for user-specified field names and subroutine
names in user-written source. If you use other prefixes, you may find they conflict with
CA 2E generated names in certain instances.

If your EXCUSRSRC function contains an ICOPY statement, ensure that the source
member to be copied does not contain a subroutine. CA 2E generates the EXCUSRSRC
code as a subroutine in your function. The ICOPY includes the other subroutine inside
the EXCUSRSRC subroutine. This causes compile errors as a subroutine cannot be
embedded in another subroutine.

If you use RPG indicators, you must ensure that they do not conflict with those used
elsewhere in the program. To ensure that your usage of indicators in user-written
source code does not conflict with the use made of them in CA 2E generated code, you
should save the current indicator values at the start of user-written code and restore
them at the end. For example, to save and restore indicators 21 to 40:

C MOVEA*IN,21 UWIN 20 * Save
C
C user code.....
C
C MOVEAUWIN *IN,21 * Restore

Function Types, Message Types, and Function Fields

136 Building Applications

COBOL Source Considerations

You can include all COBOL statement types in the source member, except LINKAGE
SECTION code and additional PROCEDURE DIVISION USING statements. CA 2E places the
different divisions and sections in the user source in their appropriate positions within a
program.

You must begin the code for each division or section according to the standard COBOL
conventions. For example:

 + + + + - A 1 B.. ... 2 3
 WORKING-STORAGE SECTION.
 01 VAR-1 PIC 9999 COMP.
 01 VAR-2 PIC 9999 COMP.

 PROCEDURE DIVISION.
 MOVE VAR-1 TO VAR-2
 PERFORM ROUTINE
 MOVE VAR-2 TO VAR-1

In the generated code, Relevant Area B code normally follows that code generated by
CA 2E from the user source function but do not assume it does. You will find that
FILE-SECTION entries, in particular, precede entries generated for other function types.
Code is thus considered to be divided by anything found in Area A.

CA 2E treats Area B code between a PROCEDURE DIVISION Area A statement (or the
beginning of the member) and the next Area A statement (or the end of the member if
sooner) as instance code. If there are repeated calls to an EXCUSRSRC function, CA 2E
generates this code on every call to the function, at the point indicated by the action
diagram. CA 2E includes all other code in the generated program only once, if it is a
section.

CA 2E does not actually incorporate the following Area A statements from user source
into the generated code because they are all present in the generated code already. If
they are specified in EXCUSRSRC code, they serve only to show where the subsequent
Area B statements (that is, all preceding next Area A statements or the end of the
member if sooner) should be placed:

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 137

+ + + + + - A 1 B.. ...23
 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 I-O CONTROL.
 DATA DIVISION.
 FILE-SECTION.
 WORKING-STORAGE-SECTION.

CA 2E decodes and places Area A statements as follows:

■ SPECIAL-NAMES: Area A statements are decoded and the constituent SPECIAL
NAMES, if any, are placed in the correct place in the generated code. The actual
words SPECIAL NAMES are omitted, as they are already present in the generated
code.

■ COMMITMENT CONTROL FOR: Area A statements are decoded and the constituent
file names placed in the correct place in the generated code. The actual words
COMMITMENT CONTROL FOR are placed in the generated code, unless they are
already present because of use of commitment control by another function.

■ CA 2E assumes that a user source section headed USR-INIT. consists of code to be
placed in the ZZINIT (initialization) SECTION. The USR-INIT. heading is omitted from
the generated code.

■ Sections in the user source that follow a DECLARATIVES Area A statement are
placed, with their Area A section headings, in the correct place in the generated
code. The actual words DECLARATIVES and END DECLARATIVES are placed in the
generated code, unless they are already there because of another function using
this COBOL facility.

■ All other code sections, with their Area A headings, are placed in the generated
code following all non-user source generated sections.

If an EXCUSRSRC function contains code for more than one section, remember that
these sections are not consecutive within the host program; they are only required to be
syntactically correct within their own section or division. If you use the COBOL syntax
checker when editing user source, you may incur errors because the syntax checker
assumes that the code present in the source member constitutes a complete COBOL
program, and that the sections and divisions encountered are consecutive within the
source. Both these assumptions are false for the source of an EXCUSRSRC function.

The COBOL user source must be correct within the context of the source into which it is
inserted. If you are generating COBOL 85, it must follow COBOL 85 conventions; if you
are generating COBOL 74 it must follow COBOL 74 conventions. Keep these points in
mind:

■ For COBOL 85, CA 2E generated code contains explicit scope terminators such as
END-IF and END-PERFORM. Within inline code, you must use scope terminators
rather than full stops. In code that is part of another division or section and
contextually independent, either full stops or scope terminators can be used.

Function Types, Message Types, and Function Fields

138 Building Applications

■ Because explicit scope terminators are not available in COBOL 74, you cannot use
them in EXCUSRSRC functions.

You can include an EXCUSRSRC function written in COBOL 74 within a function
generated in COBOL 85, provided the COBOL 74 code does not include any language
elements that are invalid in COBOL 85. First copy the COBOL 74 source to the COBOL 85
source file (QLBLSRC) and do one of the following:

■ Convert the source according to the previous conventions. This means replacing
appropriate full stops with scope terminators.

■ Enclose the EXCUSRSRC function call within an action diagram sequence construct
(IS - insert sequence) so that it is implemented as a contextually independent
subroutine.

You can place parameter fields at any point in the instance code. You cannot split them
across a source record boundary. Parameters must be of the form
USR-PARM-U-MMMM where U is the parameter usage defined in the function (I, O or B)
and MMMM is the mnemonic name (DDS name) of the formal parameter. For example:

 + + + + - A 1 B 2 3
 ADD USR-PARM-I-ORVL TO USR-PARM-B-
 LNVL
 GIVING USR-PARM-O-TLVL
 END-ADD

CA 2E checks the usage of parameters within the instance code, the U part of the name,
for correspondence with the formal parameter. The letter U is reserved as the initial
letter for user-specified field and section names in user-written source. If you use other
prefixes, you may find they conflict with CA 2E generated names in certain instances. If
you use COBOL indicators, you must ensure that they do not conflict with those used
elsewhere in the program.

EXCUSRSRC Function Example

Say you want to define a user-written HLL function called Get customer credit limit into
another CA 2E standard function. The EXCUSRSRC function has three parameters:

IOB Parameter GEN Name

I Customer code CUCD

I Trial value TRQT

O Trial limit TRLM

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 139

To specify this function you might do the following:

1. Define the three-parameter fields as fields using the Define Objects panel.

2. Define an EXCUSRSRC function using the Edit Functions panel. The function can be
attached to any file with an access path value of *NONE.

3. Specify the three parameters for the EXCUSRSRC function using the Edit Function
Parameters panel.

4. From the Edit Function Details panel for the EXCUSRSRC function, change the
program name for the function to the name of the source member containing the
user-written code.

5. Code the EXCUSRSRC function in the nominated source member.

Refer to the following examples of RPG and COBOL and then proceed to Step 6.

The following example shows RPG EXCUSRSRC.

** Get customer credit limit) <- IGNORED
** Company : Universal Sprocket Co)
** System : Widget processing system)
** Author : YOU)
FUUCUCRLOIF E K DISK) <- OTHER SPECIFICATIONS
 * Customer credit limits)

 * Set up parameters) <- INSTANCE CODE
C MOVE #ICUCD UACUNB)
C Z-ADD#ITRQT UATRQT)
C EXSR UACRLM)
C Z-ADDUACRLM #OTRLM)
CSR UACRLM BEGSR) <- SUBROUTINE
*==)=============================
* Get credit limit)
*==)=============================
C MOVEA*IN,60 UWIN 1) *Save
* Set of record error indicators.)
C UACUNB CHAIN @ CUCRQQ 60)
C *IN60 IFEQ '0')
C UATRQT ADD QQCRLM UACRLM)
C END)
C _ MOVEA UWIN *IN,60) *Restore
*==)=============================
CSR UAEXIT ENDSR)

* Initialization for credit test)
*==)=============================
C Z-ADD*ZERO UACRLM) <- ZZINIT code
*==)=============================

The following example shows COBOL EXCUSRSRC.

Function Types, Message Types, and Function Fields

140 Building Applications

+++++ -A 1 B 2 3
 ** Get customer credit limit) <- IGNORED
 ** Company : Universal Sprocket Co)
 ** System : Widget processing system)
 ** Author : FRED)
 INPUT-OUTPUT SECTION.) <- OTHER
 FILE-CONTROL.) SPECIFICATIONS
 SELECT UUCUCRL0)
 ASSIGN TO DATABASE-CBABREL1)
 ORGANIZATION IS INDEXED)
 ACCESS MODE IS DYNAMIC)
 RECORD KEY IS EXTERNALLY-DESCRIBED-KEY)
 FILE STATUS is FILE-STATUS.)
 * Customer credit limits)
 FILE-SECTION.)
 FD UUCUCRL0)
 LABEL RECORDS ARE STANDARD.)
 01 UUCUCRL0-F.
 COPY DDS-ALL-FORMATS OF UUCUCRL0.

 WORKING-STORAGE SECTION.) <- NEW VARIABLES
 01 UWIN PIC X.)

 PROCEDURE-DIVISION.) <- INSTANCE CODE
 * Set up parameters)
 MOVE USR-PARM-I-CUCD TO UACUNB OF YCUCRQQ)
 MOVE USR-PARM-I-TRQT TO UATRQT OF YCUCRQQ)
 PERFORM UACRLM)
 MOVE UACRLM OF YCUCRQQ TO USR-PARM-O-TRLM)

 * Get credit limit) <- SUBROUTINE
 UACRLM SECTION.)
 MOVE IND(60) TO UWIN)
 * Set of record error indicators.)
 READ UUCUCRL0)
 FORMAT IS ‘YCUCRQQ’)
 END-READ)
 IF C-NO-RECORD)
 MOVE C-IND-ON TO IND(60))
 ELSE)
 MOVE C-IND-OFF TO IND(60))
 END-IF)

 IF IND(60) = C-IND-ON)
 ADD UATRQT OF YCUCRQQ, QQCRLM)
 GIVING UACRLM OF YCUCRQQ)
 END-ADD)
 END-IF)

1. In the action diagram of the function from which you want to call the Get customer
credit limit function, insert an action:

> USER: User defined action
: -
: Get customer credit limit * < < <
'-

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 141

Supply the required parameters for the action using the Edit Action Details panel.
For example:

The following table shows an example of the code generated for the call. These are the
names of the values passed to the parameters.

IOB Parameter GEN Name Variable GEN Name

I Customer code CUCD Customer code CUCD

I Trial value TRQT Order value ORQT

O Trial limit TRLM Customer credit limit CULM

Function Types, Message Types, and Function Fields

142 Building Applications

CA 2E generates the following RPG and COBOL code for the particular call:

UAEXIT.)
 EXIT.)

* ZZINIT code.
USR-INIT SECTION.) < - ZZINIT CODE
 MOVE ZEROES TO UACRLM OF YCUCRQQ)

The following example shows EXCUSRSRC - RPG call.

* Get customer credit details
* Set up parameters
C MOVE # 1CUCD UACUNB
C Z-ADD #2ORQT UATRQT
C EXSR UACRLM
C Z-ADDUACRLM #1CULM

The following example shows EXCUSRSRC - COBOL Call.

+++ -A 1 B.. ... 2 3
 * Get customer credit details
 * Set up parameters
 MOVE Z1CUCD OF ZSFLRCD-WS-O TO UACUNB OF YCUCRQQ
 MOVE Z2ORQT OF ZSFLCTL-WS-O TO UATRQT OF YCUCRQQ
 PERFORM UACRLM
 MOVE UACULM OF YCUCRQQ TO Z1CULM OF ZSFLRCD-WS-O

CA 2E includes the other source code statements for the EXCUSRSRC function into the
source of the calling function without modification.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 143

MAX Function Field

MAX (maximum) is a special type of field usage that is assigned to function fields
containing the result of a computation of the highest value for a particular field.

The MAX field usage uses a special built-in routine that computes the value of the
function field based on the input parameter. For instance, within an Edit Transactions
function type, you could define a MAX function field on the header record file to
calculate the highest value of orders that appear in the detail file. You must define the
input and result parameters associated with the MAX function field. The MAX function
field would calculate the resultant value on initialization and call to the function.

MAX function fields have two, and only two, parameters:

■ A result parameter—This is the MAX function field itself. You must place this field
on the totaling format of any function (Display Transactions or Edit Transactions)
that calls the MAX function field.

■ An input parameter—This specifies the field for which MAX determines the highest
value. This field must be present on the detail record format of the calling function.

Function fields of usage MAX must always be numeric. If the function field is defined as
a referenced (REF) field based on another numeric field, CA 2E assumes that the
based-on field is the field whose maximum value is calculated.

Examples

The following are usage examples of the MAX function field:

■ Largest order item: maximum of order quantity

■ Highest line number: maximum of line number

Function Types, Message Types, and Function Fields

144 Building Applications

Function Field

MINMIN (minimum) is a special type of field usage assigned to the function fields
containing the result of a computation of the lowest value for a particular field.

The MIN field usage uses a special built-in routine that computes the value of the
function field based on the input parameter. For instance, within an Edit Transactions
function type, you define a MIN function field on the header record file to calculate the
lowest value of orders appearing in the detail file. You must define the input and result
parameters associated with the MIN function field. The MIN function field calculates the
resultant value on initialization and call to the function.

MIN function fields have two, and only two, parameters:

■ A result parameter—This is the summed MIN function field itself. You must place
this field on the totaling format of any CA 2E function (Display Transactions or Edit
Transactions) that calls the MIN function field.

■ An input parameter—This specifies the field for which MIN determines the lowest
value. This field must be present on the detail record format of the calling function.

Function fields of usage MIN must always be numeric. If the function field is defined as a
referenced (REF) field based on another numeric field, CA 2E assumes that the based-on
field is the field whose minimum value is calculated.

Example

The following are usage examples of the MIN function field:

■ Smallest order item: minimum of order quantity

■ Lowest line number

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 145

MTRCD Device Function

PThe Prompt Record (PMTRCD) function defines a program to prompt for a list of fields
defined by a specified access path. You can pass the validated fields as parameters to
any other function whether it is interactive, batch, a user-defined function to print a
report, or an i OS message function such as Execute Message.

There is no default action for this function type. If you want to call another function
once you validate the PMTRCD fields, you must specify this in the action diagram.

The fields that appear, by default, on PMTRCD are based on the file/access path over
which the function is built. You can drop all panel format relations and fields and use
your own function fields and subsequent validation on the function as an alternative to
validating fields with file relations.

You can attach a PMTRCD function to a Retrieval (RTV) or a Resequence (RSQ) access
path. There is no update processing for this function unless you specifically include it in
the action diagram. A Prompt Record function does not validate the existence of a
particular record from the underlying access path. It will, however, validate panel level
relations and date and time fields.

The PMTRCD function executes in *ENTER mode only and there is only one display panel
for this function.

The following table shows the parameters available.

Parameters Usage Role Default Option

Return code B – Y R

Fields from access path Any -/MAP - O

Any other fields Any -/MAP - O

The following table shows the function options.

Options Default Value Other Values

Repeat prompt N Y

Confirm prompt Y N

Confirm initial value M(YCNFVAL) Y, N

Send all error messages M(YSNDMSG) Y, N

If action bar, what type? M(YABRNPT) A, D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)

Function Types, Message Types, and Function Fields

146 Building Applications

Options Default Value Other Values

Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N

Generation mode A D, S, M

Screen text constants M(YPMTGEN) L, I

Generate help M(YGENHLP) Y, N, 0

Help type for NPT M(YNPTHLP) T, U

Workstation
implementation

M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
V(VB)

Distribute a file I/O Control M(YDSTFIO) S, U, N

For more information on function options, see the chapter, "Setting Default Options for
Your Functions."

The following is an example of Prompt and Record panel.

For more information on user points, see the chapter, "Modifying Action Diagrams."

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 147

PRTFIL Device Function

The Print File (PRTFIL) function defines a program to print the records from a specified
access path. The PRTFIL function prints all records in a single file hierarchy of the
based-on access path and provides header and total formats for key fields. You can
submit a PRTFIL function for batch processing from with an action diagram.

Most considerations that affect PRTFIL also affect Print Object (PRTOBJ).

Default Processing

The following describes default processing:

■ You can specify up to 24 levels of totaling.

■ You can print records from more than one access path by embedding Print Object
functions within this function type. You can view the overall structure of the report
in the Edit Device Structure panel.

■ You can attach a PRTFIL function to a Retrieval (RTV), a Resequence (RSQ), or a
Query (QRY) access path. The Query access path allows you to specify virtuals as
key fields. You can omit certain records from printing by setting the *Record
Selected Program field to No.

Device Considerations

The following are device considerations:

■ The default design for a PRTFIL function includes standard header, top of page, first
page, detail final totals, and footer formats.

■ If there is more than one key field, CA 2E creates a header and total format for each
additional key level. By using the Edit Report Formats panel, you can drop
unwanted formats except detail standard header/footer formats.

■ The formats belonging to any embedded PRTOBJ functions are present on the
PRTFIL device design; however, you cannot alter them. You can only specify the
indentation level of the embedded PRTOBJ formats within the report structure.

Function Types, Message Types, and Function Fields

148 Building Applications

Parameter Considerations

Effect of restrictor parameters:

■ If you furnish all the keys of the access path to which a PRTFIL function attaches as
restrictor parameters to the function, only the record with the given key or keys
prints.

■ If you furnish only some of the keys (such as the major keys) as restrictor
parameters, all of the records with the given key print.

■ If you furnish none of the keys of the access path as restrictor parameters, all of the
records on the access path print.

Effect of positioner parameters:

■ If you furnish all of the keys of the access path to which a PRTFIL function attaches
as positioner parameters to the function, only the records with a key value greater
than or equal to the given key or keys print.

■ If you furnish only some of the keys (such as the major keys) as restrictor
parameters, but some or all of the remaining keys are passed as positioner values,
only those records with keys equal to the restrictor values and greater than or equal
to the positioner values print.

■ If none of the keys of the access path are supplied as positioner parameters, all of
the records in the access path within the specified restrictor group print.

Level breaks:

■ CA 2E defines a level break whenever a major key value changes.

■ On a level break, the Print File resets the fields in the associated controlling Header
format and its associated Total format. The fields are reset to blank, zero, or values
from the DB1 context as appropriate. The total number of formats for the PRTOBJs
and PRTFILs cannot exceed 104 if generated in RPG and 96 if generated in COBOL.

■ You can remove a level break and the associated processing by dropping the
associated header and total formats. Totals automatically accumulate at the higher
levels.

■ If you hide the formats, the processing remains in the execution but the output is
suppressed from the report.

■ You can add a maximum of 24 PRTOBJ functions to one PRTFIL function.

The following table shows the parameters available.

Parameters Usage Role Default Option

Return code B – Y R

Key fields I RST/POS - O

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 149

Parameters Usage Role Default Option

Other fields Any /MAP - O

The following table shows the function options available.

Options Default Value Other Values

Send all error messages M(YSNDMSG) Y, N

Commit control N(*NONE) M(*MASTER), S(*SLAVE)

Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N

Generation mode A D, S, M

Screen text constants M(YPMTGEN) L, I

Overrides if submitted job * N

Distributed file I/O ControL M(YDSTFIO) S, U, N

Function Types, Message Types, and Function Fields

150 Building Applications

For more information on function options, see the chapter, "Setting Default Option for
Your Functions."

The following is an example of a Print File.

For more information on user points, see the chapter, "Modifying Action Diagrams."

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 151

PRTOBJ Device Function

The Print Object (PRTOBJ) function defines an embedded report that prints the records
from a specified access path at any point within a PRTFIL function. You also can embed
PRTOBJ functions within other PRTOBJ functions.

A PRTOBJ function is an internal function, much like the EXCINTFUN, RTVOBJ, CHGOBJ,
or (DLTOBJ) functions, in that the high level language source code generated to
implement the function is included as source code within the Print File function that
calls it.

You can attach a PRTOBJ function to a Retrieval (RTV), a Resequence (RSQ), or a Query
(QRY) access path.

Most considerations that affect PRTFIL also affect PRTOBJ.

Device considerations:

■ The default device design for a PRTOBJ report design includes first page, detail, and
final total formats. The standard header and footer formats and the external
features of the report (for example, page size, compiler overrides) are determined
by the embedding PRTFIL function.

■ If there is more than one key field, CA 2E creates header and total formats for each
additional key level. You can drop unwanted formats using the Edit Report Formats
panel.

Default logic:

■ The PRTOBJ function reads one, several, or many records according to the entry
parameters that you specify for it. The same parameter considerations that apply to
PRTFIL functions also apply to this function type.

■ You can specify totaling with a PRTOBJ function in the same way as for PRTFIL
function types (from the CUR context to the NXT context). If you want to return a
total to the calling function, you must return it as a parameter

The following table shows the parameters available.

Parameters Usage Role Default Option

Return code I RST/POS - O

Other fields Any -/MAP - O

Function Types, Message Types, and Function Fields

152 Building Applications

There are no function options available for this function.

The following is an example of a Print Object.

RTVMSG Message Function

The Retrieve Message (RTVMSG) function specifies a process that retrieves message
text. You can then use the message text to perform any number of processes such as
moving a character string (or strings) from a database file into a field. You could also
concatenate two discrete character strings from different fields and place them in the
same work field or some other text field in another file.

The RTVMSG function is attached to a special CA 2E system file called *Messages.

Default logic:

■ CA 2E implements the RTVMSG function via a high-level language program call to a
CL program (Y2RVMGC).

■ The RTVMSG function returns a message to the calling program (that is, the
program that called the RTVMSG function). You would have to declare the field that
is to receive the returned message data as an output parameter to the RTVMSG
function.

Specifying RTVMSG

To specify a RTVMSG function, define a RTV type message function. Go to the Edit
Message Function Details panel (type Z). On the message text prompt, specify the
specific text along with system parameters that are derived as part of the text string.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 153

RTVOBJ Database Function

The Retrieve Object (RTVOBJ) function specifies a routine to retrieve one or more
records from a database file. Processing can be specified for each record read, by
modifying the action diagram for the function.

The RTVOBJ function attaches to a Retrieval (RTV), Resequence (RSQ), or Query (QRY)
access path, or Physical (PHY). The QRY access path lets you specify virtuals as key fields.
There are no function options or device designs available for RTVOBJ.

Note: For more information on PHY, see the section Internal Database Functions and
PHY Access Paths.

The RTVOBJ function reads one, all, or a selection of the records or array entries
according to the specified entry parameters.

If you need data to be returned from the RTVOBJ to the calling function, you must
perform moves within the RTVOBJ user points. The best way to implement this is to use
*MOVE ALL from a DB1 context to a PAR context if the record is found. The fields to be
passed back to the calling function must be specified as output parameters on the
RTVOBJ.

Note: *MOVE ALL only performs moves for fields with matching names.

The following table shows the parameters available.

Parameters Usage Role Default Option

Key fields from access path I RST/POS Y R

Other fields Any - - O

The following table shows the function options available.

Options Default Value Other Values

Share Subroutine M(YSHRSBR) N, Y

Effects of Restrictor Parameters

If all the keys of the access path to which a RTVOBJ function attaches are supplied as
restrictor parameters, only the record with the given key or keys is read.

If only some of the keys (major keys) are supplied as restrictor parameters, all of the
records with the given key are read.

If none of the keys for the access path are supplied as restrictor parameters, all of the
records in the access path are read.

Function Types, Message Types, and Function Fields

154 Building Applications

Effects of Positioner Parameters

If all the keys of the access path to which the RTVOBJ function attaches are supplied as
positioner parameters to the function, only the records with a key value greater than or
equal to the given key or keys are read.

If only some of the keys (major keys) are supplied as restrictor parameters, but some or
all of the remaining keys are passed as positioner values, only those records with keys
equal to the restrictor values and greater than or equal to the positioner values are
read.

If none of the keys of the access path are supplied as positioner parameters, all of the
records in the access path within the specified restrictor group are read.

For more information on user points, see the chapter, "Modifying Action Diagrams."

Effects of No Parameters

If no keys of the access path are supplied as parameters, there are two possible
outcomes:

■ All records in the access path are read if the USER: Process Data Record user point
contains user logic.

■ Only the first record is read if the USER: Process Data Record user point does not
contain user logic.

SELRCD Device Function

The Select Record (SELRCD) function defines a program to display the records from a
specified file using a subfile. The program enables the end user to select one of the
records and the key of the selected record is returned to the calling program.

For each field on the based-on access path, an associated input-capable field is present
on the subfile control record. You can use these fields to control how records from the
database are displayed. There are three types:

■ Restrictor parameters for the subfile (protected key fields).

■ Positioner parameters for the subfile (unprotected key fields).

■ Selectors (non-key fields). You can specify the operation (Equal to, Contains,
Greater than) by which the selection is made, using the Edit Screen Entry Details
panel.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 155

The SELRCD function type differs from the Display File function type. Records are
similarly displayed as a list or subfile, but the SELRCD function includes processing to
return the key values to the panel of the calling function whenever you select an item
with a line selection option of 1 (CUA Entry) or / (CUA Text) action bar.

You can attach a SELRCD function to a Retrieval (RTV), Resequence (RSQ), or Query
(QRY) access path. The QRY access path lets you specify virtuals as key fields.

Effect of parameters:

If you define a partially restricted key to a SELRCD function, the SELRCD function
displays a subset of the total number of records. If you do not restrict the keys, you can
use them to position the subfile display. To do this, enter the character string required
to position the display after the ? in the relevant code field.

Design considerations:

The SELRCD function executes in *SELECT mode only. There is only one display panel for
this function type. There is no default update processing for this function.

When you type a ? or user prompt (F4) for a key or foreign key field, CA 2E calls the
prompt function assigned to this file-to-file relation. The SELRCD function based on the
access path used to validate the value entered becomes the default prompt function.

CA 2E determines the appropriate default prompt function to call for a key or foreign
key field as follows:

1. Determine the referencing access path of the relation associated with the field. By
default, this is the primary Retrieval access path of the referencing file.

2. Select, by name, the first SELRCD built over that access path.

3. If no SELRCD is found, no call is generated.

The F4 prompt function assignment enables you to select another function to override
the function assigned to the access path relationship. This assignment can be made at
the access path or function level. You can select any external function except Print File
and the function can be based over any access path that is valid for the function type
you select. Function level assignments take precedence over access path level
assignments.

For more information on instructions for assigning F4 prompt functions, see Editing
Device Designs and Building Access Paths in the chapter "Modifying Device Designs,"
and Changing a Referenced Access Path in the chapter "Modifying Access Paths."

The following table shows the parameters available.

Parameters Usage Role Default Option

Return code B – Y R

Function Types, Message Types, and Function Fields

156 Building Applications

Parameters Usage Role Default Option

Key fields B MAP Y R

Other fields B RST – O

non-key fields I MAP – O

Other fields Any -/MAP – O

If there are output or both parameters, these are passed back automatically if the fields
are present in the subfile record.

The following table shows the function options available.

Options Default Value Other Values

Subfile end M(YSFLEND) P, T

Send all error messages M(YSNDMSG) Y, N

If action bar, what type? M(YABRNPT) A, D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)

Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N

Generation mode A D, S, M

Screen text constants M(YPMTGEN) L, I

Generate help M(YGENHLP) Y, N, O

Help type for NPT M(YNPTHLP) T, U

Workstation
implementation

M(YWSNGEN) N(NPT), G(GUI), J(JAVA), V(VB)

Distributed file I/O Control M(YDSTFIO) S, U, N

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 157

For more information on function options, see the chapter, "Setting Default Options for
Your Functions."

The following is an example of a SELRCD.

For more information on user points, see the chapter "Modifying Action Diagrams."

SNDCMPMSG Message Function

The Send Completion Message (SNDCMPMSG) function specifies that a completion
message is sent to the function that called a function. A completion message indicates
completion of a particular task.

The SNDCMPMSG function causes a message to be returned to the message queue of
the program that occupies the previous higher position in the invocation stack of the
program that invokes the SNDCMPMSG function.

Function Types, Message Types, and Function Fields

158 Building Applications

The SNDCMPMSG function is attached to a special CA 2E system file called *Messages.

CA 2E implements the SNDCMPMSG function using a shipped user program called
Y2SNMGC.

Example

In this example, you have a Display File function that calls a separate Print File function
to print out some details. You might then send a completion message from the Print File
function to indicate that the print is complete. This could be done by modifying the
action diagram of the Print File function as follows:

> USER: Process end of report
:—
:Send completion message - 'Print of details complete' <<<
'—

The message then appears automatically on the message subfile of the Display File
function.

SNDERRMSG Message Function

The CA 2E Send Error Message (SNDERRMSG) function is used to send an error message
to the message queue of the calling program. An error message indicates that an error
occurred arising from validation of user-entered data.

The SNDERRMSG function causes a message to be sent to the program message queue
of the program that calls the SNDERRMSG function. All standard functions have message
queue subfiles and display messages at the bottom of the panel.

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 159

The SNDERRMSG function is attached to a CA 2E shipped file called *Messages.

When you call a SNDERRMSG function, you can use any input-capable fields that you
defined as input parameters, as message substitution data. These parameter fields do
not need to appear in the text of the message.

When you call a SNDERRMSG function, input-capable fields on your function’s device
design, which you defined as Input or Neither parameters to the SNDERRMSG function,
appear highlighted and in reverse image unless Flag Error is set to N on the Edit Function
Parameter Details panel for the device function. The cursor is positioned at the first
error field, unless overridden by the *SET CURSOR function. The program does not
proceed past the validation subroutine until you correct the error.

When you call a SNDERRMSG function, the program encounters more than one error, all
input-capable fields in error are highlighted. Depending on what you specified for the
function option Send All Error Message, the program sends only the first error or all
errors.

Consider the following example. If you have a device function that requires a calculated
total value to be checked against an entered total value, and an error message sent if
these totals do not agree, you would do this by:

Defining an error message.

Modifying the action diagram of the device function to call the SNDERRMSG
function in the appropriate circumstances as shown next.

> USER: Validate totals
: - -
: .-CASE <<<
: | -CTL. Calculated total NE CTL. Entered total <<<
: | Send error message - do not agree' <<<
: '-ENDCASE
'- -

The device function repeatedly redisplays the fields until the error is corrected.

Function Types, Message Types, and Function Fields

160 Building Applications

SNDINFMSG Message Function

The Send Information Message (SNDINFMSG) function is used to send an information
message to the message queue of the calling program. An information message informs
or provides information concerning a particular task.

The SNDINFMSG function causes a message to be sent to the program message queue
of the program that invokes the SNDINFMSG function.

The SNDINFMSG function is attached to a CA 2E shipped file called *Messages.

Consider the following example. If you have a CA 2E device function that calculates a
control total as part of the validation and the calculated total value differs from an
entered total value, you may want to send an information message as a warning that
the end user can choose to ignore.

To do this, you first define an information message in the normal way and modify the
action diagram of the device function as follows:

> USER: Validate totals
:—
: .CASE <<<
: | -CTL. Calculated total NE CTL. Entered total <<<
: | Send information message - 'Totals disagree' <<<
: 'ENDCASE
’—

Function Types, Message Types, and Function Fields

Chapter 3: Defining Functions 161

SNDSTSMSG Message Function

The Send Status Message (SNDSTSMSG) function is used to send a status message to the
message queue of a calling function. A status message provides information concerning
the progress of a long-running task.

The SNDSTSMSG function causes a message to be returned to the program message
queue of the job that invokes the SNDSTSMSG function. The SNDSTSMSG function type
is only valid for interactive jobs and causes the message to display at the base of the
panel during a long-running interactive job.

The SNDSTSMSG function is attached to a CA 2E shipped file called *Messages.

Example

You might have a function to execute End of Year processing that is a long-running
process. Before starting the main body of the function, you could send a status message
to indicate that it is in progress; for example:

> USER:
:—
: Send status message - 'End of year processing running' <<<
'—

SUM Function Field

The Sum function field is a special field usage used within functions to contain the result
of a computation of the sum of values of another field.

Function fields of type SUM must be numeric. If the function field is defined as a
reference (REF) field that is based on another field, the SUM field contains a summation
of the values of the referenced field. The referenced field must also be numeric.

Function fields of type SUM always have two parameters:

■ A result parameter: This is the actual field itself containing the results of a
summation. You must place the field on a totaling format or subfile control format
of the Display or Edit Transaction that calls the SUM function field.

■ An input parameter: This is the field whose sum will be calculated. This field must
exist on the detail format of the function using the SUM function field.

The following are examples of Sum fields:

■ Total order value: the sum of order lines

■ Total warehouse space: sum of location space

Function Types, Message Types, and Function Fields

162 Building Applications

USR Function Field

The USR (User) field usage is reserved for any work fields that you need on a device
design or in an action diagram. A USR function field can be input-capable or output only.
USR function fields are usually defined as REF fields to existing database fields.

There is no default processing for USR function fields. You must initialize, validate, or
specify any special processing for the field. However, CA 2E performs basic field type
validation such as date validation if the field is a DTE type field.

The following are examples of User fields:

■ Command request strings

■ Menu options

■ Work fields used on the panels or in the function’s action diagrams

Default Prototype Functions

The Default prototype function is available for *Template functions. It is available only
for functions created over the *Template file and is available for all function types
(CHGOBJ, EDTFIL, and so on). This function facilitates the use of *Template functions.
When new functions are created, the use of a specific *Template function is enforced.

Note: In previous versions, users had to select *Template functions (by using F21)
explicitly while creating new functions. There was no enforcement of *Template usage.

If a function x based on the *Template file that has the Default prototype function
function option set to Y, then any function of x type subsequently created over any
user-defined (non-system) file in the model automatically uses function x as their
prototype, rather than using the system default.

Note: New functions created over the *Template file always use the system default at
the time of creation.

For all functions based over the *Template file, only one function of each type can have
the Default prototype function function option set to Y. Any user with DSNR authority
can change the Default prototype function option.

Chapter 4: ILE Programming 163

Chapter 4: ILE Programming

2E supports ILE programming in the form of 2 HLL codes, RP4 and CBI. Functions using
the RP4 HLL code have code generated by the RPGIV generator; CBI functions generate
CBL ILE code using the standard shipped COBOL generator

This section contains the following topics:

Choosing RPGIV as the Default Language (see page 163)
ILE Features That Affect CA (see page 164)
Generating RPGIV Source (see page 167)
Compiling RPGIV Source (see page 167)
RPGIV User Source (see page 169)
Model Value YRP4SGN (see page 171)
RPGIV Generator Notes (see page 172)
Service Program Design and Generation (see page 172)
The YBNDDIR Model Value (see page 182)

Choosing RPGIV as the Default Language

To create a new model with RPGIV as the default language, use the YCRTMDLLIB
command as follows:

YCRTMDLLIB…HLLGEN(*RPGIV)

This value becomes the model value YHLLGEN. In addition, the default binding directory
YBNDDIR is created in the generation library.

To make RPGIV the HLL generator for an existing function, change the value on the Edit
Function Details panel to RP4.

ILE Features That Affect CA

164 Building Applications

ILE Features That Affect CA

The IBM integrated Language Environment (ILE) includes many enhancements and
changes over the Original Program Model (OPM) that controls and supports RPG and
COBOL programs.

This section contains brief descriptions of the ILE features that the CA 2E RPGIV ILE
generator uses for program creation and program calling.

Note: The RPGIV generator includes processing that can use such ILE features as bound
(static) calls, activation groups, binding directories, and more. These features provide
functionality that is not available for RPG or COBOL programs. A full understanding of
ILE is therefore necessary for using the RPGIV generator. See the documentation from
IBM or another source.

ILE Features That Affect CA

Chapter 4: ILE Programming 165

Program Creation

In OPM, program creation consists of compiling source code into runnable program
objects (*PGM). A program object is created from a single source member using the
Create RPG Program command (CRTRPGPGM).

By contrast, in ILE, program creation consists of:

■ Compiling source code into nonrunnable module objects (*MODULE)

■ Binding (combining) one or more modules into a runnable program object (*PGM)

One way to create an RPGIV program object is the same way you create an RPG
program in the OPM framework: using the CRTBNDRPG command. This command
creates a temporary module that is bound into a program object and later deleted. This
is the quickest and simplest way to create an ILE program.

Another way to create an RPGIV program object is using separate commands for
compilation and binding. In this two-step process, you create a module object with the
Create RPG Module command (CRTRPGMOD). This command compiles the source
statements into a nonrunnable module object, which must be bound into a program
object with the Create Program command (CRTPGM).

ILE also lets you bind other objects using a binding directory. A binding directory is
essentially a "list" of modules that may be needed when the program runs. When the
CRTBNDRPG command specifies a binding directory, the compiler or binder searches the
binding directory to see if the program being compiled accesses any modules in the
directory. If it does, the compiler or binder binds them to the program. A binding
directory can reduce program size because the modules or service programs in a binding
directory are used only when needed. For more information about the binding
directory, see the section The YBNDDIR Model Value.

CA 2E lets you define a function as either a module or a program. During the source
generation and compilation steps, the RPGIV ILE generator ensures that references to
bound objects are correct and creates either a program object (*PGM) or a module
object (*MODULE). Created modules can be bound to created programs during
compilation, either explicitly or through the default CA 2E binding directory.

ILE Features That Affect CA

166 Building Applications

Program Calling

In ILE, you can write applications in which ILE RPG/400 programs and OPM RPG/400
programs interrelate by using the traditional dynamic program call. The calling program
specifies the name of the called program on a CALL statement. The name of the called
program is resolved to an address at run time, just before the calling program passes
control to the called program. The program name may be known to the program only
when the call is made (perhaps if the program to be called is a variable value). Because
of this, the dynamic call uses considerable system resources, and repeated dynamic calls
can reduce the performance of the calling program.

You can also write ILE applications that interrelate with faster static calls. Static calls are
calls between procedures. A procedure is a self-contained set of code that performs a
task and then returns to the caller. An ILE RPG/400 module consists of an optional main
procedure followed by zero or more subprocedures. Because the procedure names are
resolved at bind time (that is, when you create the program), static calls are faster than
dynamic calls.

Example: The CA 2E generator uses static calls where possible. Suppose a model
contains the following external functions Function PGM—generated in RPGIV, compiled
as a program object (*PGM)

Function MOD—generated in RPGIV, compiled as a module object (*MODULE)

Function MOD2—generated in RPGIV, compiled as a module object (*MODULE)

Function RPG—generated in RPG or COBOL, compiled as a program object (*PGM)

In a model with the functions just listed, the following call situations occur:

1. Function PGM calls Function MOD, using the Call Bound Procedure statement
(CALLB).

2. Function MOD calls Function MOD2, using the CALLB statement.

3. Function RPG calls Function PGM, using the Call Program statement (CALL).

4. Function PGM calls Function RPG, using the CALL statement.

5. Function RPG calls Function MOD, using the CALL statement. In this case, however,
the call fails because RPG programs cannot call module objects using a dynamic call.

Generating RPGIV Source

Chapter 4: ILE Programming 167

Generating RPGIV Source

The process to invoke source generation is the same as for RPG:

■ Enter a G next to the function to generate the source interactively.

■ Enter a J next to the function to generate the source and compile the object in
batch.

After the source is generated, you can view or edit it by entering an E next to the
function. The source file is QRPGLESRC and the source type is RPGLE.

Control (H) Specifications

The RPG generator uses the contents of the YRPGHSP model value as the Control (H)
specification for the generated RPG source. The RPGIV generator, however, uses the
contents of two separate model values:

YRP4HSP—Control (H) specification for objects of type *PGM

YRP4HS2—Control (H) specification for objects of type *MODULE

In addition, and unlike the RPG generator, you can add extra H lines using user source;
see the section RPGIV User Source. This is because the H-specification is keyword-based
and can take more than 80 characters.

Note: You can change the model values YRP4HSP and YRP4HS2 with YCHGMDLVAL, but
they are too long to be displayed on the Display Model Values panel.

Compiling RPGIV Source

As stated earlier, you can compile generated RPGIV source into a program object
(*PGM) with CRTBNDRPG or a module object (*MODULE) with CRTRPGMOD. To
accommodate this choice between object types, the Edit Function Details panel has two
new options, O and T:

SEL: E-STRSEU, O-Compiler Overrides, T-ILE Compilation Type (*PGM/*MODULE)

Compiling RPGIV Source

168 Building Applications

Option O

The O option controls the compiler overrides. Use this option if you want additional
binding directories (to use IBM APIs, for example). Because the CRTBNDRPG and
CRTRPGMOD commands have different default values, changing the object type with
the T option deletes any compiler overrides for the previous object type.

Option T

The T option toggles between PGM (*PGM) and MOD (*MODULE) as the object type
created when the source is generated and compiled. This option is available only for a
target HLL that is ILE compatible, like RPGIV. The current object type is shown at the left
of the subfile line. During generation, the change is limited to the compiler overrides in
the source (the Z* lines). Here are more details about the compile options:

■ PGM—The IBM Create Bound RPG Program command (CRTBNDRPG) compiles the
generated source into a program object (*PGM). The command creates a
temporary module, binds that module into a program, and then deletes the
temporary module.

The defaults for this command are in the *CRTBNDRPG message in the *Messages
file:

CRTBNDRPG PGM(&2/&1) SRCFILE(&3/QRPGLESRC) DFTACTGRP(*NO)
BNDDIR(&YBNDDIR) DBGVIEW(*SOURCE) CVTOPT(*DATETIME) ACTGRP(*CALLER)
OPTIMIZE(*BASIC)

For details about the BNDDIR parameter value, see the section The

■ MOD—The IBM Create RPG Module command (CRTRPGMOD) compiles the
generated source into a module object (*MODULE). You must then bind that
module into an ILE program, possibly with other modules.

The defaults for this command are in the *CRTRPGMOD message in the *Messages
file:

CRTRPGMOD MODULE(&2/&1) SRCFILE(&3/QRPGLESRC) DBGVIEW(*SOURCE)
CVTOPT(*DATETIME)

RPGIV User Source

Chapter 4: ILE Programming 169

RPGIV User Source

Functions generated with source type RP4 should include only user source of the type
RP4. This user source lets you take advantage of some features of the RPGIV language
that are not currently available in the CA 2E model generated source. An example is the
use of pointer variables.

RPGIV user source must reside in QRPGLESRC. The rules for naming parameter variables
in RPGIV user source are the same as for RPGIII user source. You can include all RPGLE
specification types in the source member. CA 2E sorts the specification types into their
appropriate positions within a program.

CA 2E codes the source in the normal order for RPGLE specifications, which is:

1. H specification

Any H specification lines that you add are placed after the default H specification
lines generated for the owning function source. The H specifications are taken from
the YRP4HSP and YRP4HS2 model values.

2. F specifications

3. D specifications

4. I specifications

5. C specifications

6. O specifications

7. P specifications, including any contained D and C specifications.

8. Arrays

CA 2E treats the first RPG calculation specifications, which are not part of a subroutine,
as the instance code. For repeated calls to an EXCUSRSRC function, CA 2E generates the
code on every call to the function at the point indicated by the action diagram.

CA 2E automatically inserts into the ZZINIT subroutine any C specifications that follow a
subroutine but are not part of a subroutine. The order of specification is:

1. Instance (mainline) code C specifications

2. C specifications for subroutines called by instance code

3. Initialization C specifications

Note: In version 7.0, parameter fields (fields prefixed with #O, #I and #B) are recognized
only in the Factor One, Factor Two, and Result positions of the RPGLE calculation
specifications that are part of the instance code. They can be in upper, lower, or mixed
case. They are not currently recognized in free-format expressions.

RPGIV User Source

170 Building Applications

The following example shows an RPGIV function called Get Key that is defined into
EXCUSRSRC Function another CA 2E standard function. The EXCUSRSRC function has
three parameters:

IOB Parameter GEN name

I Job date JDT

I User name USR

O Encoded file key ABVN

The sample shows user source coded as a prototyped procedure with several distinct
sections of code:

■ The procedure prototype (D specifications)

■ Inline code (to execute the procedure)

■ Procedure code (including more C and D specifications)

 * PROCEDURE PROTOTYPE) Inserted into

D Get_Key PR 10) inline D-specs

D Job_Date 7 0 VALUE)

D Job_User 10 VALUE)

 *

 * USER_DEFINED FIELDS

D Key_Date S 7 0

D Key_User S 10

D Enc_Val S 10

 *

 * IN-LINE PROCESSING

 *

 * Use job date and user name as input parameters to Get_Key proc.

C Move #ijdt Key_Date)

C Move #iusr Key_User) Inserted into

C Eval Enc_Val = Get_Key(Key_Date:Key_User)) inline C-specs

 *)

 * Return encoded value as parameter from user source function)

C Move Enc_Val #oadvn)

 *)

 *

 * PROCEDURE DEFINITION)

Model Value YRP4SGN

Chapter 4: ILE Programming 171

PGet_Key B)

 *- - - - - - - - - - - - - - - - - - - -- - - - - - - *)

DGet_Key PI 10)

D Job_Date 7 0 VALUE)

D Job_User 10 VALUE) Inserted into

 *) source after

D Job_Date_Ptr S *) all C-specs and

D Job_Date_Char S 7 Based(Job_Date_Ptr)) all system-

D File_Key S 10) generated

 *) procedure code

C Move Job_Date Job_Date_Char)

C Eval File_Key = %Subst(Job_User:3:2) +)

C %Subst(Job_Date_Char:3:3) +)

C %Subst(Job_User:6:2) +)

C %Subst(Job_Date_Char:1:3))

C Return File_Key)

P E)

The user source procedure code does not need to conform to the CA 2E model naming
conventions. Field names used only in the procedure can have the full 14-characters
that the RPGIV language allows. Also, #I and #O must be within C specification lines and
not within free-format expressions like the EVAL statement.

Model Value YRP4SGN

The RPGIV generator includes some source generation options that you can set at a
model level. These options are in the new model value YRP4SGN in a data area called
YRP4SGNRFA (RPGIV source generation options). YRP4SGNRFA is a 16-character data
area, and a copy is created in each version 7.0 model library. The 16 characters are:

■ Character 1—This character determines whether the RPGIV source is in upper case,
lowercase or mixed case:

– U—upper case (default)

– L—lowercase

– M—mixed case (first letter in upper case)

– If Character 1 is L or M, subroutine names and internal TAG labels are upper
case.

RPGIV Generator Notes

172 Building Applications

■ Character 2—This character determines the color of the comments in the
generated RPGIV source:

– G—green (default)

– W—white

– R—red

– P—pink

– B—blue

■ Characters 3 - 16—These are not used in version 7.0, but are available for future
use.

The default value, which is UG, means that the RPGIV source is upper case with green
comments. If you change the value to MW, the source would be mixed case with white
comments. Therefore, RPG would generate a field name as WUABVN, but RPGIV
generates it as Wuabvn. Likewise, op-codes such as EVAL, IF, and SETOFF are Eval, If,
and Setoff.

RPGIV Generator Notes

The RPGIV ILE generator lets you create ILE programs and modules from generated
RPGIV source. However, for version 7.0 of CA 2E, note the following details and
limitations:

■ Unlike the RPG and COBOL generators, the RPGIV generator is available free of
charge to any customer who already has a fully licensed CA 2E model. For
administration purposes, however, it is licensed separately, and you must
specifically request the license.

■ Although the RPGIV generator options can create both *PGM and *MODULE
objects, the CRTPGM and CRTSRVPGM commands are not currently available to
create an ILE program or service program.

■ The CRTBNDRPG and CRTRPGMOD default commands are held as the *CRTBNDPRG
and *CRTRPGMOD messages Y2U1022 and Y2U1024 respectively in the *Messages
file. If you wish, you can change the default parameters or add new parameters.

Service Program Design and Generation

In the CA 2E model, a function type called Service Program (*SRVPGM) is defined.
Service Programs can be copied, deleted, renamed, and so on, just like any other
function. Service Programs have no parameters or action diagram, and they can be
defined over any file. A Service Program has an associated source member, whose name
is automatically allocated, but which can be changed. The source member name will be
used for the final *SRVPGM object name.

Service Program Design and Generation

Chapter 4: ILE Programming 173

Once a Service Program is created, a developer can, through a series of screens, define
which existing module functions should be bound into the Service Program.
Additionally, they can define one or more external (non-2E) *MODULE objects to be
bound into the Service Program. For each bound module, the developer can specify
which exported procedures from the module should also be exported from the Service
Program.

When the Service Program is generated, a source member is created which includes
both the export list, as well as several compile preprocessor directives which define how
the *SRVPGM object should be created.

Service Program Overview

Within the CA 2E product, external functions can be defined with an object attribute of
either PGM or a MOD. When compiled, these functions become one of two i OS object
types-respectively, a *PGM (executable program) or a *MODULE (non-executable
module).

A *PGM object can be directly called, either from a command-line or from another
program (assuming the correct parameters are passed). By contrast, a *MODULE object
must first be 'bound' into an executable program.

Earlier releases of CA 2E provided the following ILE-specific functionality:

■ An external function could be given an attribute of MOD (instead of PGM). This
function would compile into a i OS *MODULE rather than a *PGM.

■ All MOD functions are automatically added to the 2E model's default binding
directory YBNDDIR during the compilation process.

■ The default compilation command for ILE programs forces the compiler to search
YBNDDIR for called bound modules.

■ Calls to a MOD function would be generated (in RPG) as a CALLB (call-bound) rather
than a CALL.

Note: Developers could then define certain external functions (typically ones that would
never be called from a command line, such as SELRCD's) as modules. Any programs that
called these functions (EDTFIL's, etc.) would include a copy of the module object. In ILE
terms, this is known as bind-by-copy.

Service Program Design and Generation

174 Building Applications

For example, the following diagram shows the use of three PGM functions calling two
MOD functions and the resulting *PGM objects containing copies of the *MODULE
objects:

This has a number of benefits:

■ Fewer *PGM objects required at runtime can simplify application deployment.

■ Calls to bound modules are typically quicker than calls to other programs, due to
significantly reduced object pointer resolution overhead.

However, if a module is bound into a program and the code within the module function
needs to be changed, the *MODULE must be recompiled and then any programs that
bind that module must be changed to include the new copy of the module-typically this
would be done by regenerating/recompiled the PGM function in a 2E model, although
the i OS UPDPGM command can be run from outside the model environment.

Note: Although there are fewer *PGM objects, they are larger than if they did not
contain a copy of the module.

Service Program Functions

The new Service Program Support allows developers to create service program
functions, which are functions that equate to i OS *SRVPGM objects and can be thought
of as containers for one or more *MODULE functions. As with modules, you cannot
directly call service programs. However, when a program function is compiled into a
*PGM object, if it finds the service program (which contains the module) in the binding
directory before it finds the module itself, it performs a bind-by-reference, wherein it
simply contains a reference (link) to the module object in the service program and does
not itself contain a copy of the module object. At runtime, the program resolves (calls)
to the copy of the module contained in the service program (so the service program
needs to be available).

Service Program Design and Generation

Chapter 4: ILE Programming 175

Using service programs in this manner provides the benefit of improved performance,
due to one-time object resolution, but ensures that a change in any of the modules
contained in the service program does not require a change in the calling program, as
detailed in the following diagram.

Service Program Design and Generation

176 Building Applications

Edit Function Details Panel

This existing panel displays when you take option Z (Details) against a function. For a
Service Program, this screen contains certain Service Program-specific fields, subfile
options, and function keys, as you can see in the following example:

The Signature field displays the current signature for the Service Program. It can take
the following values:

■ *SRVPGM - The signature is the *SRVPGM object name

■ *GEN - The signature is system-generated

■ User-defined - the signature is a user-specified 16-byte string

Note: The signature is determined at generation time (or in the case of *GEN, at
compile-time).

You can take option M (Modules), to display the list of modules currently bound into the
Service Program (and to add more modules if you authority).

You can also take option P (Procedures) against the Service Program, to display the list
of procedures which will be exported from the *SRVPGM object (and, if you have
sufficient authority, to reorder that list).

Use function key F9 to make the Signature field input-capable

Service Program Design and Generation

Chapter 4: ILE Programming 177

There is one function option for a Service Program function - Add to Binding Directory.
This determines whether or not this service program should automatically be added to
the model's default binding directory. Whether set to Y or N, all constituent modules
will be removed from the default binding directory when the service program is created.

Setting this to N can be useful where you create multiple service programs that contain
one or more of the same modules, which therefore export the same procedures, since
this would give rise to errors when subsequently compiling programs.

Adding Modules and Procedures

The Service Program Modules panel is called when option M is taken from the EDIT
FUNCTION DETAILS panel (above).

Service Program Modules

From this screen, you can see which modules are currently bound into the Service
Program. This list may include both 2E modules and external (non-2E) modules.

You can also press F6 to go to the SELECT MODULE screen

Service Program Design and Generation

178 Building Applications

Select Module

You can select one or more modules to bind into the Service Program, by using
subfile option X (displayed) or 1 (not displayed, but active anyway). This
automatically makes all the procedures from the module exported from the Service
Program. Alternatively, you can take option P against a module and select which
procedures they would like to export from the Service Program.

You can also press F6 to display the SELECT EXTERNAL MODULE screen

Service Program Design and Generation

Chapter 4: ILE Programming 179

Select External Module

You can select one or more external (non-2E) modules to bind into the Service
Program. The initial screen is displayed empty, and you can specify subfile control
criteria so sub-select the modules to display. As with the SELECT MODULE screen,
option P is available to sub-select procedures from within the module to export
from the Service Program.

Service Program Design and Generation

180 Building Applications

Service Program Exports

The Service Program Exports panel is displayed when option P is taken from the
EDIT FUNCTION DETAILS panel:

This allows you to display the list of procedures which are exported from the
*SRVPGM object, and if necessary, re-order them.

Note: Although this is only a requirement where, due to modules being removed
and added, the list may have changed-typically, once a Service Program has been
generated and compiled into a *SRVPGM object, this list would never be changed).

Service Program Generation Mode

When option G or J is taken against a Service Program, the generation program
creates/updates the source member (in file QSRVSRC) in the 2E model generation
library (*GENLIB). This source member contains both the export list associated with
the *SRVPGM object, as well as several compile preprocessor directives which will
be used by the CA 2E Toolkit to actually create the *SRVPGM object. These include
the following (in order):

1. The actual CRTSRVPGM command, specifying the bound modules and also
specifying the same source member as the export list definition member

2. An ADDBNDDIRE command, to add the*SRVPGM object to the YBNDDIR
binding directory (Only if function option Add to Binding Directory is set to Y)

Service Program Design and Generation

Chapter 4: ILE Programming 181

3. Multiple RMVBNDDIRE commands (one for each 2E module bound into the
Service P), to remove that module from the YBNDDIR binding directory.

4. When you compile a Service Program function using the YSBMMDLCRT
command, the 2E model generation/compile processing executes the YEXCOVR
command against the source member. This command invokes the Toolkit
compile preprocessor, which processes the compile directives in the source
member.

An example of an Service Program source member is as follows:

/*Y: CRTSRVPGM SRVPGM(HEWRO0185G/UUDPSPS) + */

/*Y: MODULE(HEWRO0185G/UUAFSRR HEWRO0185G/UUDOXFR) + */

/*Y: EXPORT(*SRCFILE) SRCFILE(HEWRO0185G/QSRVSRC) OPTION(*DUPVAR + */

/*Y: *DUPPROC *NOWARN) BNDDIR(QC2LE YBNDDIR) TEXT('The address + */

/*Y: service program is cool!') */

/*Y: ADDBNDDIRE BNDDIR(HEWRO0185G/YBNDDIR) OBJ((HEWRO0185G/UUDPSPS + */

/*Y: *SRVPGM)) POSITION(*FIRST) */

/*Y: RMVBNDDIRE BNDDIR(HEWRO0185G/YBNDDIR) OBJ((*LIBL/UUAFSRR + */

/*Y: *MODULE)) */

/*Y: RMVBNDDIRE BNDDIR(HEWRO0185G/YBNDDIR) OBJ((*LIBL/UUDOXFR + */

/*Y: *MODULE)) */

 STRPGMEXP PGMLVL(*CURRENT) SIGNATURE(*GEN)

 EXPORT SYMBOL('UUAFSRR')

 EXPORT SYMBOL('UUDOXFR')

 ENDPGMEXP

Processing this source member results in the UUDPSPS service program being
created in library HEWRO0185G and being added to the top of the YBNDDIR binding
directory, with *MODULE objects UUAFSRR and UUDOXFR being removed from the
same binding directory.

Note: The shipped defaults for the CRTSRVPGM, ADDBNDDIRE, and RMVBNDDIRE
commands can be customized by doing the following:

1. CRTSRVPGM - the defaults for this command are held in a shipped model message,
*CRTSRVPGM, with message id Y2U1033:

*CRTSRVPGM EXC Y2U1033 Y2USRMSG

2. ADDBNDDIRE - the defaults for this command are held in message Y2R0130 in
Y2MSG.

3. RMVBNDDIRE - the defaults for this command are held in message Y2R0137 in
Y2MSG.

The YBNDDIR Model Value

182 Building Applications

The YBNDDIR Model Value

The new model value YBNDDIR specifies a binding directory that can resolve the
location of any previously compiled RPGIV modules. Use this model value while
compiling RPGIV programs with the CRTBNDRPG command. The default CRTBNDRPG
command contains the following parameter:

BNDDIR(&YBNDDIR)

During the pre-compiler process, the value &YBNDDIR is replaced with the value
specified for the YBNDDIR model value, even if the value specified in the YBNDDIR
model value is *NONE.

Specifying *NONE

A value of *NONE for the YBNDDIR model value causes the following:

■ No static binding takes place during RPGIV program compilation. RPGIV programs
use:

CRTBNDRPG...BNDDIR(*NONE)

■ RPGIV modules must be explicitly bound to a generated RPGIV program. Change the
compile overrides for that RPGIV program function by taking option O from the Edit
Function Details panel. In addition, specify a binding directory that already has an
entry for each module.

The YBNDDIR Model Value

Chapter 4: ILE Programming 183

Specifying a Value Other Than *NONE

A value other than *NONE for the YBNDDIR model value causes the following:

■ The compiler attempts to bind any called modules by checking the binding directory
for each called module. RPGIV programs use:

CRTBNDRPG...BNDDIR(binding-directory)

■ RPGIV modules generated with the CRTRPGMOD command have the following Y*
(pre-compiler) line inserted before the Z* (compile parameter) lines:

Y* ADDBNDDIRE BNDDIR(binding-directory) OBJ((source-member *MODULE))

This adds an entry for the *MODULE function to the specified binding directory at
compile time. Any external functions compiled later with CRTBNDRPG…BNDDIR that call
a *MODULE function use the Call Bound Procedure statement (CALLB). This improves
performance. However, make sure that a called module is compiled before the program
that calls it, otherwise the compilation will fail because no entry for the module will be
in the binding directory. If several objects are compiled at once, the job list processing
ensures this.

Note: If you use YCHGMDLVAL to change YBNDDIR to a value other than *NONE, the
command processor determines whether a binding directory of that name already exists
in the generation library. If it does not, a directory is created with PUBLIC(*CHANGE)
authority.

Chapter 5: Web Service Creation 185

Chapter 5: Web Service Creation

This chapter describes the mechanism to expose CA 2E server-side programs via web
services, and to model this exposure.

The runtime functional deliverable is an automatically created and deployed Web
Service(s); its operations invoke 2E server-side ILE service programs.

The feature creates a Web Service containing one-to-multiple operations, where each
operation corresponds to a single procedure in a module within a 2E ILE Service
Program. Note that CA 2E Service programs can also contain modules developed outside
of a 2E model.

This section contains the following topics:

Approach (see page 185)
Installation Requirements (see page 186)
Architecture (see page 190)
Web Services Limitations (see page 193)
Sample Flow (see page 194)
Commands (see page 201)
Web Service Remote Deployment (see page 205)
References (see page 209)

Approach

IBM's i 6.1 (and V5R4 with PTFs) provides a Web Services Server.

IBM states, "The Web services server provides a convenient way to externalize existing
programs running i OS®, such as RPG and COBOL programs, as Web services."

The IBM Web Administration Interface provides a web-based, wizard like approach to
creating and deploying a Web Service that can invoke an RPG ILE or COBOL ILE program.

Installation Requirements

186 Building Applications

The CA 2E support reduces the reliance on the Web Administration Interface Web
Services wizard, with a programmatic invocation of the IBM shipped scripts which
perform the pertinent Web Service administration tasks:

■ Install a Web Service (i.e. automatically create and deploy).

■ Uninstall a Web Service

Install and uninstall Web Service administration tasks are available as new 2E
commands.

Additionally, a CA 2E user can model Web Services within a 2E model enabling 2E
facilities such as impact analysis to be applied to web services.

Installation Requirements

To enable Web services provider and requestor support you must have the following
products installed:

■ Extended Base Directory Support (5761-SS1 Option 3) V5R4, or later.

■ IBM HTTP Server for i5/OS (5761-DG1) V5R4, or later.

■ IBM Developer Kit for Java™ (5761-JV1 Option 8) V5R4, or later

■ Qshell (5761-SS1 Option 30) V5R4, or later

■ Portable Appl Solutions Environment (5761-SS1 Option 31) V5R4, or later

■ Digital Certificate Manager licensed program (5761-SS1 Option 34) V5R4, or later
(needed only for service requestor support)

Note: 5722 is the product code for i5/OS options and products, prior to V6R1.

To see the list of installed products on your machine, you should run the following
command:

GO LICPGM

Then select option 10.

RPG and COBOL source must be is compiled with the PTF's listed below to include the
information necessary to generate Web services programs or service programs.

Installation Requirements

Chapter 5: Web Service Creation 187

Required IBM PTFs

In order to correctly support CA 2E (particularly Web Service Support) you need to
ensure that you have the latest IBM Cumulative Package and Latest HTTP Group PTFs
installed.

Latest Cumulative Package:

■ V5R4

■ V6R1

Latest HTTP Group PTF:

■ V5R4

■ V6R1

Note: There are additional PTFs required. At the time of writing this document, the
following PTFs are not yet included in the Latest Cumulative packages and must be
ordered separately:

V5R4

5722SS1 - SI34862

V6R1

5761SS1 - SI34865

For more information on PTF's, see IBM's website.

PCML in Module

At V5R4, after the PTF's are installed, but before the module source is compiled by CA
2E, the following statements must exist in the module source. (The PGMINFO statement
does not have to be manually added at V6R1 and beyond.)

RPG

H PGMINFO(*PCML:*MODULE)

COBOL

PROCESS OPTIONS PGMINFO(PCML MODULE)"

Note: 2E does not automatically generate these PGMINFO source lines.

Installation Requirements

188 Building Applications

An easy method to accomplish generation of PGMINFO into V5R4 source is to create an
EXCUSRSRC member containing the PGMINFO statement and then include that
statement in the AD of the module, as in the following examples:

1. "PCML PGMINFO" is a function of type EXCUSRSRC.

2. Source member for the EXCUSRSRC function contains "H PGMINFO(*PCML :
*MODULE)".

Installation Requirements

Chapter 5: Web Service Creation 189

3. AD of function EXCEXTFUN shows a call to the user source.

The generated source for the module shows the included PGMINFO line:

Note: At V6R1, it is not necessary to add the PGMINFO statement, but you must
ensure that the Compiler Overrides for the Module have the PGMINFO parameter
set to PGMINFO(*PCML *MODULE).

Architecture

190 Building Applications

In addition to modifying CA 2E functions using EXCUSRSRC to include the keyword
PGMINFO(*PCML : *MODULE), the YRP4HS2 model value can be used to alter H spec
generation (for an RP4 module) on a model-wide basis.

YRP4HS2 (*MODULE) ships with a value of 'H DATFMT(*YMD) DATEDIT(*YMD)
DEBUG(*YES)'.

Changing the value, as below, ensures any generated module is generated with
contained PCML:

YCHGMDLVAL MDLVAL(YRP4HS2) VALUE('H DATFMT(*YMD) DATEDIT(*YMD) DEBUG(*YES)

PGMINFO(*PCML : *MODULE)')

Architecture

The fundamental components of this solution are the new 2E commands that
encapsulate programmatic invocation of IBM's Web Service Administration scripts.

IBM ships the following scripts.

Script Purpose

installWebService.sh Create and deploy a Web Service

listWebServices.sh List Web Services deployed to a Web Services
Server

startWebService.sh Start a deployed Web Service

stopWebService.sh Stop a deployed Web Service

uninstallWebService.sh Uninstall a deployed Web Service

createWebServicesServer.sh Create Web Services Server*

deleteWebServicesServer.sh Delete Web Services Server*

startWebServicesServer.sh Start Web Services Server*

stopWebServicesServer.sh Stop Web Services Server*

Note: It is not the intention of this phase of the CA 2E Web Service support to mimic all
functionality available within the Web Administration interface. This release allows a
Web Service to be modeled and to be installed to/uninstalled from a Web Services
Server.

Architecture

Chapter 5: Web Service Creation 191

Two new 2E commands mirror and invoke functionality of two of the scripts:

2E command Purpose

YCRTWS Create and deploy a Web Service (installWebService.sh)

YUNSWS Uninstall a deployed Web Service (uninstallWebService.sh)

Note: The Web Service Administration interface (and therefore) scripts cannot operate
on a remote environment; i.e. all WS work is for local machine.

A new 2E function type of Web Service (WEBSRV) is available within the model.

Architecture

192 Building Applications

A function of type Web Service cannot be generated and does not have an action
diagram. Its purpose is to serve as an umbrella for any number of Web Services
Instances. A Web Service instance corresponds to a web service that is or can be
deployed to a Web Services Server. The function of type web service has a customized
EDIT FUNCTION DETAILS panel. This panel stores the default name of any created web
service instance, as well as the 2E file/function that represents the target Service
Program to be exposed.

The EDIT FUNCTION DETAILS panel provides option F10 to invoke YCRTWS.

Web Services Limitations

Chapter 5: Web Service Creation 193

The EDIT FUNCTION DETAILS panel also provides option F16 to invoke WEB SERVICE
INSTANCES PANEL:

Web Services Limitations

This feature relies on the Web Services Server which is part of the IBM i operating
system. Only 2E service programs generated as RPG ILE or COBOL ILE are candidates for
exposure. The Web Service client portion is not created by this feature.

IBM states: "There are a few limitations within the Web services server regarding the
deployment of services. To retrieve the most current information on restrictions, refer
to the document located at
/QIBM/ProdData/OS/WebServices/V1/server/docs/readme.txt."

The YCRTWS and YUNSWS commands require the user issuing command to have special
authorities *ALLOBJ and *IOSYSCFG. This is due to the underlying IBM IWS scripts
requiring those special authorities.

One of these limitations you need to be aware of is this: When a module is defined with
a RCD parameter definition, in the generated source a data structure is used as the
parameter for the *ENTRY PLIST. If some of the fields on the RCD parameter data
structure are not being used as parameters, then due to an IBM limitation in the PCML
generation, in the IBM Test client interface you will see redundant parameters (or
subfields) named "_unnamed_1", "_unnamed_2", etc. These can be ignored and do not
cause any problems.

Sample Flow

194 Building Applications

Full details of the restrictions can be viewed in IBM's documentation.

Note: To call a deployed web service on a web services server, the user ID that is on the
Properties for the web service needs to satisfy the following criteria: 1. The user ID must
have the necessary authority to this program object and any other additional program
objects. 2. The server profile QWSERVICE must have *USE authority to the user ID.

Sample Flow

This section shows an example of how you might use these new features in CA 2E. Some
settings and selection might vary depending on your system configuration.

To define and deploy a Web Service from CA 2E

1. Identify a Service Program that has module operations you want to expose via a
web service.

Sample Flow

Chapter 5: Web Service Creation 195

2. Create a new Web Service type function.

3. Zoom into the Web Service function to Edit Function Details.

Sample Flow

196 Building Applications

4. Specify the Web Service Name and Select Service Program.

Note: On Service program file and Service Program function allows user to choose
file, as in the following example:

Sample Flow

Chapter 5: Web Service Creation 197

Users can also choose function, as in the following example:

5. EDIT FUNCTION DETAILS

Auxiliary details populated.

Sample Flow

198 Building Applications

Note: Any number of Web Service Instances can be created from the EDIT
FUNCTION DETAILS panel. Each Web Service will be associated with the 2E Web
Service function in the panel header.

All the associated Web Services can be viewed using F16 to invoke the WEB
SERVICE INSTANCES panel.

To create a Web Service Instance with a different Web Service name, you should
change the Web Service Name on Edit Function Details, then press F10.

Note: If any of the instances have been installed to a server and the Installed Flag is
set to Y, then the Web Service Name, Service Program File and Service Program
Function all become Output only. This is to ensure that the Web Service details in
the model, and the installed Web Service Instance, are in synch.

6. Create the Web Service Instance (YCRTWS)

Note: See the section New Commands for the command parameter descriptions.

Sample Flow

Chapter 5: Web Service Creation 199

7. Work with Web Service Instances:

A machine name of *CURRENT indicates that the Web Service instance is to be
deployed on the local machine. If you enter any other machine name other than the
local one, the Installed flag will always be set to ?, since the machine is not
available.

You can only take option I - Install for a Web Service Instance with Machine =
*CURRENT. To install Web Service instances to a remote machine, you must use the
Web Service Remote Deployment feature. For further details of this please refer to
the corresponding section in this chapter.

Sample Flow

200 Building Applications

8. Use option I to install a modeled Web Service to a Web Services Server.

9. Use option U to uninstall a modeled WS from a Web Services Server.

Commands

Chapter 5: Web Service Creation 201

10. Use IBM Web Administration interface to start/stop/test deployed Web Service.

http://{your_machine}:2001

Commands

In addition to the install/uninstall functionality in the EDIT FUNCTION DETAILS and WEB
SERVICE INSTANCES panels, the 2E Web Service commands can be invoked from the
command line using the commands listed below:

Command Function

YCRTWS Installs a Web Service instance.

YUNSWS Uninstalls a deployed Web Service instance.

Commands

202 Building Applications

YCRTWS (Create Web Service Instance)

The Create Web Service Instance (YCRTWS) command is used to install a web service to
the IBM Web Services Server that contains an operation to invoke the RPG ILE or COBOL
ILE program specified.

Update model? (UPDMDL)

Specifies if and how the model is updated.

*ADD

New WS instance is added to the model (it must not already exist).

*NO

The model is not updated at all.

*UPDINSSTS

For a WS instance that already exists, the Installed status is updated.

Install to server? (INSTALL)

*YES

The WS is installed to a Web Services Sever. The WS instance name must be
unique to the specified Web Services Server.

*NO

The web services server is not updated at all.

2E WS model file (MDLFIL)

Model-file-name

Specify the name of the 2E WS model file that owns the 2E WS model function.

2E WS model function (MDLFUN)

Model-function-name

Specify the name of the 2E WS model function to which the web service
instance will be associated.

Machine (MACHINE)

Specifies the name of the machine onto which the web service instance will be
deployed.

*CURRENT

Refers to the local machine.

name

Specify the machine name. This can be the local machine or a remote machine.
The machine name is not validated and the machine need not exist on the
local, or indeed any network.

Commands

Chapter 5: Web Service Creation 203

SERVER (char (10))

The name of the web services server in which the service will be installed.

server-name

Specify a web services server name.

SERVICE (char(25))

The name of Web service to be installed.

*PGMOBJ

The program object name will be used.

service-name

Specify the name of the web service to be installed.

PGMOBJ (*PNAME)

The path to the ILE program or service program.

server-name

Specify the path to the ILE program or service program.

USRPRF (*VNM)

The user profile that the Web service will run under.

*USRPRF

The web service will be created to run under the user profile that is invoking
the YCRTWS command.

user-profile

Specify the user profile that the Web Service will run under.

Note: This user profile is granted access to all the Web service files and
directories. If the service user ID is different from the server user ID, the server
user ID must be given *USE authority to the service user ID.

*SRVID

The Web services server user ID is used to run the service.

RTLIBL

A list of libraries, that will be added to the library list prior to invoking the Web
service.

library-list

Specify the list of libraries.

*NOCHG

No user-specified libraries will be added to the run-time library list.

Commands

204 Building Applications

YUNSWS (Uninstall Web Service)

The Uninstall Web Service (YUNSWS) command is used to uninstall a web service from
the IBM Web Services Server that contains an operation to invoke the RPG ILE or COBOL
ILE program specified.

The command can also update the installed status of the WS in the model or delete the
modeled service entirely.

Update model?

This specifies if and how the model is updated.

*DELETE

The WS instance is deleted from the model.

*NO

The model is not updated at all.

*UPDINSSTS

For a WS instance that already exists, the Installed status is updated

Uninstall from server? (UNINSTALL)

*YES

The WS is uninstalled from the Web Services Sever.

*NO

The web services server is not updated at all.

Web Services Server

The name of the web services server from which the service will be uninstalled.

server-name

Specify a web services server name

Web Service

The name of Web service to be uninstalled.

service-name

Specify the name of the web service to be installed.

Web Service Remote Deployment

Chapter 5: Web Service Creation 205

Stop Service?

An indication whether the service should be stopped before an uninstall.

*YES

The service is stopped before uninstall.

*NO

The service is not stopped before uninstall. An error will be returned if the
service is active.

Running YUNSWS will delete or update the record in YWSICTLRFP file, providing
UPDMDL is not *NO.

Web Service Remote Deployment

With Web Service Support in 2E, it is possible to bundle up Web Service instances that
need to be ported and deployed to a remote machine. To do this you will need to use
the Web Service Remote Deployment feature. Use the following commands to utilize
this feature:

YPOPWSIPDD (Populate WSIPDD file)

Web Service Remote Deployment

206 Building Applications

Populates a Web Service Instance Portable Deployment Data file (WSIPDD). Once
populated, a WSIPDD file can be moved to a remote machine, where the related
YEXCWSIPDD (Execute WSIPDD) command can process the file to deploy web service
instances on that remote machine.

Notes:

■ Portable deployment does not require CA 2E or 1E to exist on the remote machine
on which the YEXCWSIPDD command is running. However, the YEXCWSIPDD
command does require certain application objects to exist on the machine on which
the command is running. These objects can be created in a target library using the
YDUPAPPOBJ command parameter, *WS argument. The YEXCWSIPDD command
takes a WSIPDD file as an input.

■ To run this command the YCA/CAWS/UserData and YCA/CAWS/ProdData/YQSHLOG
folders need to exist in the IFS. Take extra care with this in the case where the
command is being used on a remote machine that does not have 2E installed.

For more information on how to restore the YCA structure, see the section "Web
Services Support" in the Installation Guide.

Web Service Remote Deployment

Chapter 5: Web Service Creation 207

The YPOPWSIDD command takes a model list as input. The model list is processed and
for each function of type Web Service, additional processing occurs (items in the list that
are not Web Service functions are ignored). For each Web Service function, all its web
service instances are processed. Where a web service instance is not excluded due to
filtering arguments on the YPOPWSIPDD command, an instance record will be created in
the target WSIPDD file.

Note: The target WSIPDD file is always called YWSIPDDRFP, but the location is specified
on the WSIPDDLIB parameter.

The Target parameters on the YPOPWSIPDD command allow the modelled web service
instance data to be overridden when populated to the WSIPDD file.

YEXCWSIPDD (Execute WSIPDD file)

This command executes a Web Service Instance Portable Deployment Data file
(WSIPDD), to deploy web service instances. The WSIPDD file should have been
populated by the CA 2E YPOPWSIPDD command. Typically the WSIPDD file is then
moved to a different machine to be executed by the YEXCWSIPDD command.

Note: Portable deployment does not require CA 2E or 1E to exist on the remote
machine, on which the YEXCWSIPDD command is running. However, the YEXCWSIPDD
command does require certain application objects to exist on the machine on which the
command is running. These objects can be created in a target library using the
YDUPAPPOBJ command (see the *WS argument for the DUPOPT) parameter. The
YEXCWSIPDD command takes a WSIPDD file as an input.

Web Service Remote Deployment

208 Building Applications

Note: The input WSIPDD file is always called YWSIPDDRFP, but the location is specified
on the WSIPDDLIB parameter.

For each record in the WSIPDD file with an ACTION flag of 'I' a web service instance will
be deployed by the YCRTWS command. The Target parameters on the YEXCWSIPDD
command allow the WSIPDD web service instance data to be overridden when
deploying.

Note: If a web service instance is successfully deployed as a result of the YEXCWSIPDD
command instance record's Action flag is updated to BLANK. The YINZWSIPDD
command can be used to reset the WSIPDD Action flag.

YINZWSIPDD (Initialise WSIPDD file)

The YINZWSIPDD command can be used to reset the Action flag on records in a WSIPDD
file. See the YEXCWSIPDD command for more information.

To bundle up and deploy your remote Web Service instances

1. Create the Web Service Application objects using YDUPAPPOBJ

There are a number of objects that need to be created in order to use Web Service
Remote Deployment. These should be created by running the YDUPAPPOBJ
command as follows:

References

Chapter 5: Web Service Creation 209

You can either create these objects into the Model Generation library, or into a new
library to be used for deployment.

2. Build a model list containing all the Web Service functions whose modeled Web
Service instances you want to portably deploy.

3. Use the YPOPWSIPDD (Populate WSIPDD file) command to populate the target
YWSPDD file.

See the command description above for details.

4. Copy the library that contains the WSIPDD file (this will be the library that you
created your WS application objects into) to the remote machine.

5. On the remote machine, use the YEXCWSIPDD (Execute WSIPDD file) to deploy each
of the Web Service instances in the portable deployment file. See command
description above for details.

The YEXCWSIPDD command calls the YCRTWS command for each record in the portable
deployment file, which installs the WS Instance on that machine. If a Web Service
already exists on the machine, the deployment for that Instance record will fail, and the
Action field will be left as 'I'.

References
■ IBM information Center

■ Integrated Web Services for i

■ Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language", 26
June 2007, W3C

■ Web Services Architecture, W3C Working Group Note", 11 February 2004, W3C

Standards and Web Services

Chapter 6: IBM i Database Trigger Support 211

Chapter 6: IBM i Database Trigger Support

In the i OS operating system, a trigger is a set of actions that execute automatically
when a program performs a specified change operation on a specified database file. The
change operation can be an insert, update, delete or read high level language (HLL)
statement in an application program. You can design triggers to do almost
anything—some uses for triggers include:

■ Enforcing business rules

■ Validating input data

■ Writing to other files for audit trail purposes

Some benefits of using triggers are:

■ Faster application development: Because triggers are stored in the database,
actions performed by triggers do not have to be coded in each database application

■ Global enforcement of business rules: A trigger can be defined once and then
reused for any application using the database

■ Easier maintenance: If a business policy changes, it is necessary to change only the
corresponding trigger program instead of each application program

■ Improve performance in client/server environment: All rules are run in the server
before returning the result

This section contains the following topics:

Implementing Triggers (see page 212)
CA 2E Model Support (see page 216)
Model to Run-Time Conversion (see page 227)
Run-Time Support (see page 227)

Implementing Triggers

212 Building Applications

Implementing Triggers

A trigger is attached to a file using the IBM Add Physical File Trigger (ADDPFTRG)
command. This command specifies the database change operation that must occur for
the trigger to fire. It also specifies the time the trigger should fire relative to the
database change operation (before or after the database change has occurred). A
trigger program defines the set of actions to perform when the trigger is fired. Trigger
programs are named in the ADDPFTRG command.

When an application program makes a change to the data in a database file, i OS Data
Management (DM) checks for the existence of a trigger for the file. If a trigger exists,
DM then calls the specified trigger program. The application program never explicitly
calls the trigger program.

IBM defines the parameters that must be passed by DM to all trigger programs as
follows:

■ Parameter 1: Trigger buffer

■ Parameter 2: Trigger buffer length

The trigger buffer parameter consists of a fixed-length portion and a variable-length
portion. The fixed-length portion contains various fields that describe the trigger. The
fixed-length portion contains a series of offset/length pairs that define where the old
record format (ORF) and the new record format (NRF) are stored within the
variable-length portion.

The variable-length portion contains the ORF and NRF values themselves as well as
null-byte maps for each record format. The trigger buffer length parameter defines the
overall length of the trigger buffer parameter. With these parameters, the trigger
program has access both to information about the trigger itself and also full details of
the data being updated, deleted, inserted, or read.

In addition to performing additional processing to that defined in the application
program that is changing the database, a trigger can actually cancel the database
change and signal to the application program that the change was unsuccessful. Under
some circumstances, the trigger can also change the data that is being written to the
database, overriding the data used in the update statement in the application program.

Implementing Triggers

Chapter 6: IBM i Database Trigger Support 213

Typical Trigger Implementation

User-written trigger programs typically perform semi-generic processing to retrieve the
file-specific ORF and NRF from the trigger buffer and move them into named structures
prior to performing trigger-specific processing. This retrieval processing often involves
relatively high complexity. Such processing can require the use of relatively esoteric
functionality like pointer-based variables and dynamic memory operations not normally
found in most HLL programming.

As a result of IBM’s implementation of triggers (and particularly the way in which DM
passes parameters to the trigger program), developers typically write separate trigger
programs for each database file. A single trigger program may be used for more than
one trigger on that file, however.

This implementation also makes it difficult to test trigger programs, since any
test-harness must exactly duplicate the trigger buffer parameter specific to the file to
which the trigger is attached.

In addition, the actual insertion of a trigger into the database (either initially or
following a change in a trigger) requires multiple file locks on the database file and on all
related access paths, often requiring the database to be taken offline during trigger
implementation.

The following diagram shows the structure of a typical (non-CA 2E) trigger showing how
the various components interact.

The processing flow is as follows:

1. Application program (APP) executes a database change statement (an INSERT,
DELETE or UPDATE), resulting in a low-level call to i OS Data Management (DM).

2. DM calls the trigger program (TRG) specified for the trigger.

3. TRG performs user-defined processing and then returns control to DM.

4. If DM receives an error code from TRG (indicating that an error occurred during the
processing in TRG), it does not update the file and instead sends the error code
back to APP. Otherwise, it updates the file and returns control to APP.

Implementing Triggers

214 Building Applications

CA 2E Trigger Implementation

The CA 2E trigger implementation replaces multiple user-written, file-specific trigger
programs with a single, generic file-independent Trigger Router that you can specify as
the trigger program for any trigger over any database file. The Trigger Router uses a
rule-based system held in a Trigger References File to call one or more further Trigger
Functions that have previously been created in the CA 2E model. These functions are
called either directly or asynchronously through a separate Trigger Server. You can
specify each Trigger Function to perform any user-defined processing.

The parameters passed from the Trigger Router to a Trigger Function are simplified
file-specific individual parameters. They represent the various elements of the trigger
buffer parameter that was passed from DM to the Trigger Router. This simplification
allows a test-harness to be generated in CA 2E very easily.

This implementation is also flexible enough to allow additional trigger functionality to be
added, changed and tested very easily, simply by creating new Trigger Functions and
updating the Trigger References File to link the Trigger Function to the trigger.

Note: If the Trigger Router routes a Trigger Function to the Trigger Server, the server
cannot return an error code to the Trigger Router (and thence to the application
program). Consequently, any processing within such Trigger Functions must be
non-critical, since any failure within this processing will not be able to roll back the
database change.

The following diagram shows the structure of a CA 2E trigger showing how the various
components interact.

Implementing Triggers

Chapter 6: IBM i Database Trigger Support 215

CA 2E Model Support

216 Building Applications

The processing sequence for a CA 2E trigger is as follows:

1. An application program (APP) executes an INSERT, UPDATE or DELETE statement,
resulting in a low-level call to i OS Data Management (DM).

2. DM calls the Trigger Router (RTR) specified for the trigger.

3. RTR checks the Trigger References File to see if there are any Trigger Functions
(FUN) to call for this trigger. There may be more than one FUN that should be called
for a trigger. For each FUN record, if the FUN calling method is 'CALL', process steps
3.1.1. through 3.1.3. If the FUN calling method is 'DTAQ', process steps 3.1.4.
through 3.1.5.

a. RTR calls FUN directly, passing the pre-determined setoff parameters specific
to the database file being processed

b. FUN performs user-defined processing and returns control to RTR. If processing
is unsuccessful, FUN returns error code to RTR

c. If RTR receives an error code from FUN, it does not process any more FUN
records, but returns the error code to DM. Otherwise, RTR returns to step 3 to
process any subsequent FUN records in the Trigger References File

d. RTR places an entry on the Trigger Data Queue. The data queue entry contains
the same parameters as would be passed in a CALL to FUN.

e. RTR returns to step 3 to process any subsequent FUN records in the Trigger
References File.

4. If DM receives an error code from TRG, it does not update the file and instead sends
the error code back to APP. Otherwise, it updates the file.

There are three separate sections to the CA 2E trigger support:

■ CA 2E Model Support

■ Model to Runtime Conversion

■ Run Time

CA 2E Model Support

Model Support provides the ability, within the CA 2E model environment, to create and
change Trigger Functions, to assign triggers to CA 2E database file definitions, and to
manage Trigger Functions. This section contains information about:

■ Administrative Tasks

■ Creating Trigger Functions

■ Editing Trigger Functions

■ Using Trigger Commands

CA 2E Model Support

Chapter 6: IBM i Database Trigger Support 217

Performing Administrative Tasks

Initially, an administrator needs to run the YDUPAPPOBJ command specifying
DUPOPT(*ALL) CRTOPT(*ALL). This copies the required application objects (including an
empty copy of the Trigger References File YTRGCTLP) into any existing application
libraries. Once you do this, no further administration tasks are required.

Creating Trigger Functions

You can create a Trigger Function by specifying either "Trigger Function" or "TRGFUN"
for the Function Type, in exactly the same way that you would create any other CA 2E
function. When you enter a Trigger Function using the Action Diagram Editor (ADE), you
can include any processing that you would include in any other non-interactive function
(including calling any other non-interactive function). You have access to all the *Trigger
Control Data and ORF parameters as input-only, and the NRF and return code
parameters as input/output.

When you create a Trigger Function (TRGFUN), the CA 2E model automatically creates a
file-specific parameter list for the function. The Trigger Router passes the list to the
function as follows:

1. Return code.

2. Trigger Control Data structure (from the *Trigger Control Data system file).

3. Old record format (ORF) structure (from the owning file).

4. New record format (NRF) structure (from the owning file).

The Trigger Control Data structure contains fields retrieved from the parameters passed
by Data Management to the Trigger Router, as well as some derived fields, as follows:

Field Description

*Trigger File Database file being updated

*Trigger File Library Library of database file being updated

*Trigger File Member Member of database file being updated

*Trigger Event Database change event which caused trigger to fire

*Trigger Time Trigger time relative to database change

*Trigger Commit Level Commitment control level of database file being
updated

*Trigger Timestamp Timestamp of trigger firing

*Trigger Record Length Length of database file record format

*Trigger Job Name Name of job which updated database file

CA 2E Model Support

218 Building Applications

Field Description

*Trigger Job User User of job which updated database file

*Trigger Job Number Number of job which updated database file

*Trigger App Program Program which updated database file

*Trigger App Library Library of program which updated database file

Note: The *Trigger Job fields are included to allow asynchronous Trigger Function calls
to determine the name of the job that actually changed the database file, rather than
using the job fields from the Trigger Server. The *Trigger App Program and *Trigger App
Library fields allow Trigger Functions to make processing decisions based on the
application program that caused the file change. In r 8.1, the *Trigger App Library is not
currently used and is passed as blank to the Trigger Function.

CA 2E Model Support

Chapter 6: IBM i Database Trigger Support 219

Editing Trigger Functions

Once you create a Trigger Function, you can edit it using the Action Diagram Editor.
From the EDIT FILE DETAILS panel, you can access a new EDIT FILE TRIGGER DETAILS
panel to link Trigger Functions to a specific trigger for the owning file. This
cross-reference link information is held in a CA 2E model file called YFILTRGRFP (MDL
File Triggers) in an internal model-level format.

Press F18 from Edit File Details screen to get Edit File Trigger Details screen. Use this
screen to link Trigger Functions to triggers based on the owning file.

EDIT FILE TRIGGER DETAILS

File name : cat
Attribute : REF
Source Library : UUA1SAMPLE
Distributed : N
Assimilated physical . . .:

D=Delete F=Action Diagram
? Time Event Cmt Seq Function
 A/B D/I/R/U Ctl
 Y/N
_ A D N 1 Trg fun – after, del________
_ A I N 1 Trg fun 2 – after ins_______
_ _ _ _ __ ___________________________
_ _ _ _ __ ___________________________
_ _ _ _ __ ___________________________
_ _ _ _ __ ___________________________
_ _ _ _ __ ___________________________
_ _ _ _ __ ___________________________
_ _ _ _ __ ___________________________

 F3=Exit F4=Prompt F5=Refresh

Within the Display Model Usages screen, any trigger references specified in the model
(that is, any Trigger Functions are linked to a trigger on the file over which they were
created from the EDIT FILE TRIGGER DETAILS screen) are displayed with reason
*TRGREF.

Gen Objs : 1 Display Model Usages Model: <name>

CA 2E Model Support

220 Building Applications

Total . : 2 Level : 001
Object . : Trg fun – after, del Owner .: cat
Type . . : FUN Attribute . . : RPG Exclude system objs . *YES
Scope . . *NEXT___ Filter . . *ANY___ Current Objects only . *YES
Object . . __________________________ Type . .____ Reason . . *FIRST_

2=Edit 3=Copy 4=Delete object 5=Display 8=Details 10=Action diagram
13=Parms 14=GEN batch 15=GEN interactive 16=Y2CALL

Opt Object Typ Atr Owner Lvl Reason
__ cat FIL REF 001 *TRGREF
__ Trg FUN RPG cat 000 *OBJECT

F3=Exit F5=Refresh F9=Command line F12=Previous F15=Top level
F16=Build model list F21=Print list F22=File locks F23=More options

CA 2E Model Support

Chapter 6: IBM i Database Trigger Support 221

Editing Trigger Parameters

When a new TRGFUN (Trigger Function) is created, the parameters are automatically
derived from the based on file. If a database change occurs, however, it is necessary to
visit the parameter details screen for the affected file. This automatically corrects the
parameters for the function as shown in the following example. No other action is
needed.

 EDIT FUNCTION PARAMETER DETAILS <model name>

 Function name. . : Trg fun – after, del Type : Trigger function

 Received by file . : cat Acpth: Physical file

 Parameter (file) . : cat Passed as: RCD

 ? Field Usage Role Flag error

 cat code I MAP

 cat date I MAP

 cat status I MAP

 SEL: Usage: I-Input, O-Output, B-Both, N-Neither, D-Drop.

 Role: R-Restrict, M-Map, V-Vary length, P-Position. Error: E-Flag Error.

 F3=Exit

Parameter ‘cat status’ has been added for this trigger function.

Using Trigger Commands

The following commands affect Trigger Functions, Trigger Servers, and Trigger
References:

CA 2E Model Support

222 Building Applications

Convert Trigger Data (YCVTTRGDTA)

The Convert Trigger Data (YCVTTRGDTA) command allows users to convert data from
the CA 2E model internal file YFILTRGRFP into data in the run-time Trigger References
File YTRGCTLP. The parameters for the YCVTTRGDTA command are:

Library for Data Model (MDLLIB)

This parameter is the name of a library containing the name of a design model from
which the condition values are converted. The possible values are:

■ *MDLLIB\-—Use the first model library found in the library list

■ *CURLIB—Use the current library to invoke the job

Library for Generation (GENLIB)

Note: This library must contain the trigger runtime objects. These can be duplicated
into the library by specifying the library as the target of the YDUPAPPOBJ command
specifying DUPOPT(*TRG).

This parameter is the name of the library into which the command places converted
values. The possible values are:

■ *TRGLIB— Use the trigger runtime library named by the YTRGLIB model value
in the model library.

■ *GENLIB- Use the source generation library named by the YGENLIB model value
in the model library.

■ *CURLIB—Use the current library to invoke the job

■ library-name - Specify the library into which converted values are placed.

Triggers to Convert (CVTOPT)

This parameter determines which trigger references should be converted from the
model specified in the MDLLIB parameter into run-time trigger reference data in
the YTRGCTLP trigger reference file in the library specified in the GENLIB parameter.

■ *NEW—Only converts trigger references that do not currently exist in the
run-time YTRGCTLP trigger reference file

■ *ALL—Converts all trigger references in the model specified in the MDLLIB
parameter into run-time trigger reference data. If any of the trigger references
already exist in the YTRGCTLP trigger reference file, they are overwritten.

■ *MDLLST—Checks the model list specified in the MDLLST parameter and only
converts trigger references for Trigger Functions specified in the model list that
were explicitly selected. If any of the trigger references already exist in the
YTRGCTLP trigger reference file, they are overwritten.

Model Object List (MDLLST)

Note: This parameter is ignored unless CVTOPT(*MDLLST) is specified.

CA 2E Model Support

Chapter 6: IBM i Database Trigger Support 223

This parameter is the qualified name of the model object list to use. Trigger
references are converted for any Trigger Functions existing in the list and that were
explicitly selected. Any other object types in the list, or any Trigger Functions that
were not explicitly selected, are ignored.

Possible model object list name values are:

■ *MDLPRF—Special value meaning that the model object list name is retrieved
from the user profile extension record for the current user is used as the model
object list name.

■ *USER—Special value meaning that the user profile name of the current user is
used as the model object list name.

model-object-list-name

The name of the model object list to use.

Possible library values are:

■ *MDLLIB—Special value meaning that the first model library in the current
library list is used as the library for the object list

■ library-name—Name of the model library that contains the model object list

CA 2E Model Support

224 Building Applications

Start Trigger Server (YSTRTTRGSVR)

The Start Trigger Server (YSTRTTRGSVR) command allows you to start one or more
Trigger Server jobs. Once started, these jobs monitor the YTRIGGERQ data queue in the
library specified in the command. The YSTRTRGSVR command parameters are as
follows:

Trigger Data Queue Library (TRGLIB)

Specifies the name of the library containing the CA 2E Trigger Data Queue,
YTRIGGERQ. If a Trigger Data Queue does not exist in the specified library, one is
created.

Job Description (JOBD)

This parameter specifies the job description to use for the CA 2E Trigger Server
job(s).

Since a Trigger Server runs as a continuous batch process until it is ended with the
End Trigger Server (YENDTGRSVR) command, the processor overrides the job
description you choose to use JOBQ(QSYS/QSYSNOMAX), to ensure that the Trigger
Server is submitted using a job queue that allows multiple active jobs. All other job
definition attributes are taken from the job description specified in this parameter.

The possible values are:

*USRPRF

The job description for the user profile used by the job that is currently running
is used for the trigger server job.

job-description-name

Specify the name (library-name/job-description-name) of the job description
used for the trigger server job.

Number of Servers (NBRSVR)

Specifies the number of Trigger Server jobs that should be started by this command.
All Trigger Server jobs use the same job description (as specified in the JOBD
parameter) and will all monitor the same Trigger Data Queue YTRIGGERQ in the
library specified in the TRGLIB parameter.

Since the Trigger Data Queue is a FIFO (first-in, first-out) data queue, if multiple
Trigger Server jobs are running concurrently, each trigger request will be selected
from the Trigger Data Queue by the first available Trigger Server job. There is thus
no guarantee of the order in which the trigger requests will be processed, since this
depends on many factors affecting the speed at which each Trigger Server job runs.

Consequently, if trigger requests must be processed in the same order in which the
original trigger fired, you should process the trigger requests synchronously as a
direct call by the Trigger Router, or you should ensure that only a single Trigger
Server job monitors a specified Trigger Data Queue.

CA 2E Model Support

Chapter 6: IBM i Database Trigger Support 225

Running more than one Trigger Server job concurrently can improve system
performance where many asynchronous trigger requests can appear at once.
However, it will not affect the performance of the job in which the trigger was fired.

The values are:

*DFT

A single Trigger Server job is started to monitor the Trigger Data Queue in the
library specified in the TRGLIB parameter.

*MAX

9 Trigger Server jobs are started to monitor the Trigger Data Queue in the
library specified in the TRGLIB parameter. The maximum number of Trigger
Server jobs that can be started is 99, but we retained the value for this
parameter as 9 to preserve existing functionality.

Number-of-trigger-server-jobs

Between 1 and 99 Trigger Server jobs can be started to monitor the Trigger
Data Queue in the library specified in the TRGLIB parameter.

Clear Data (CLEAR)

Specifies whether data should be cleared from the Trigger Data Queue prior to
starting the Trigger Server job(s).

The possible values are:

*YES

Any data queue entries on the YTRIGGERQ Trigger Data Queue is removed
before the specified number of Trigger Server jobs are started

*NO

Any data queue entries on the YTRIGGERQ Trigger Data Queue are not
removed before the specified number of Trigger Server jobs are started.
Consequently, they are processed immediately when the Trigger Server jobs
start

End Trigger Server (YENDTRGSVR)

The End Trigger Server (YENDTRGSVR) command allows users to end one or more
previously started Trigger Server jobs. The parameters to the YENDTRGSVR command
are as follows:

Trigger data queue library (TRGLIB)—Specifies the name of the library containing the CA
2E Trigger Data Queue YTRIGGERQ

CA 2E Model Support

226 Building Applications

Work with Trigger References (YWRKTRGREF)

The Work with Trigger References (YWRKTRGREF) command allows users to display,
add, delete or change Trigger Reference data. This is the data held in the Trigger
References File that links specific database triggers to one or more Trigger Functions.
Data is initially placed into this file because the YCVTTRGDTA command was run.

The YWRKTRGREF command parameters are as follows:

Trigger File (TRGFIL)

Specifies the name of the physical file you want to edit CA 2E trigger references.
The possible values are as follows:

■ *ALL—Display all CA 2E trigger references

■ trigger-file-name - Display the CA 2E trigger references for the specified file
only

Reload Trigger References (YRLDTRGREF)

The Reload Trigger References (YRLDTRGREF) command forces the Trigger Router
(YTRIGGER) to reload its internal memory with the latest data from the Trigger
References File (YTRGCTLP).

Trigger Reference Data in the Trigger Router

When the Trigger Router is first invoked within a job (because a trigger fires and the
Trigger Router is defined as the trigger program), it loads the data from the Trigger
References File into internal memory. On subsequent invocations within the same
job, it uses the data it stored in memory rather than re-accessing the Trigger
References File.

This processing ensures the best possible performance, since file I/O to the Trigger
References File is performed only once during a job, rather than every time the
Trigger Router is invoked. However, if changes are made to the data in the Trigger
References File, these changes will not be reflected in the data used by the Trigger
Router.

If you have made changes to the data in the Trigger References File you can execute
this command to ensure that the next time the Trigger Router is invoked, it will use
the changed data.

Note: Since each job has its own instance of the Trigger Router (with its own
internal memory), you must run this command within the job that caused the
Trigger Router to be invoked.

Model to Run-Time Conversion

Chapter 6: IBM i Database Trigger Support 227

Model to Run-Time Conversion

This process converts a CA 2E model trigger definition into a trigger reference held in
the Trigger References File. The Trigger Router interrogates this file when a trigger fires
to determine which Trigger Functions to call.

You can convert model data in the MDL File Triggers file YFILTRGRFP into run-time data
in the Trigger References File YTRGCTLP. This conversion process involves expanding
model references into CPF (i OS) object names. The conversion process can also include
the actual creation of the triggers over the database files (specifying the Trigger Router
as the trigger program in each case).

A copy of the Trigger References File is shipped in the CA 2E base product library and
can be copied into each application library using the CA 2E YDUPAPPOBJ command.

Run-Time Support

This section covers all of the run time aspects of trigger support within CA 2E-generated
application programs, including the implementation of the Trigger Router, Trigger
Server and Trigger References File.

There are two elements to the CA 2E trigger run-time support:

■ Trigger Router

■ Trigger Server

Trigger Router

When an application program updates a database file and the file has a trigger attached
to it that specifies the Trigger Router as the trigger program, the Trigger Router checks
for any records in the Trigger References File for the trigger. For each record found, it
takes the appropriate action by directly calling the specified Trigger Function or sending
a request for the Trigger Function to be called by the Trigger Server, by passing the
Trigger Function parameters as an entry in the Trigger Data Queue.

The Trigger Router is implemented specifying ACTGRP(*CALLER) and USRPRF(*OWNER),
according to IBM recommendations. All *PUBLIC access to the Trigger Router is
*EXCLUDE.

Run-Time Support

228 Building Applications

Trigger Server

When the Trigger Server starts, it looks for entries to appear on the Trigger Data Queue.
When an entry appears (placed there by the Trigger Router), the Trigger Server calls the
specified Trigger Function and then returns to monitor mode.

DISPLAY CONVERT MODEL DATA MENU

 1. Convert model messages to database file.

 2. Convert condition values to database file.

 3. Convert distributed files to database file.

 4. Convert trigger data to database file.

Option: _

F3=Exit F6=Messages F8=Submitted jobs F9=Command line

Trigger Runtime Externalization

The 2E trigger support allows you to define a separate trigger runtime library, using the
YDUPAPPOBJ command. This simplifies the copying of all trigger-related objects from
your development machine to a production machine. The trigger runtime library
contains all the objects required for trigger support.

The model value YTRGLIB (Trigger runtime library) is used to specify the name of the
library in which the model trigger references are copied using the YCVTTRGDTA
command. Before running the YCVTTRGDTA command, you must copy the trigger
runtime objects into the YTRGLIB library using the YDUPAPPOBJ command, specifying
DUPOPT(*TRG). You can assign a special value of *GENLIB to YTRGLIB model value to
specify that the model source generation library will be used. By default, YTRGLIB is
shipped with a value of *GENLIB.

Note: Multiple models can use the same trigger runtime library.

Chapter 7: Modifying Function Options 229

Chapter 7: Modifying Function Options

This chapter identifies the specific features of the standard function options that allow
you to customize the functions in your model. This chapter also instructs you on how to
specify these options.

This section contains the following topics:

Understanding Function Options (see page 229)
Specifying Function Options (see page 229)
Identifying Standard Function Options (see page 230)
Identifying Standard Header/Footer Function Options (see page 243)

Understanding Function Options

When a new function is defined, default options are set according to the function type
and the model values. However, if your application requires it, you can change the
default. You use the Change Model Value (YCHGMDLVAL) command to set the default
value for certain options.

For more information on function types and the function options that apply to each
type, see the chapter "Defining Functions."

Specifying Function Options

Function options are specified using the Edit Function Options panel. The options
available depend on the function type.

Note: Some function options cause a corresponding section of the function’s action
diagram to be omitted or included.

For more information on action diagrams, see the chapter, "Modifying Action
Diagrams."

Identifying Standard Function Options

230 Building Applications

Choosing Your Options

Use the following instructions to specify your function option choices.

1. Zoom into the file. At the Edit Database Relations panel, type F next to the selected
file and press Enter. The Edit Functions panel appears.

2. Zoom into the function. Type Z next to the selected function and press Enter. The
Edit Function Details panel appears.

Note: You can also display this panel by entering option 2 for the selected function
on the Edit Model Object List panel.

3. Press F7 to select options. The Edit Function Options panel appears.

You can press F10 to toggle between a display of options available for the selected
function and all available options. The current value of each function option is
shown highlighted.

Press F5 to view a list of the available standard header/footer functions. You use
this display to explicitly assign a standard header/footer function to your function.

4. Select your options. Make your function option selections and press Enter. The Edit
Function Details panel reappears.

Identifying Standard Function Options

The standard function options control the features of the standard functions. The
following pages describe the standard function options and their available features.

Database Changes

The database changes function options determine whether the program provides add,
change, and delete capabilities. You can select a combination of these features.

For edit type functions, all three features default to Yes. This means that, by default, all
edit type functions allow add, delete, and change capabilities.

Create

This option specifies whether the function allows you to add new records to the
database files on which the function is built.

■ If Y is specified, the user can add database records with the function

■ If N is specified, the user cannot add database records with the function

Identifying Standard Function Options

Chapter 7: Modifying Function Options 231

Change

This option specifies whether the function allows you to change existing records on the
database files on which the function is built.

■ If Y is specified, you can change database records

■ If N is specified, you cannot change database records

Delete

This option specifies whether the function allows you to delete existing records from the
database files on which the function is built.

■ If Y is specified, you can delete database records with the function

■ If N is specified, you cannot delete database records with the function

Display Features

The display features function options determine whether a function should include such
features as a subfile selector column or a confirm prompt after data entry.

Confirm

This option specifies whether the function prompts for confirmation before updating
the database files. A confirmation prompt appears at the bottom of the panel on which
you can specify yes or no.

■ If Y is specified, the function prompts the user for confirmation before updating the
database files

■ If N is specified, the function updates the database files without prompting for user
confirmation

Identifying Standard Function Options

232 Building Applications

Initial Confirm Value

This option specifies the initial value that the confirmation prompt shows. This may be Y
or N. The end user only needs to press Enter to accept the default value for newly
created functions as specified by the YCNFVAL model value. This option only applies if
the Confirm option is set to YES.

■ If Y is specified, the initial confirmation prompt value is Y

■ If N is specified, the initial confirmation prompt value is N

■ If M is specified, the YCNFVAL model value is used

Note: If you have a National Language version of the product, the initial values reflect
the national language version.

Standard Header/Footer Selection

Press F5 at the Function Options panel to select a non-standard header/footer for your
function's device layout.

If Action Bar, What Type?

If the selected header/footer has an action bar, this option specifies the type of action
bar to display. This option is available only for NPT generation.

■ If A is specified, display a CA 2E action bar.

■ If D is specified, display a DDS menu bar.

■ If M is specified, the YABRNPT model value determines the type of action bar to
display. Valid model values for YABRNPT are A or D.

Subfile Select

This option specifies, for functions that have subfiles, whether the subfile is to have a
selection column on the left side of the function.

■ If Y is specified, the subfile has a selection column

■ If N is specified, the subfile does not have a selection column

Note: If Yes is specified for the Delete option, a subfile selection column must be
specified.

Identifying Standard Function Options

Chapter 7: Modifying Function Options 233

Subfile End Implementation

This option specifies, for functions that have subfiles, whether the + sign or More. . .
displays in the lower right location of the subfile indicating that the subfile contains
more records.

■ If P is specified, a + sign indicates that the subfile contains more records. This is the
shipped default.

■ If T is specified, More. . . indicates that the subfile contains more records. Bottom
displays to indicate that the last subfile record is displayed.

Dynamic Program Mode

This option specifies whether the function automatically determines the initial mode of
execution (add or update). This is based on whether records are present in the file. If
there are any restrictor parameters or selection criteria, the records present are
checked against the criteria.

■ If N is specified, the initial program mode is fixed

■ If Y is specified, the initial program mode is set dynamically

Exit After Add

This option specifies whether the function exits after addition of a new record.

Exit After Add is available only on Edit Record (EDTRCD, EDTRCD2, and EDTRCD3)
functions.

■ If Y is specified, you exit the program after successfully adding a record. You can use
this option when the EDTRCD function is called from another function

■ If N is specified, you do not exit the program after adding a record, except when
Bypass Key Screen = Yes and the key is defined as an Input Restrictor parameter

Repeat Prompt

This option specifies whether the prompt redisplays after user processing of accepted
prompt values.

Repeat Prompt is available only on Prompt Record (PMTRCD) functions that have
validation of prompt and user data.

■ If Y is specified, the prompt redisplays

■ If N is specified, the prompt does not redisplay

Identifying Standard Function Options

234 Building Applications

Bypass Key Screen

If all key fields are supplied as restrictor parameters, this option specifies whether the
key screen is bypassed (not displayed) before the detail panel . The Bypass Key Screen
function option is available only on Edit Record (EDTRCD, EDTRCD2, and EDTRCD3)
functions.

■ If Y is specified and all key fields are non-blank at function execution time, the key
screen is bypassed

■ If N is specified, the key screen is not bypassed

Notes:

■ Whenever the full key is passed into any EDTRCD, the key screen is bypassed
even when Bypass Key Screen is N. The key fields do not need to be restrictor
parameters for this to happen.

■ If Bypass Key Screen is specified, all key field values must be supplied as
restrictor parameters to bypass the display of the key screen. If key field values
are not supplied as restrictor parameters, the key screen displays even though
this option is Yes.

Post Confirm Pass

This option specifies whether the function is to re-read the database file and to update
the subfile after confirmation; for example, to calculate line values based on totals.

If post confirm pass is specified, an additional user point is added to the function.

■ If Y is specified, the function carries out a post confirm pass of the subfile

■ If N is specified, the function does not carry out a post confirm pass of the subfile

Send All Messages Option

This option specifies whether an error message is sent to the message subfile at the
bottom of the panel for the first error found, or for each error found. In either case, any
outstanding messages are cleared each time Enter is pressed.

■ If Y is specified, send all error messages to the message subfile at the bottom of the
panel.

■ If N is specified, send only the first error message.

■ If M is specified, use the value of the YSNDMSG model value. Valid model values for
YSNDMSG are *YES and *NO.

Identifying Standard Function Options

Chapter 7: Modifying Function Options 235

Exit Control

The exit control function options determine the execution characteristics of a program,
such as:

■ Whether or not it terminates or remains invoked but inactive

■ Whether or not it reclaims resources as it terminates

■ Whether messages are copied back to the calling program on termination

Reclaim Resources

This option specifies whether the i OS Reclaim Resources (RCLRSC) command is to be
invoked when the program completes execution.

The command closes down any other programs and/or files that have been called
and/or opened by the program, and reallocates their storage.

Reclaim Resources is valid only on external functions (functions implemented as
programs in their own right). It is ignored for functions implemented in COBOL since this
command is not valid for COBOL programs.

■ If Y is specified, reclaim resources are invoked.

■ If N is specified, reclaim resources are not invoked.

Closedown Program

This option specifies whether the RPG Last Record Indicator is set on when the program
finishes execution.

■ If Y is specified, all files are closed and the program is shut down

■ If N is specified, all files remain open and a subsequent call is faster and performs a
full program initialization

Notes:

■ In either case, all internal variables are initialized to blanks and zeros on each
call. If closedown is N, arrays are not cleared. This permits arrays to be used to
store WRK variables. The PGM context variable *INITIAL CALL is available to
determine if this is a first time subsequent call.

■ COBOL has no direct equivalent of the RPG Last Record Indicator. The top-level
program initiates the Run Unit. All programs called from this top program
remain in the Run Unit until the top-level program itself closes down.

Identifying Standard Function Options

236 Building Applications

Copy Back Messages

This option specifies whether any messages outstanding on the program’s message
queue are copied to the previous program’s message queue when the program
terminates. The default value for new functions is specified by the YCPYMSG model
value.

■ If Y is specified, messages are copied back to the calling program’s message queue.

■ If N is specified, messages do not copy back to the calling program’s message
queue.

■ If M is specified, the model default is used. Valid model values for YCPYMSG are
*YES and *NO.

Commitment Control

These function option values determine the commitment control regime for a program.

Using Commitment Control

This option specifies whether the program that implements the function runs under i OS
Commitment Control and, if so, whether it contains the main commit points. i OS
commitment control provides a means of automatically grouping a number of database
updates into a single transaction for the purposes of recovery: either all or none of the
updates take place.

If you link together several functions as one transaction group, CA 2E determines where
the commit points are located.

■ If M (*MASTER) is specified, the program runs under commitment control. This
program is the controlling program and contains the commit points. The program
ensures that commitment is active by calling a CA 2E supplied program, Y2BGCTL. It
also includes the appropriate commit points.

■ If S (*SLAVE) is specified, the program runs under commitment control. No
automatic start or commit points are included. You can add commit points by using
the COMMIT built-in function. Commit operations can be performed by a calling
program (typically *MASTER) function.

■ If N (*NONE) is specified the program does not run under commit control.

Note: Any physical (PHY) file updated by programs running under commitment control
must be journaled.

For more information about commitment control and journaling files, see the i OS
Programmers Guide.

Identifying Standard Function Options

Chapter 7: Modifying Function Options 237

Exception Routine

The routine determines how program exceptions (errors) are handled for a program.
This option applies only to RPG. It is not supported by COBOL/400.

Generate Exception Routine

This option specifies whether code for an exception handling routine (*PSSR) should be
generated in the program that implements the function. This provides an opportunity
for you to add user-defined exception handling. The default value for new functions is
specified by the model value YERRRTN.

■ If Y is specified, source code is generated that implements an error handling
routine. In this case, all files in the program open explicitly using the OPEN
operations. The *PSSR routine contains a call to the CA 2E supplied program,
Y2PSSR. The source for this program is in QRPGSRC in Y2SYSRC and can be adjusted
to supply specific error handling.

■ If N is specified, source code is not generated for an error handling routine.

Generation Options

The generation options determine the generation mode and panel text constants for the
program.

Generation Mode

This option specifies the method of database access used for the functions. Generation
mode is determined by the model value YDBFGEN. You can override this value at the
function level.

■ If D is specified, the database access method is DDS.

■ If S is specified, the database access method is SQL.

■ If A is specified, the access path generation value of the primary access path of the
function is used.

■ If M is specified, the value of the model value YDBFGEN is used. Valid model values
for YDFGEN are *DDS and *SQL.

Identifying Standard Function Options

238 Building Applications

Generate Help

This option specifies whether help should be generated.

■ If Y is specified, help text is generated for this function.

■ If N is specified, no help text is generated for this function.

■ If O is specified, only generate help text for this function; do not generate any of the
function’s other components. You can only specify O for functions with Help Text
for NPT set to U (*UIM).

■ If M is specified, the value of the model value YGENHLP determines whether Help is
generated for this function. Valid model values for YGENHLP are *YES, *NO, and
*ONLY.

Help Type for NPT

This option specifies the type of help text associated with this function when it is
generated as an NPT function.

■ If T is specified, the help text is Text Management (TM). Help text is created in a
source member and processed by the Display Help program.

■ If U is specified, the help text consists of links from the Display File source to an i OS
Panel Group compiled from source containing the i OS User Interface Manager
(UIM) tag language.

■ If M is specified, the model value YNPTHLP determines the type of help text
generated. Valid model values for YNPTHLP are *UIM and *TM.

Generate as a Subroutine

This option specifies, for the EXCINTFUN type, whether to implement the function inline
or as a subroutine.

■ If Y is specified, the EXCINTFUN is implemented as a subroutine.

■ If N is specified, the EXCINTFUN is implemented inline. This is the default.

Identifying Standard Function Options

Chapter 7: Modifying Function Options 239

Share Subroutine

This option specifies whether the generated source for an internal function (subroutine)
is to be shared. This applies to CHGOBJ, CRTOBJ, DLTOBJ, RTVOBJ, and EXCINTFUN
functions types.

■ If Y is specified, generated source for subroutines is shared. In other words, source
code is generated the first time an internal function is called and the source is
reused for all subsequent calls to the function. The interface for the subroutine is
externalized.

■ If N is specified, source code is generated each time an internal function is called.
The interface for the subroutine is internal.

Screen Text Constants

This option specifies the generation mechanism used for screen text.

■ If L is specified, panel literals are hard coded in the device source.

■ If I is specified, panel literals are placed in a message file. For the iSeries, they are
accessed through the DDS MSGID keyword.

■ If M is specified, the value of the YPMTGEN model value is used. Valid model values
for YPMTGEN are *OFF, *LITERAL, and *MSGID.

Execution Location

This option specifies where the function is executed. This option is only valid for
EXCINTFUN and EXCUSRPGM.

■ If S is specified, execute the internal function or user program on the server

■ If W is specified, execute the internal function or user program where the user
point is found

Overrides if Submitted Job

This option specifies the source of SBMJOB parameter overrides when you submit a job
for batch execution from within an action diagram. This option applies only to
EXCEXTFUN, EXCUSRPGM and PRTFIL function types.

■ If * is specified, use the default overrides defined by the ‘*Sbmjob default override’
message attached to the *Messages file in Y2USRMSG

■ If F is specified, use the override defined for the function

■ This feature does not support function calls that contain multiple-instance array
parameters.

Identifying Standard Function Options

240 Building Applications

Environment

The environment options determine the environment in which source code is generated
for the program.

Workstation Implementation

This option specifies whether interactive CA 2E functions are to operate on
non-programmable terminals (NPT) or on programmable workstations (PWS)
communicating with an iSeries host. For programmable workstations, you also specify
the PC run-time environment.

■ If N is specified, the generated code operates on a non-programmable terminal
(NPT) attached locally to the host computer.

■ If G is specified, CA 2E functions are generated for non-programmable terminals
together with a Windows executable running in a Windows environment under
emulation to the host.

■ If J is specified, CA 2E functions are generated for non-programmable terminals
together with a Windows executable running in a Windows environment under
emulation to the host and a Java executable running in a Windows environment
using a Web browser with emulation to the host.

■ If V is specified, CA 2E functions are generated for non-programmable terminals
together with a VisualBasic executable running in a Windows environment under
emulation to the host.

■ If M is specified, use the value of the YWSNGEN model value to determine the type
of workstation. Valid model values for YWSNGEN are *NPT, *GUI, *JVA, *VB.

Note: The values *GUI (G), *JVA (J), and *VB (V) require an interface to GUI products.

Identifying Standard Function Options

Chapter 7: Modifying Function Options 241

Distributed File I/O Control

This option specifies the kind of I/O control to generate for the function. This enables
you to use DRDA to access files on multiple remote relational databases (RDBs). This
option only applies if the function is generated using SQL for the Generation Mode.

Note: SQL access can be used in Generation Mode even if the access paths are
generated using DDS.

■ If S is specified (Synon Control), DRDA is used. The function is driven by the
configuration entries (RDBs) of the function’s default Retrieval access path. The
table of the distributed files is created by executing the YCVTDSTFIL command. The
configuration entries are added/modified using the YWRKDSTFIL command.

Note: Synon Control is not applicable for Print files and Execute External functions.
When Synon Control is specified for these two functions, User Control is used.

■ If U is specified, (User Control), DRDA is used. The function contains distributed
functionality/ capabilities but is not automatically driven by the configuration table
entries. The initial relational database that the application is connected to are the
current relational database unless overridden by action diagram logic that modifies
the PGM context field *Next relational database.

This field can be used within Synon Control to override the default processing.

■ If N is specified, do not generate any distributed functionality for this function. This
is equivalent to *NONE for the YDSTFIO model value.

■ If M is specified, use the value of the YDSTFIO model value to determine the type of
distribution I/O control access. Valid model values for YDSTFIO are *NONE, *USER,
and *SYNON.

For more information on DRDA, see Generating and Implementing Applications in the
chapter "Distributed Relational Database Architecture."

Identifying Standard Function Options

242 Building Applications

Null Update Suppression

This option specifies whether the CHGOBJ function type suppresses the record update
when the before and after images of the record are the same. Use this function option
to override the YNLLUPD model value.

■ If N is specified, CHGOBJ always updates the record.

■ If Y is specified, CHGOBJ checks whether to suppress database update both after
the After Data Read and after the Before Data Update user points. The record is
updated if the before and after images of the record differ.

■ If A is specified, CHGOBJ checks whether to suppress database update after the
After Data Read user point. The record is updated if the before and after images of
the record differ.

■ If M is specified, use the YNLLUPD model value to determine whether CHGOBJ is to
update the record if the before and after images are the same. The valid model
values for YNLLUPD are *NO, *AFTREAD, and *YES.

For more information about:

■ Null update suppression see *Record Data Changed PGM Context, in the chapter
"Modifying Action Diagrams"

■ The CHGOBJ function, see CHGOBJ Database Function in the chapter, "Defining
Functions"

Identifying Standard Header/Footer Function Options

Chapter 7: Modifying Function Options 243

Identifying Standard Header/Footer Function Options

dWhen you create a function with a device design, CA 2E assigns a default standard
header/footer. You can override this default for any function by pressing F5 from the
Edit Function Options panel to display a selection list of all standard header/footer
functions.

The default standard header/footer is determined by the function options defined for
the functions in the standard header/footer shipped file.

For more information and a list of the standard header/footer functions, see Standard
Headers/Footers in the chapter "Modifying Device Designs."

To view the function options for the standard header/footer functions, follow these
steps.

1. At the Edit Database Relations panel, type *S in the object field to display the list of
shipped files beginning with those that begin with S.

2. Type F next to the *Standard header/footer file to display the list of all standard
header/footer functions for the file. Each function contains function options and a
header and footer format for a function panel design.

3. Type Z next to the standard header/footer function you want to view.

4. Press F7 to display the Edit Function Options panel for the selected function.

Standard Header/Footer Function Options

The function options defined for each standard header/footer function apply to the
functions to which the standard header/footer function is assigned.

CA 2E ships predefined standard header/footer functions, but you can also create and
customize your own. The easiest way to do so is to make a copy of one of the standard
header/footer functions and modify the copy.

132 Column Screen

This option specifies whether the display terminal, at which the display is shown, is 132
characters wide.

■ If Y is specified, the terminal supports 132-character displays

■ If left Blank, the terminal supports 80-column displays

Note: For a device function to allow 132 columns, its standard header/footer must have
this option set to Y.

Identifying Standard Header/Footer Function Options

244 Building Applications

Enable Selection Prompt Text

This option specifies whether a default prompt message should appear on the device
design for function keys and subfile selection text.

■ If 1 is specified, a one-line prompt message appears for both function keys

■ If 2 is specified, a two-line prompt message appears for both function keys

■ If left Blank, the prompt messages are absent

Allow Right to Left/Top to Bottom

This option specifies whether bi-directional support is incorporated in the function.

■ If Y is specified, cursor movement for input-capable text fields is right to left and top
to bottom on the panel

■ If left Blank, cursor movement is from left to right and top to bottom in
input-capable fields

Function Options for Setting Header/Footer Defaults

The following function options determine the type of header/footer that is defined and
the implicitly- selected default for that header/footer type.

■ Use as default for functions

■ Is this an Action Bar (Y), and the Default (D)

■ Is this a Window (Y), and the Default (D)

The implicitly-selected default header/footer assigned to your functions is indicated on
the Edit Function Options panel as follows.

¬ Implicitly set by mdl default

If you assign another standard header/footer function to your function, it is indicated on
the Edit Function Options panel as follows.

¬ Explicitly selected

Note: CA 2E may automatically change implicitly-selected header/footers if you change
the YSAAFMT model value or the YWSNGEN model value.

For more information on implicitly-selected header/footers, see Design and Usage
Considerations and the Examples later in this chapter.

Identifying Standard Header/Footer Function Options

Chapter 7: Modifying Function Options 245

Use As Default for Functions

This option applies only if the model value YSAAFMT is *CUAENTRY and the model value
YWSNGEN is set to *NPT. It specifies whether this standard header/footer is assigned to
functions as the implicitly-selected default.

■ If Y is specified, this standard header/footer is assigned to functions as the
implicitly-selected default

■ If left Blank, this standard header/footer is not assigned to functions as the
implicitly-selected default

Is This an Action Bar

This option specifies whether the function to which this standard header/footer is
assigned contains an action bar.

■ If Y is specified, the function contains an action bar.

■ If N is specified, the function does not contain an action bar.

■ If D is specified, the function contains an action bar. In addition, if the YSAAFMT
model value is set to *CUATEXT, all panel-based function types other than SELRCD
has this standard header/footer assigned as the implicitly-selected default.

Is This a Window

This option specifies whether the functions to which this standard header/footer is
assigned contains a window.

■ If Y is specified, the function contains a window.

■ If N is specified, the function does not contain a window.

■ If D is specified, the function contains a window. In addition, if model value
YSAAFMT is set to *CUATEXT, SELRCD functions has this standard header/footer
function assigned as the implicitly-selected default.

Identifying Standard Header/Footer Function Options

246 Building Applications

Design and Usage Considerations

Following are points to consider if you want to customize or change the way CA 2E
assigns standard header/footers for your functions.

■ A standard header/footer function can be an action bar, a window, or neither. It
cannot be both an action bar and a window.

■ To create a standard header/footer function with neither an action bar nor a
window, set both the following function options to N.

– Is this an Action Bar

– Is this a Window

■ There can be only one default standard header/footer function for each
header/footer type. In other words,

– Only one standard header/footer function can have the Use as default for
functions option set to v.

– Only one standard header/footer function can have the Is this an Action Bar
option set to D.

– Only one standard header/footer function can have the Is this a Window option
set to D.

If you set a new standard header/footer to be a default, CA 2E automatically resets
the corresponding function option for the previous default header/footer function
so it is no longer the default.

■ All existing functions that have implicitly- selected header/footers are always
assigned to the default header/footer. If you modify the default header/footer, CA
2E immediately reassigns the implicitly-selected header/footers. This also occurs if
you change the YSAAFMT model value and may occur if you change the YWSNGEN
model value or the Workstation Implementation function option for a function. See
the examples at the end of this topic.

To prevent this, you can explicitly select the same or another standard
header/footer for any function using the Edit Function Options panel.

Examples

Suppose the YSAAFMT model value is set to *CUAENTRY and the YWSNGEN model value
is set to *NPT. In addition, suppose the standard header/footer function options are set
as follows:

Standard Header/Footer
Functions

Use as default
for function
options

Is this an
Action Bar
option?

Is this a
Window
option?

Header/Footer1 Y N N

Identifying Standard Header/Footer Function Options

Chapter 7: Modifying Function Options 247

Standard Header/Footer
Functions

Use as default
for function
options

Is this an
Action Bar
option?

Is this a
Window
option?

Header/Footer2 blank D N

Header/Footer3 blank N D

The following examples all refer to this basic scenario.

Example 1

With these settings, all functions created have Header/Footer1 specified as the
implicitly-selected default.

Example 2

If you change the YSAAFMT model value to *CUATEXT, all functions other than SELRCD
have Header/Footer2 assigned as the implicitly-selected default. SELRCD functions will
have Header/Footer3 assigned as the implicitly-selected default.

Example 3

If you change the YSAAFMT model value to *CUATEXT, create a new Header/Footer4,
and set it to be the default action bar, the standard header/footer function options
changes as follows:

Standard
Header/Footer
Functions

Use as default for
function options

Is this an Action
Bar option?

Is this a Window
option?

Header/Footer1 Y N N

Header/Footer2 blank Y N

Header/Footer3 blank N D

Header/Footer4 blank D N

Note: CA 2E has automatically reset the Is this an Action Bar option for Header/Footer2
to Y. All functions other than SELRCD have Header/Footer4 assigned as the
implicitly-selected default. SELRCD functions still have Header/Footer3 assigned as the
implicitly- selected default.

Chapter 8: Modifying Function Parameters 249

Chapter 8: Modifying Function Parameters

This chapter identifies the basic properties and the roles of function parameters and
explains how to define them for functions. This chapter also explains how to use arrays
as parameters.

This section contains the following topics:

Understanding Function Parameters (see page 249)
Identifying the Basic Properties (see page 249)
Defining Function Parameters (see page 263)

Understanding Function Parameters

Function parameters specify which fields can be passed between the calling and the
called functions. Each call can pass different values in these fields, but the definitions of
the fields themselves remains the same. You assign the parameter roles, which direct
the function to use that parameter m in a specific way.

Identifying the Basic Properties

Parameters have the following four basic properties:

■ Name

■ Usage

■ Role

■ Flag error status

Name

Function parameters are defined by reference to the field from which they receive or to
which they return a value.

Usage Type

A parameter’s usage definition determines how the parameter is allowed to be used.
Parameters can be used in one of four ways depending on how they are received from
or returned to the function. The direction of movement is always viewed from outside
the function whose parameters are being defined. The usage types are as follows:

Identifying the Basic Properties

250 Building Applications

Input Only

A value is passed into the function when the function is called, but the function does not
change this value and the same value is returned.

Output Only

A value is returned from the function for the parameter when the function completes.
Any initial value passed in this variable is set to blank or zero at the start of the function.

Both (Input/Output)

A value is passed into the function for the parameter when the function is called and a
value, possibly different, is returned to the calling function when the function completes
processing.

Neither

No value is passed into the function for the parameter nor is a value returned for the
parameter when the function ends. Neither parameters are available for use as local
variables within the function.

Note: Neither parameters are, in some instances, preferable to WRK context variables.
WRK context variables are global to the function and can be updated inadvertently from
internal functions within the main external function. The local nature of Neither
parameters avoids this potential problem.

The following table shows the types of function parameter usage.

Parameter type Passed in Returned MAP

Input Y N Y

Output N Y N

Input/Output Y Y Y

Neither N N Y

Identifying the Basic Properties

Chapter 8: Modifying Function Parameters 251

Flag Error Status

Flag error status specifies whether a calling function should indicate that an error, which
occurs in the called function, is associated with the parameter field. If so, the field is
highlighted on the display of the calling function if the parameter field in the called
function returns a non-blank return code.

Flag error status applies only to the following function types:

■ SNDERRMSG (send error message)

■ EXCMSG (execute message)

■ Any external function

Send Error Message specifies that an error message be sent to a calling function. The
Send Error Message function is attached to a CA 2E shipped file called * MESSAGES.

For more information on function types and external functions, see the chapter
"Defining Functions."

By default, all parameters of the called function that ended in error are highlighted if
they appear on a display. You can override this to suppress error flagging for a
parameter by altering the default attributes for fields in error on the Edit Screen Field
Attributes panel.

Identifying Default Parameters

Certain standard functions have predefined default parameters. When you create any of
the function types, the appropriate default parameters are automatically created.

Function Default Parameters Usage

CHGOBJ All fields from update index of based-on file I

DLTOBJ Key fields from update index of based-on file I

RTVOBJ Key fields from the associated access path I

SELRCD Key fields from the update index of based-on file B

Key: I = Input Only Usage
 B = Both Input and Output Usage

Identifying the Basic Properties

252 Building Applications

Identifying the Return Code

All standard function types other than EXCUSRPGM and EXCUSRSRC have an implicit
parameter, the return code. The return code is used to inform the calling program of the
circumstances under which the called program is exited. The return code is not shown
on the Edit Function Parameters panel but is automatically declared in the generated
source code as the first parameter.

Therefore, when calling your application program from a menu or a command line you
must always specify a parameter for the return code. This parameter must be the first
parameter.

For example, when calling a function from a command line:

CALL ABCDEFR ' '

Note: You can also use the Call a Program (Y2CALL) command to call the function. This
command is especially useful if the function’s parameter interface is complex or has
changed. It determines the parameters, including the return code, required by a
function directly from details contained in the model. You can provide values for all
input-capable fields and you can reuse these values for subsequent calls.

For more information on the Y2CALL command, see the Command Reference Guide.

You can retrieve or change the value of the return code parameter within the action
diagram of a function by referencing the PGM context field *Return Code. This field can
be set by CA 2E to one of its defined conditions, such as, *Record not found. The
conditions that are supplied for the *Return Code field are:

■ *Data update error

■ *Normal

■ *Record already exists

■ *Record does not exist

■ *Substring error

■ *User Quit requested

You can test against any of these supplied conditions or you can add other conditions to
the list.

The best way to check for not equal to *NORMAL can be done using a CASE condition
with an *OTHERWISE or by using a compound condition.

For example:

–

Identifying the Basic Properties

Chapter 8: Modifying Function Parameters 253

. .-CASE

. -PGM.*Return Code is *NORMAL

. Print Customers - Customer *

. -*OTHERWISE

. Print Customers Credit - Customer *

. -ENDCASE
;–

Understanding the Role of the Parameter

The role of a parameter specifies how the parameter is used in the function into which it
is passed. Each category of parameter role applies to certain standard function types.
The parameter roles are as follows:

Map Parameter

This parameter is automatically moved to a corresponding field on the receiving
function’s panel design. If the field does not exist on the device design, it is added to it.
Specifying fields as mapped Neither parameters is a way of adding fields to a panel
design without the need for passing them into the function. The Map option is ignored
for reports and functions that do not have an associated device design.

Note: If you make a change to the parameter entry on the Edit Function Parameters
Detail panel, the entry defaults to the Map role.

Restrictor Parameter

This parameter is used to restrict the records from a database file that can be displayed,
changed, or printed by the function. Restrictor parameters must be key fields on the
access path to which their function attaches and can only be used hierarchically; that is,
major to minor key sequence.

A minor key can only be a restrictor parameter if all keys major to it are also restrictor
parameters. Restrictor parameters are automatically mapped and default to output on
the panel, but may be changed to input on DSPFIL, SELRCD, and EDTFIL function types.

For example, a function that displays a list of records (such as DSPFIL) could allow the
user to select a particular record with a line selection option. The keys of the selected
record could be passed as restrictors to another function (such as EDTRCD). The called
function then process only the selected record.

Identifying the Basic Properties

254 Building Applications

Using Restrictor Parameters

The following examples show the effect of using restrictor parameters on single-record
display styles and on multiple record display styles.

For example, if a Division is defined by the following relations:

FIL Company REF Known by FLD Company code CDE
FIL Company REF Has FLD Company name TXT

FIL Division REF Owned by REF Company FIL
FIL Division REF Known by FLD Division code CDE
FIL Division REF Has FLD Division name TXT
FIL Division REF Has FLD No of employees NBR

Single-Record Panel Design Without a Restrictor

If an Edit Record function is specified to edit the Division file without a restrictor
parameter being declared, the default device design for the key panel would appear as
follows. All of the key fields are input capable.

Identifying the Basic Properties

Chapter 8: Modifying Function Parameters 255

Single-Record Panel Design with a Restrictor

If the Company code is specified as a restrictor parameter, the Company code no longer
appears as an input-capable field but becomes protected, as it is assumed that its value
is being provided as an entry parameter:

Multiple-Record Panel Design without a Restrictor

The effect of a restrictor on a multiple-record (subfile) panel design is similar. Consider
that an Edit File function edits a Division file. If no restrictor parameter is specified, the
default device design appears as follows:

Identifying the Basic Properties

256 Building Applications

Each subfile record contains all the fields from the underlying Division file.

Multiple-Record Panel Design with a Restrictor

If a Company Code field was specified as a restrictor parameter, the Company Code field
no longer appears on each individual subfile record but would instead be shown on the
subfile control record. The Company Code field is protected, as it is assumed that its
value is being provided as an entry parameter.

Note: You can override the restrictor on this panel to be input capable.

Virtual Fields and Restrictors on Subfiles

Some special considerations arise for subfile displays when there are virtual fields on the
subfile record associated with a relation for which all of the keys are specified as
restrictor parameters.

The following examples show the effect of restricting and not restricting a subfile’s
virtual fields onto the header format.

Identifying the Basic Properties

Chapter 8: Modifying Function Parameters 257

Different results are obtained if the virtual fields are present in the access path of the
function due to the virtualization of fields that are virtualized in a related file. For
example, Customer Name is a virtual on Order Header and is re-virtualized to Order
Detail. Two possible differences are:

The virtual fields are restricted: They are removed from the individual subfile records
and are placed on the subfile control with the restricted fields. This happens if the
virtual fields associated with the keys also are restricted.

The virtual fields are not restricted: They remain on the individual subfile records. This
happens if the fields are defined as virtual fields on the access path of the function file
but are not present on the access path of the referenced file that is restricted.

Identifying the Basic Properties

258 Building Applications

The access path combinations for restrictor parameters are:

A1 to B1

Field b2 is present on both the referencing (A1) and referenced (B1) access paths.
Virtual fields are restricted in functions based on access path A1.

A1 to B2

Field b2 is present on the referencing access path (A1), but not on the referenced access
path (B2). Virtual fields are not restricted in functions based on access path A1.

Identifying the Basic Properties

Chapter 8: Modifying Function Parameters 259

Example of Virtual Restrictor Usage

In the following example, the Customer Name is specified as a virtual field on the Order
Header and is revirtualized to the Order Detail file.

Order Header Known by Order No
Order Header Refers to Customer
 VRT Customer Name
Order Detail Known by Order Line No
Order Detail Refers to Item
 VRT Item Description
 VRT Customer No
 VRT Customer Name

This example creates a device design over Order Detail, where Order No. is a restrictor
as follows.

Device Design with Restricted Virtual Fields

If the Customer Name field is not present on the access path of the referenced file,
Customer Name is no longer being included on the subfile control.

However, if Order No. is not a restrictor, the device design would be as follows.

Identifying the Basic Properties

260 Building Applications

Device Design Without Restricted Virtual Fields

Identifying the Basic Properties

Chapter 8: Modifying Function Parameters 261

Positioner Parameter

This parameter is used to position a function to start reading records from a database
file at a particular record. Positioner parameters can be used by themselves or in
conjunction with restrictor parameters. They must be key fields on the access path to
which their function attaches and can only be used hierarchically.

For example, a minor key can only be a positioner parameter if all major keys to it are
also positioner or restrictor parameters. Positioner parameters are automatically
mapped and can be either Output or Both on the panel.

The following table is an example of the use of positioner parameters.

FIL Company REF Known By FLD Company code CDE
FIL Company REF Has FLD Company name TXT

FIL Division REF Owned by REF Company FIL
FIL Division REF Known By FLD Division code CDE
FIL Division REF Has FLD Division name TXT
FIL Division REF Has FLD No of employees NBR

If you define a PRTFIL function based on a retrieval access path over the division file
(such as, with keys Company Code and Division Code fields) and if you want to specify
selection you could either:

■ Make both Company Code and Division Code positioner parameters in order to
read all records starting at specified values for both key fields

■ Make Company Code a restrictor but Division Code a positioner parameter in order
to read all records for a specified Company file starting at a given division

Vary Parameter

This parameter can have a varying length. The vary parameter is useful when interfacing
with user-written subroutines and programs. Domain checking is ignored.

Vary parameters are valid on functions that generate an external high-level language
program, that is RPG or COBOL. You need to ensure that the parameters function
properly if the domains do not match.

Identifying the Basic Properties

262 Building Applications

Allowed Parameter Roles

The following table shows the allowed parameter roles for the standard functions.

Function Map Restrictor
(Keys Only)

Positioner
(Keys Only)

Vary

PMTRCD Y Y - -

EDTRCD(1,2,3) Y Y - -

DSPRCD(1,2,3) Y Y - -

SELRCD Y Y1 - -

DSPFIL Y Y1 - -

EDTFIL Y Y1 - -

EDTTRN Y Y - -

DSPTRN Y Y - -

PRTFIL * Y Y -

PRTOBJ * Y Y -

RTVOBJ - Y Y -

CRTOBJ - Y - -

CHGOBJ - Y - -

DLTOBJ - Y - -

EXCEXTFUN - - - Y

EXCINTFUN - - - -

EXCUSRSRC - - - Y

EXCUSRPGM - - - Y

Notes:

* Denotes that the map is allowed but does not add the parameter to the device
design.

1 Indicates that you can override the restrictor parameter, which is normally
output only, to be input capable.

Defining Function Parameters

Chapter 8: Modifying Function Parameters 263

Defining Function Parameters

To define a parameter for a function, specify the field that is passed to or from the
function with one of these two procedures:

■ Specify the parameters from the Edit Function Parameters panel.

■ Specify the parameter in the action diagram when you specify the link between the
functions.

Defining Parameters with the Edit Function Parameters Panel

The Edit Function Parameters panel defines the parameters that are passed to the
function by the calling function. How the parameter is used in the called function
depends on the called function’s type or the processing specified by that function.
Parameters can either be defined as a list of specific fields or as selections of fields from
a list of access paths, arrays, or files.

To access the Edit Function Parameters panel

1. View the functions. From the Edit Database Relations panel, type F next to the
selected file, and then press Enter.

The Edit Functions panel appears.

Defining Function Parameters

264 Building Applications

2. View the parameters, type P next to the selected function, and then press Enter.

The Edit Function Parameters panel appears:

Use one of the following methods to specify the parameters:

To specify an individual field

1. Type *FIELD or *F in the File/*FIELD column.

2. Type the name of the field in the Access path/Field/Array column.

By entering ? this field can be used for prompting.

The Passed field defaults to FLD.

To specify a set of fields from a file, access path, or array:

1. Type the name of the file in the File/*FIELD column. For arrays, type *Arrays (or
*A).

By entering ? this field can be used for prompting. A * defaults to the name of the
file over which the function is built.

Defining Function Parameters

Chapter 8: Modifying Function Parameters 265

2. Type the name of the access path or array name in the Access path/Field/Array
column.

By entering ? this field can be used for prompting.

Note: If you use *NONE as the access path then all fields, actual and virtual, are
associated with the file are available for selection. This removes the need to tie the
parameter entry to a specific access path and can reduce the impact of a change to
the definition. This approach is particularly relevant when a subset of fields is
selected.

3. Type the value that the field is passed as:

FLD

Each specified field is passed as an individual parameter. This must be specified
for *FIELD or *NONE parameter lines.

RCD

A single parameter with the length of the specified access path is passed. The
parameter contains space for all the fields associated with the access path,
which can individually be specified as parameters.

KEY

A single parameter with the length of the combined keys of the specified access
path is passed. The parameter contains space for all the key fields that can be
individually specified as parameters.

4. Enter Y or leave a blank value for the A (Pass as Array) field.

The following situations apply when using the A field:

■ If the function is not EXCEXTFUN or EXCUSRPGM, the field is not available.

■ The new ‘A’ (Pass as Array) field is available for all EXCEXTFUN and EXCUSRPGM
parameters. However, if Y is specified for a parameter that is not an array
based on the *Arrays file, or when the parameter is passed as FLD, then an
error message is sent.

■ Y is only valid when the parameter is an array based on the *Arrays file, and
only when the parameter is passed as RCD or KEY.

■ When you model in the action diagram of function A a call to function B, if a
parameter is passed as an array on A it must be passed as an array on B.

■ No fields can be dropped on a parameter being passed as an array.

■ Though the usages of the subfields on a parameter passed as an array can be
mixed, the usages must be compatible, such that the calling function can call
the called function

Defining Function Parameters

266 Building Applications

5. Define the specific fields that are to be passed from the file, access path, or array on
the Edit Function Parameter Details panel.

■ For both *FIELD and other parameter entries, define the role and usage of the
parameter.

■ You can adjust the sequence of the entries by keying sequence numbers on
each parameter line.

Non-unique Sequence Numbers

Sequence numbers do not need to be unique for a function where the Duplicate
Parameters Option is set to N.

Identifying Functions with a Non-unique Parameter Sequence

Use the YCHKFUNPAR command to analyze a model and identify all functions that
exhibit specific parameter interface problems. For example, when you have non-unique
sequence numbers on the parameter interface of a function where the function option
Duplicate Parameters is set as Y.

Resolving Function with a Non-unique Parameter Sequence Number

To rectify a function with a non-unique parameter sequence number

1. Access the EDIT FUNCTION PARAMETERS panel and change the sequence numbers
to be unique.

Defining Function Parameters

Chapter 8: Modifying Function Parameters 267

2. Access the Action Diagram of the function and ensure that all parameter contexts
are modified appropriately to point to the correct parameter.

Invalid Duplicate Parameter fields

When a function has its Duplicate Parameters option set to N, each parameter field
should be unique, regardless of the usage. The only exception is that a field can appear
once for Input and once for Output.

There are two scenarios where a violation of this restriction and exception can occur:

■ Prior to CA 2E Release 8.6, the user was only warned after violating the change,
rather than being prevented from the violation.

■ In Release 8.6, it is possible to create a function with an invalid parameter interface.
This can occur when you turn the DUPLICATE PARAMETERS function from Y to N,
and any (previously valid) duplicate parameters are not modified appropriately.

In the following example, the function Verify Item has two identical parameters: Item,
Retrieval index, passed as RCD with seq=1 (PR1) and seq=2 (PR2). The subfields on the
Item file are: Item code, Item description, Item Price and Item barcode, which are all
passed as Both on PR1 and PR2.

Because the Duplicate Parameters Option is set to Y, this is a valid operation:

Defining Function Parameters

268 Building Applications

If the Duplicate Parameters Option is changed from Y to N, then the parameter interface
becomes invalid. However, you will not receive a warning or error message.

Identifying Functions with Invalid Duplicate Parameter Fields

Use the YCHKFUNPAR command to analyze a model and identify all functions that
exhibit specific parameter interface problems. Identifying invalid duplicate parameter
fields on the parameter interface of a function where Duplicate Parameters is set to N is
one of the issues where YCHKFUNPAR is helpful.

Rectifying Functions with Invalid Duplicate Parameter Fields

To rectify a function with invalid Duplicate Parameter fields, you must modify the
function so that it does not violate the restriction and exception.

When a function has the Duplicate Parameters option set to N, each parameter field
should be unique, regardless of the usage. The only exception is that a field can appear
once for Input and once for Output.

There are two approaches to rectify this situation:

■ Change the function option Duplicate Parameters to Y.

Note: While this approach immediately makes the parameter interface valid, you
must update any reference to PAR context in the action diagram to refer to the
appropriate duplicate parameter PR1 through PR9 context.

■ Leave the Duplicate Parameters setting as is, but modify the usages of parameter
fields so that the restriction and exception are not violated, which is detailed in the
following examples.

Defining Function Parameters

Chapter 8: Modifying Function Parameters 269

To Rectify Functions with the Duplicate Parameters Option set to Y then set to N

1. Verify Item has Duplicate Parameters set to Y.

Defining Function Parameters

270 Building Applications

After the Duplicate Parameters function option has been changed to N, no warning
is sent. However, the parameter interface is invalid because subfields appear on
two different parameters with usage Both, as shown in the following example:

2. Complete one of these steps:

■ Remove the second parameter entirely.

■ Change the usages of the first parameter to input and the usages of the second
parameter to Output.

Defining Function Parameters

Chapter 8: Modifying Function Parameters 271

3. Specify Input for all the fields on the first parameter:

4. Specify Ouput for all the fields on the second parameter:

Defining Function Parameters

272 Building Applications

This parameter interface is now valid.

5. Visit the action diagram and ensure that the parameter contexts are properly
selected.

Defining the Parameter’s Usage and Role

After you specify the parameter, you can define the parameter’s usage and role on the
Edit Function Parameter Details panel.

The following situations with the functions EXCEXTFUN and EXCUSRPGM apply to this
panel:

■ When the function is not EXCEXTFUN or EXCUSRPGM, or when the function is
EXCEXTFUN or EXCUSRPGM but parameter is not passed as an array, RCD (ARRAY)
or KEY (ARRAY), then Number of Elements is not available.

■ When the function is not EXCEXTFUN or EXCUSRPGM, the Passed as field cannot
have values of KEY (ARRAY) or RCD (ARRAY).

■ When the function is EXCEXTFUN or EXCUSRPGM and the parameter is not passed
as an array, then the Passed as field cannot have values of KEY (ARRAY) or RCD
(ARRAY).

■ When function is EXCEXTFUN or EXCUSRPGM, parameter is passed as an
array(A=’Y’), and the Edit Function Parameters panel (see page 263) indicates
Passed=RCD, then the Passed as field is RCD (ARRAY).

■ When function is EXCEXTFUN or EXCUSRPGM, parameter is passed as an
array(A=’Y’), and the Edit Function Parameters panel (see page 263) indicates
Passed=KEY, then the Passed as field is KEY (ARRAY).

■ When function is EXCEXTFUN or EXCUSRPGM and parameter is passed as an array
(RCD or KEY), then the Number of elements displays the number of elements, as
defined on the array being passed. You can view and modify the array’s definition in
the *Arrays file.

Defining Function Parameters

Chapter 8: Modifying Function Parameters 273

To define the parameter’s usage and role

1. Zoom into the parameter, type Z next to the selected parameter, and then press
Enter.

The Edit Function Parameter Details panel appears:

Notes:

■ If you entered a file, access path, or an array, those fields are listed on this
panel. If the function has more than eight parameters, a parameter selection
field displays in the header.

■ When Passed as=RCD (ARRAY) or =KEY (ARRAY), Number of elements displays
the Number of elements, as defined in the array being passed.

2. Enter the selected usage type in the Usage column, next to the parameter you are
defining. The options are:

■ I (Input)

■ O (Output)

■ B (Both)

■ N (Neither)

■ D (Drop)

Defining Function Parameters

274 Building Applications

3. Enter the selected type of role in the Role column, next to the parameter you are
defining. The options are:

■ R (Restrict)

■ M (Map)

■ V (Vary length)

■ P (Position)

Parameter Usage Restrictions

When the function option Duplicate Parameters is set as Y, a parameter field can appear
on a function’s parameter interface. This can occur anytime from none (zero) to
numerous times with any parameter usage.

However, when the function option Duplicate Parameters is set as N, the following
situation applies:

■ For a given function, each parameter field must be unique. In other words, a field
can only appear once regardless of usage (I,O,B, or N). The exception to this
situation is when a field can be defined separately once for input and once for
output, so it can appear two times.

Note: An attempted violation of this restriction and exception causes the error message
Y2V0214–Parameter is duplicate to be sent.

Parameter Usage Matrix

When you have multiple items, certain combinations valid and certain combinations are
invalid. For invalid combinations, processing does not allow arrays to be passed in the
PAR context, where any subfield has usages on the Calling and Called program when the
Compatibility is *Invalid, as shown in the following usage compatibility matrix:

Calling Called Compatible

N N Valid

N I Valid

N O Valid

N B Valid

I N Valid

I I Valid

I O *Invalid

I B *Invalid

O N Valid

Defining Function Parameters

Chapter 8: Modifying Function Parameters 275

Calling Called Compatible

O I *Invalid

O O Valid

O B *Invalid

B N Valid

B I Valid

B O Valid

B B Valid

Defining Parameters While in the Action Diagram

While in the action diagram, you can change the parameters of the function you are
editing using the following instructions. This is useful when adding additional
parameters while in the action diagram.

To define Parameters in the Action Diagram

1. At the Edit Database Relations panel, type F to view the selected function. The Edit
Function panel appears.

2. View the Action Diagram. Type F next to the selected function. The Edit Action
Diagram panel appears.

In the Action Diagram, press F9. The Edit Function Parameters panel appears.

3. Define the parameter. Use the instructions in the two previous topics to define the
parameter and specify the role and usage.

4. Press Enter to accept the changes.

Press F3 to exit and return to the action diagram. The action diagram redisplays
with your changes.

For more information on action diagrams, see the chapter Modifying Action Diagrams
(see page 421).

Defining Function Parameters

276 Building Applications

Specifying Parameters for Messages

A parameter can be used within the text portion of a message. During execution, the
parameter’s value displays.

To specify a parameter for a message function

1. Use the previous instructions to get to the Edit Message Functions panel.

2. Type P next to the selected message function. The Edit Function Parameters panel
appears.

3. Define the parameter.

Note: When the data type of a parameter allows value mapping, such as all date
and time fields, the parameter is typically converted to its external format before
the message is sent. However, due to limitations within i OS, the parameter data for
the TS# data type is passed in its internal format, namely,
YYYY-MM-DD-HH.MM.SS.NNNNNN.

A parameter can be defined for a message function to allow substitution of the
parameter’s value into the text portion of the message identifier.

For example, to insert a field’s value in an error message when the credit limit is
exceeded for a customer, enter the following:

Credit limit exceeded for &1.

The parameter value &1 is inserted into the message text at execution time. You must
then define (&1) as an input parameter value to the message function. If this is an error
message, it also causes the field associated with the parameter (&1) to display using the
error condition display attribute for the field. By default, this is reverse image.

Using Arrays as Parameters

You can create elements in an array that are similar to parameter definitions, and you
can pass certain parameters as an array. For example, multiple instances of data can be
passed within the parameter.

By passing a parameter as an array, multiple instances of data can be passed in or out in
a single call to a function. For example, if a customer record structure is defined in the
Customer array on the *Arrays file, you can use that array to define a parameter to an
EXCEXTFUN or EXCUSRPGM being passed as RCD (ARRAY). Anywhere from a few to
thousands of customer records can be passed in that one parameter in one single
function call.

Defining Function Parameters

Chapter 8: Modifying Function Parameters 277

Arrays are defined over the *Arrays file and can be defined to contain any subset of the
fields in the model. Arrays can also be specified as parameters to any function. Using
arrays allows you to define any subset of fields as parameters to any function. Do this by
creating an array definition with the appropriate field and specifying it as a parameter
entry. This process is similar to using structure files for parameter lists but unlike
structure files, it is under the control of *PGMR.

Notes:

■ With this process, you use the array to supply a parameter definition and not the
data.

■ When generating functions using SQL, an array used to define the parameters for
CHGOBJ or CRTOBJ must have the fields defined in the same order as the update
access path.

You can pass an array as a parameter using one of two methods:

■ Multiple-instance array parameter: Describes when a parameter is passed as an
array (when the Pass as Array flag is set to 'Y'). The parameter contains multiple
instances of data, where each instance contains all the fields which are individually
specified as parameters using the parameter details display.

■ Single-instance array parameter: Describes when a parameter defined using an
array is not passed as an array (when the Pass as Array flag is not available or is set
to blank). The parameter contains all the fields which are individually specified as
parameters using the parameter details display.

For more information about arrays, see the chapter "Defining Arrays" in the Building
Access Paths Guide.

Multiple-Instance Restrictions

When passing a multiple-instance array the following restrictions apply:

■ Only EXCEXTFUN and EXCUSRPGM allow parameters to be passed as a
multiple-instance array.

■ Parameters can only be passed as a multiple-instance array when the parameter
structure is defined using an array based over the *Arrays file.

■ Parameters can only be passed as a multiple-instance array when they are being
passed as RCD or KEY.

■ No fields can be dropped on a parameter being passed as multiple-instance array.

■ Do not allow a multiple-instance array parameter in a function call, either in ARR
nor PAR context, except when calling an EXCEXTFUN or EXCUSRPGM, that has a
multiple-instance array parameter. Additionally, the call must be from the top level
action diagram of an EXCEXTFUN function.

■ The Submit job (SBMJOB) feature and Y2CALL command do not support function
calls that contain multiple-instance array parameters

Defining Function Parameters

278 Building Applications

When working with two functions, function A and function B, for example, you can
model in the action diagram of function A a call to function B, where B has a parameter
interface passed as an array. In this case these additional restrictions apply:

■ Function A must be of type EXCEXTFUN, and function B must be of type EXCEXTFUN
or EXCUSRPGM.

■ The parameter context must be PAR, ARR, or PR1 through PR9 for Duplicate
Parameters, and the array name must exactly match on the parameter definition of
A and B.

■ If a parameter is passed as a multiple-instance array on A it must be passed as an
array on B.

■ The multiple-instance array parameter must be passed as RCD on both A and B, or
KEY on both A and B.

■ Although the usages of the subfields on a parameter passed as an array can be
mixed, the usages must be compatible, such that the calling function can call the
called function.

For more information, see the section Parameter Usage matrix (see page 274).

Chapter 9: Modifying Device Designs 279

Chapter 9: Modifying Device Designs

The purpose of this chapter is to introduce you to CA 2E device designs, to explain
default device designs, conventions and styles, and to identify how to modify device
designs for panels and reports.

This section contains the following topics:

Understanding Device Designs (see page 280)
Basic Properties of Device Designs (see page 280)
Panel Design Elements (see page 285)
National Language Design Considerations (see page 291)
Device Design Conventions and Styles (see page 292)
System 38 (see page 295)
Standard Headers/Footers (see page 299)
Function Keys (see page 299)
Changing the Number of Function Key Text Lines (see page 308)
Editing Device Designs (see page 309)
ENPTUI for NPT Implementations (see page 337)
Editing Report Designs (see page 348)
Device User Source (see page 381)

Understanding Device Designs

280 Building Applications

Understanding Device Designs

A device design specifies the layout of fields and constants on panels or report designs
that are associated with a function. There are two types of device designs:

■ Panel designs, which specify the layout of fields and constants for interactive
functions

■ Report designs, which specify the layout of fields and constants for report functions

Both types of device designs are similar in overall structure and are modified with
similar editors. However, some features apply to each specific device design.

If a CA 2E function has a device design associated with it, a default design is created by
CA 2E when you create the function. You can then modify this design.

CA 2E animation provides a direct link between CA 2E and CA 2E Toolkit prototyping
functions. This includes converting CA 2E device designs to Toolkit panel designs, full
access to all Toolkit editing and simulation functions, and the ability to return directly to
your CA 2E model. In addition, existing Toolkit navigation, narrative, and data are
preserved when you download a new version of a panel design.

The device design for a function on the iSeries is implemented as a single i OS device
file, a display file for panel designs or a print file for report designs.

A device design specifies the following:

■ Which fields are present on the panel or report

■ The position of fields and constants on the panel or report

■ The circumstances under which particular fields are displayed

■ Whether the field is input capable or protected (interactive panels only)

■ Whether the field is optional or required (interactive panels only)

■ The display attributes and editing of fields on the panel or report

Basic Properties of Device Designs

The three basic properties of device designs are design standard, formats, and fields.

Basic Properties of Device Designs

Chapter 9: Modifying Device Designs 281

Design Standard

The overall layout of the design is determined by the standard header/footer selected
and the function type. Each device function is associated with a standard header/footer
function of type Define Screen Format (DFNSCRFMT) or Define Report Format
(DFNRPTFMT). These functions cannot stand-alone. You can only generate and compile
the functions to which they are attached. These header/footer functions should only be
defined on the CA 2E shipped file *Standard Header/Footer.

The standard header/footer functions specify a standard layout for device headers and
footers. You can create your own version of these functions that you attach to the
*Standard header/footer file using the Edit Functions panel and associate them with
your device functions using the Edit Function Options panel for each device function. To
create a new header/footer, you can copy and modify an existing one or add a new one.

When you define a new device function, a header/footer is automatically assigned to it
according to defaults specified by your model values or settings on the header/footer
functions.

For more information on standard header/footers, see the Standard Header/Footer
topic later in this topic.

Presentation Convention for CA 2E Device Designs

The appearance of fields on the device designs as illustrated in this chapter is denoted
by the following symbols.

Symbol Definition

I Input capable alphanumeric field

O Output only alphanumeric field

B Update alphanumeric field

3 Input capable numeric field

6 Output only numeric field

9 Update numeric field

Basic Properties of Device Designs

282 Building Applications

For example, on a panel design:

 Enter Orders
 Customer . . IIII OOOOOOOOOOOO

O Code Name Quantity Price
I BBBBBB OOOOOOOOOOO 99999.99 666.66
I BBBBBB OOOOOOOOOOO 99999.99 666.66
I BBBBBB OOOOOOOOOOO 99999.99 666.66

And on a report design:

 Print Orders

Customer . : OOOOOOOOOOOOOOOO

 Code Name Quantity Price
 OOOOOO OOOOOOOOOOO 66666.66 666.66
 OOOOOO OOOOOOOOOOO 66666.66 666.66
 OOOOOO OOOOOOOOOOO 66666.66 666.66
 Total: 6666.66

Note: The symbols used in these examples are for this module only and do not
represent the actual method used in CA 2E.

Default Device Design

CA 2E provides default device designs based on the function options, standard
header/footer, function type, and access path. The first time you enter the device
design, CA 2E defaults the design for you according to the function type, access path,
model values, and function options.

Basic Properties of Device Designs

Chapter 9: Modifying Device Designs 283

Device Design Formats

A function’s device design is created from a number of device design formats, each of
which specifies part of the device design. Each format is created from the fields of the
based-on access path and their associated text. Each format has:

■ Device file format details—For each format, you specify format level information,
for instance, descriptive text and information as to how to position the format
relative to the other formats on the design. In the case of report design formats,
overflow criteria are specified. CA 2E supplies appropriate defaults for this
information.

■ Device file format entries—The format entries constitute a list of all the fields that
appear in that format on the display panel along with information on how these
fields are to appear. Fields are positioned by default on the display in the order in
which their entries appear on the access path. You can change the order of entries,
the positioning, and remove or add entries.

Device Design Fields

CA 2E gets fields for a default device design from the following three sources:

■ Header/Footer associated with a device function

■ Access Path to which the function attaches

■ Function parameters

Header/Footer Associated with a Device Function

The header/footer associated with a device function can contain a number of different
fields including panel title, job, and user. These fields are on the CA 2E shipped file
*Standard header/footer. You can add relations to this file if you need additional fields
but you are responsible for filling the fields with data.

Access Path to Which the Function Attaches

All fields in the access path are included on the device design by default when the
function is first created. If fields are added to the access path once the function is
created, they are available as hidden fields in the appropriate format and can be set to
input or output. They can then be moved to the appropriate place on the device design.

Note: Virtual fields are output only.

Basic Properties of Device Designs

284 Building Applications

Function Parameters

Function parameter fields with a role of mapped are included on display device designs.

If these parameter fields correspond to access path entries, the parameters are mapped
into the existing entry. If they do not correspond, a new entry is added to the panel.

You can also add the following types of fields to the individual device designs:

■ Function fields

■ Constants

Panel Design Elements

Chapter 9: Modifying Device Designs 285

Panel Design Elements

The panel design usually consists of certain basic elements. These elements are based
on whether you use a multiple record function (EDTFIL, DSPFIL, or SELRCD), a single
Record Function (EDTRCD 1,2,3, DSPRCD 1,2,3, or PMTRCD), or a transaction function
(EDTTRN or DSPTRN). The elements are listed below:

■ Multiple Record Function

– Standard Header

– Subfile Control

– Subfile Records

– Standard Footer

■ Single Record Function

– Standard Header

– Key Screen

– Detail Screen

– Standard Footer

■ Transaction Function

– Subfile Standard Header

– Control

– Subfile Records

– Standard Footer

The following is a table of CA 2E display function formats.

Function Type HDR FTR SFLCTL SFLRCD DTL

PMTRCD Y Y – – Y

DSPRCD Y Y – – Y

EDTRCD Y Y – – Y

DSPFIL Y Y Y Y –

EDTFIL Y Y Y Y –

SELRCD Y Y Y Y –

DSPTRN Y Y Y Y –

EDTTRN Y Y Y Y –

Panel Design Elements

286 Building Applications

Panel Body Fields

The fields that appear by default on the panel body are derived from the access path on
which the device function is based and from the function parameters. You can add
further fields.

When laying out default panels, CA 2E treats different types of fields in different ways:

1. Parameters. The role of the parameters has a significant effect on how they are
used on the default device design.

For more information about parameters, see the chapter, "Modifying Function
Parameters."

2. Key fields in the based-on access path. For most of the standard function types
there are constraints as to how key fields can be used. In some cases (for instance,
the EDTRCD key panel), they must be input capable; in others (such as on DSPFIL
subfile records), they must be protected. In DSPFIL, EDTFIL, and SELRCD function
types, positioner fields are also provided on the subfile control record for each key
field.

3. Non-key fields in the based-on access path. There are fewer restrictions as to how
non-key fields can be used. In the DSPFIL and SELRCD function types, selector fields
are also provided on the subfile control record for each non-key field.

General Rules for Panel Layout

The following information identifies features common to all display styles.

The first two lines of the panel designs contain a title and a status information defined
by an associated DFNSCRFMT function. When you create a new model, four layouts are
provided automatically:

■ CUA Entry standard

■ CUA Text Subset—Action Bars

■ CUA Text Subset—Windows

Lines twenty-three or twenty-two contain text explaining the meaning of any function
keys. The format of this text depends on the value of the YSAAFMT model value, either
CUA Entry or CUA Text.

Messages appear on line twenty-four. Message clearing and resending is controlled by
the function options.

For more information about function options, see the chapter, "Modifying Function
Options."

Panel Design Elements

Chapter 9: Modifying Device Designs 287

Panel Layout Subfiles

For subfile record fields, Column Heading text is used; for other fields, the Before text is
used.

A subfile selector field, *SFLSEL, is added to the beginning of the subfile record for
device designs that include subfiles, providing the appropriate function option is
specified.

Text that explains the meaning of the selection values is provided if appropriate. The
positioning of this text depends on the value of the Enable Selection Prompt Text
function option on the associated standard header function. This can follow the CUA
convention of text placed above the subfile text. If the Selection Prompt text is chosen
to be above the subfile, extra fields, such as *PMT, *SELTXT, are added automatically to
the display.

Panel Layout Field Usage

Any fields that are restrictor parameters are given an output-only usage.

For more information on restrictor parameters, see the chapter, "Modifying Function
Parameters."

If the function is an Edit function (EDTRCD, EDTFIL, EDTTRN), the non-key fields from the
access path on which the function is based are input capable on the panel unless they
are virtual fields or specifically protected. The key fields from the access path are only
input capable when records are being added.

If the function is a Display function (DSPRCD, DSPFIL, SELRCD, DSPSTRN), the fields from
the access path are output only.

Any fields used to control the positioning of a subfile display appear on the subfile
control record at the top of the display. These fields are input fields.

Virtual fields are added to the device design immediately after the real fields with which
they are associated. Virtual fields are always output only.

If a field is added to an access path, it is added to the panel design as a hidden field.

Panel Design Elements

288 Building Applications

Default Layout of a Single-Record Panel Design

For single-record style panels (EDTRCD, DSPRCD, PMTRCD), CA 2E lays out the fields on
the panel design as follows:

■ Key fields from the based-on access path are placed, one field per line, on both key
and detail panels.

■ Non-Key fields from the based-on access path are placed, one field per line, on
detail panel designs.

■ When the YCUAEXT model value is set to *DEFAULT, virtual fields are placed on the
same line as the real field with which they are associated. When the YCUAEXT
model value is set to *CUATEXT, the virtual fields indent three spaces on the
following line.

■ Map function parameter fields that cannot be mapped to any existing field are
placed on the display before the other fields.

If there are more fields than will fit on a panel, the design may run over onto additional
pages.

Panel Design Elements

Chapter 9: Modifying Device Designs 289

Default Layout of a Multiple-Record Panel Design

For multiple-record style panels (EDTFIL, DSPFIL, SELRCD), CA 2E lays the fields out on
the device display as follows:

■ Non-restrictor fields from the format of the based-on access path are placed on
each subfile record, one field after another on the same line. Any fields, which are
defined as restrictor parameters are omitted from the subfile record and are,
instead, placed on the subfile control record.

■ Key fields from the access path that are also restrictors are placed on the subfile
control record.

■ For each key field in the based-on access path, a positioner field is placed on the
subfile control record. This field can be used to position the loading of the subfile to
start at a particular database record.

■ In DSPFIL and SELRCD function types, for each non-key field in the based-on access
path, a selector field is placed on the subfile control record. The nature of the
selection can be specified using the Edit Screen Entry Details panel.

■ Map function parameter fields that cannot be mapped to an existing field are
placed on the panel, one field per line, before the other fields.

If there are more fields than will fit on a panel, the design can extend past position 80 to
132, provided you have the appropriate terminals. If you require a 132 display, you need
to set the function option for 132 on your standard header/footer.

Panel Design Elements

290 Building Applications

Default Layout of a Single- and Multiple-Record Panel Design

For single- and multiple-record style panels (EDTTRN, DSPTRN) that must attach to an
SPN access path possessing two formats, CA 2E lays out the fields on the device design
as follows:

■ The common major key or keys of the two formats of the based-on access path are
placed on the subfile control record

■ Fields from the first format of the access path are placed on the subfile control
record one after another, on the same line

■ All fields from the second format of the access path, apart from the shared key, are
placed on each subfile record, one field after another on the same line.

■ Parameters that cannot be mapped to existing fields are placed on the subfile
control record, one after another on the same line.

National Language Design Considerations

Chapter 9: Modifying Device Designs 291

National Language Design Considerations

You should consider the following when creating device designs and layouts for
applications that is used to support National Languages.

■ Allow 25% to 50% additional space in your device design for National Language
Support (NLS.

■ Avoid the use of multi-column headings

■ Do not use abbreviations or symbols

■ Follow CUA standards

■ Do not clutter panels; if necessary, use additional panels

The following design considerations can be affected when you develop your application
with NLS:

■ DBCS considerations

■ Bi-directional considerations

■ Presentation functions

■ Help Text

Note: When designing applications for National Languages, be sure to set the model
value YPMTGEN to *OFF until you are ready to generate your final production model.
This provides you with a performance benefit during function design. Once you are
ready to generate your final model, you can set it to *MSGID.

For more information on National Language Support and on changing or creating
applications in other languages, see Generating and Implementing Applications, in the
chapter, "National Language Support."

Device Design Conventions and Styles

292 Building Applications

Device Design Conventions and Styles

These are the display conventions that are used to create default panel designs for
functions are:

■ CUA Text

■ CUA Entry

The display conventions affect various features of the panel design including:

■ Position of the panel title and fields used on the panel header

■ Default function keys (such as F3 for Exit)

■ Position and style of the function key and subfile selector text

■ Default display attributes of the fields in the screen body

■ Style of dot leaders used to connect fields with their field text

■ Use of windows and action bars

You can choose either CUA Entry or CUA Text using the YSAAFMT model value. CA 2E
generates the:

■ CUA Entry standard when you set this value to *CUAENTRY

■ CUA Text subset when you set this value to *CUATEXT, and System/38 standard
when you set this value to *S38

CUA Text

Selecting CUA Text as a default enables you to generate applications with windows and
action bars. Action bars use their associated pull-down menus. The CUA Text standards
provide panels (which have action bars) and windows (which do not have action bars)
for the generated application by default.

Note: Another term for action bar is menu bar.

Device Design Conventions and Styles

Chapter 9: Modifying Device Designs 293

Windows

A window is an area of a panel with visible boundaries in which information appears.
Windows do not have an action bar. Windows can overlap on the panel, one panel
superimposed on another. Only the topmost window is active.

When you set the model value YSAAFMT to *CUATEXT, newly created device functions
default to action bars and windows for generated applications. Only Select Record
(SELRCD) functions default to a standard window header/footer but you can make any
other function a window by selecting a window header/footer for it from the function
options.

CUA Text Window

Action Bar

An action bar appears at the top of a panel and provides a set of choices and actions
across the top of the panel. The choices allow end users access to the actions available
from the panel. Depending on the function, CA 2E provides logical defaults for action
bar choices, action bar mnemonics, pull-downs, associated descriptive text, and
pull-down accelerator keys.

When you set the YSAAFMT model value to *CUATEXT, all newly created interactive
device functions default to action bars, with the exception of SELRCD. SELRCD functions
default to the window header/footer.

Device Design Conventions and Styles

294 Building Applications

CUA Text Action Bar

CUA Entry

CUA Entry is a standard header/footer device format. Selecting a CUA Entry
header/footer gives you a panel that is designed to comply with IBM’s CUA ‘89 Entry
Model recommendations. The default header/footer for CUA Entry is *Std Screen
Headings (CUA).

System 38

Chapter 9: Modifying Device Designs 295

CUA

System 38

CUA Device Design Extensions

CUA device design extensions consist of the following additional CUA design features
which are controlled by setting the model value YCUAEXT to *C89EXT:

■ Automatic defaulting and alignment of right-hand side text—For input capable
fields in the generated application, CA 2E automatically supplies and aligns
right-hand side (RHS) explanatory text. RHS text does not appear on panel fields.
For the application user, this text indicates the allowed values. The text appears
aligned and to the right of the field, as shown below.

System 38

296 Building Applications

■ Padding of field constant or literal trailers (dot leaders) for left-hand side text—CA
2E automatically adds padding characters to the end of field left-hand side (LHS)
text labels for panel appearance and to facilitate translation into other languages.
The amount of padding depends on the label length, as described below. The
resulting length is rounded to an even number.

Field length Percentage

0-12 100%

12-29 50%

30-59 30%

60+ 0%

■ Display of prompt instructions for device functions—With *C89EXT, prompt
instructions appear for all device functions.

Prompt Instructions Function Type

Type options, press Enter. EDTFIL, EDTTRN, DSPFIL, DSPTRN, SELRCD

Type choices, press Enter. EDTRCDn key, DSPRCD key, PMTRCD

Type changes, press Enter. EDTRCDn detail

Press Enter to continue DSPRCDn detail

■ Indenting of virtual fields—For the initial layouts of Display Transaction (DSPTRN)
and Edit Transaction (EDTTRN) header formats, and for Prompt Record (PMTRCD),
Display Record (DSPRCD), and Edit Record (EDTRCD) detail formats, CA 2E makes
space for right-hand side text by moving the virtual fields associated with a foreign
key to the next line and indenting them three spaces, as illustrated below.

System 38

Chapter 9: Modifying Device Designs 297

Rightmost Text

CA 2E automatically supplies and aligns RHS explanatory text for input capable fields in
the generated application. RHS text does not appear for display fields. For the
application user, this text indicates the data field type and the type of data that should
be entered, such as text, number, and allowed values. The text appears aligned and to
the right of the field. RHS text appears when the YCUAEXT model value is set to
*C89EXT.

Panel Defaults for Rightmost Text

The defaults for RHS text are based on field attribute type and a number of CUA design
considerations such as role, entry type, field validation, and usage. The defaults are
automatic for new fields.

If the role of the field is to position information such as that of some fields on Display
File (DSPFIL), Edit File (EDTFIL), and SELRCD functions, a special value of Starting
Characters is used for the RHS text. If the field is a foreign key field, then F4 for list is
appended when YCUAPMT is set to *YES.

If a check condition is defined for the field, the RHS text is built from the allowed values
according to the condition type, the value length, and the number of values allowed.

For example, for a Status (STS) field with a List (LST) check condition with the two Value
(VAL) conditions Male and Female, the RHS text default is M = Male, F = Female.

The panel RHS flag defaults for a field according to the field‘s usage, as described in the
following table:

Type RHS Text Style Substitution Values

CMP &1 &2

Example:

*GT 5

&1 = *Relational operator

&2 = Value

RNG &1 - &2

Example:

1001-4005

&1 = From value

&2 = To value

LST (1) &1 = &2, &3 = &4

Example:

M = Male

F = Female

&1 = Value1

&2 = Condition1

&3 = Value2

&4 = Condition2

LST (2) Value, F4 for list -

System 38

298 Building Applications

Type RHS Text Style Substitution Values

LST (3) &1, &2, &3, &4...

Example:

*ADD, *CHG, *DLT

&1 = Value 1,

&2 = Value 2,

&3 = Value 3,

&4 = Value 4,

RHS text aligns two spaces after the longest field. CA 2E aligns RHS text when you create
a new panel and when you request field realignment at Edit Device Design. A field on
the Edit Device Design panel allows you to override the number of default spaces
between a field and the right-hand side text.

The CA 2E field defaults for RHS text are based on field attribute types, as described
below. The defaulting is automatic for new fields.

CA 2E Field Attribute Right-Hand side text Default

CDE Alphanumeric code value Code

DT# ISO Date Date

DTE Date in system date format Date

NBR Pure numeric value Number

PCT Percentage or market index Percent

NAR Narrative text Text

QTY Quantity Quantity

STS Status Value

TM# ISO Time Time

TME Time in HHMMSS format HH:MM:SS

TS# ISO Timestamp Timestamp

TXT Object text Text

VAL Monetary value Monetary value

VNM Valid System name Name

PRC Price or tariff Price

IGC Ideographic text IGC Text

Standard Headers/Footers

Chapter 9: Modifying Device Designs 299

Standard Headers/Footers

CA 2E provides a file containing standard header/footer fields to which any functions
defining headers and footers for use by device functions can be attached. CA 2E ships
five default functions with this file. Four of them are Define Screen Format
(DFNSCRFMT) functions. The other default header/footer is a Define Report Format
(DFNRPTFMT) function, which defines report design headers. These default functions
are:

■ *Standard Report Heading

■ *Standard Screen Heading

■ *Std CUA Action Bar

■ *Std CUA Window

■ *Std Screen Heading (CUA)

You can modify these shipped versions as well as add your own DFNSCRFMT and
DFNRPTFMT functions for use in specific function panel designs.

Note: The default date field on the standard header/footer uses the date format as
defined in the job description of the person executing the application. The date on the
header does not use the CA 2E model values YDATFMT and YDATGEN to determine the
run-time format. The date format for this field can be controlled by the individual job
description or the i OS QDATFMT system value.

Function Keys

CA 2E identifies a number of standard function key definitions, for example Exit, Rollup,
and Delete. The standard functions refer to these definitions rather than to any
particular function key. A function key is then assigned to each meaning. This makes it
possible to change the user interface of an application simply by reassigning the
function keys and regenerating the functions.

When you create a new model with the command Create Model Library (YCRTMDLLIB),
the initial values for assigning the function keys are controlled by the DSNSTD
parameter.

You can also specify alternative values for standard function key meanings. For example,
you could specify F7 as the Exit function key.

The following standard function key meanings are used in the default device designs.

Meaning ISeries Default

*Help F01/HELP

Prompt F04

Function Keys

300 Building Applications

Meaning ISeries Default

Reset F05

*Change mode request F09

*Change mode to Add F09

*Change mode to Change F09

*Delete request F11

*Cancel F12

*Exit F03

*Exit request F03

*Key panel request/*Cancel F12

*IGC support F18

Change RDB F22

*Previous page request F07/ROLLDOWN

*Next page request F08/ROLLUP

Note: For CUA Text, you can use F10 to activate the action bar.

Additional function keys can be specified using the Action Diagram Editor. For functions
with an action bar, the command text defaults from the action bar accelerators.

For more information on action diagrams, see the chapter, "Modifying Action
Diagrams."

IGC Support Function Key

The Ideographic Character (IGC) support condition assigns a function key to invoke i OS
ideographic support using the DDS IGCCNV keyword. Note that this information is
optional if your keyboard has an IGC mode key.

Note: Code is only generated for the IGC support function key if the model value
(YIGCCNV) is set to 1.

The following table shows the default function keys by function type.

Function
Type
ISeries

*EXIT

(F01)
(F03)

*PREV

(F02)
(F12)

*ADD

(F09)
(F09)

*CHG

(F09)
(F09)

*DLT

(F11)
(F11)

HOME,
ENTER,
HELP

ROLLUP,
ROLLDOWN

PMTRCD Y - - - Y -

Function Keys

Chapter 9: Modifying Device Designs 301

Function
Type
ISeries

*EXIT

(F01)
(F03)

*PREV

(F02)
(F12)

*ADD

(F09)
(F09)

*CHG

(F09)
(F09)

*DLT

(F11)
(F11)

HOME,
ENTER,
HELP

ROLLUP,
ROLLDOWN

DSPRCD Y - - - - Y -

DSPRCD2 Y Y - - - Y Y

DSPRCD3 Y Y - - - Y Y

EDTRCD Y - Y Y Y Y -

EDTRCD2 Y Y Y Y Y Y Y

EDTRCD3 Y Y Y Y Y Y Y

SELRCD Y - - - - Y Y

DSPFIL Y - - - - Y Y

EDTFIL Y - Y Y - Y Y

DSPTRN Y - - - - Y Y

EDTTRN Y - Y Y Y Y Y

Function Key Explanations

Each panel design includes one or two lines of explanatory text for the function keys on
the footer format. The text is built from the function key conditions referenced in the
action diagram of the function (that is, references to conditions attached to the *CMD
key field). Text for the HELP, HOME, and ROLLUP keys is omitted.

The number of lines of text (one or two), and the positioning of the function key
explanations can be changed by altering the device design of the Standard header
function associated with the device function.

The format of the text depends on the value of the model value YSAAFMT. It can follow
the CUA (F3=Exit) conventions.

The text of the explanations can be changed for the function using the Device Design
Editor. A default set of explanations is provided for the default function keys for each
function type.

Function Keys

302 Building Applications

Specifying Function Keys

Function keys are defined in CA 2E as field conditions attached to the *CMD key field. All
the allowed values are predefined in the shipped system. Refer to the section on the CA
2E environment to see how command key values are assigned.

For more information:

■ On CTL context, and an example of the use of function keys, see Understanding
Contexts in the chapter "Modifying Action Diagrams."

■ On assigning function key values, see Changing the Number of Function Key Text
Lines later in this chapter.

Subfile Selector Values

The same meaning is given to each subfile selector value across all function types. The
options that are actually enabled depend on the function type. The following standard
meanings are used in the default device designs:

*SFLSEL Condition Meaning CUA Entry
Shipped
Values

CUA Text Shipped
Values

*Delete#1 Delete 4 -

*Delete#2 4 -

*Zoom#1 Show details for
this item

5 -

*Zoom#2 5 -

*Select#1 Select this item 1 -

*Select#2 1 -

*Selection char value Select item(s) for
action

- /

*Selection char value 2 - /

Function Keys

Chapter 9: Modifying Device Designs 303

Note: For CUA Text, delete and zoom are on the action bar.

Additional subfile selector values can be specified using the Action Diagram Editor.

Subfile selector values are specified as field conditions attached to the *SFLSEL (subfile
selector) field. For functions with an Action Bar, the subfile selection text defaults from
the Action Bar accelerators. The standard values are present in the shipped system.

Note: The length of the *SFLSEL field can be either one or two characters; it is shipped
with a length of one. Any developer can override the model-wide length for a particular
function on the Edit Screen Entry Details panel. A designer (*DSNR) can change the
model-wide length of the *SFLSEL field using the Edit Field Details panel.

For more information:

■ On the RCD context and the use of subfile selections, see Understanding Contexts in
the chapter "Modifying Action Diagrams."

■ On how to change the values assigned to subfile selector values, see Subfile
Selector Value Explanatory Text later in this chapter.

The following table shows the default selection options by function type.

Function Type *SELECT *DELETE

SELRCD Y –

DSPFIL – –

EDTFIL – Y

DSPTRN – –

EDTTRN – Y

Panel Design Explanatory Text

Panel designs can include two sorts of explanatory text:

■ Explanations of the standard function key meanings

■ Explanations of the standard subfile selector value meanings, such as 4-Delete on
CUA Entry; Delete is an Action Bar choice on CUA Text

An initial version of this text is built automatically for each device design from the action
diagram of the device function. You can then modify it.

The way the explanation text strings are built and the positions in which they are placed
on panel designs depend on the interface design standards that you use. A number of
variations are possible, controlled by the factors described below.

Function Keys

304 Building Applications

Positioning of the Explanatory Text

CA 2E lets you position explanatory text for function keys and subfile selector values.

Function Key Explanatory Text

Function key explanatory text is always placed in the position specified for the *CMDTXT
fields on the standard header function (DFNSCRFMT) associated with the function
whose device design you are editing. You can change the current standard header
function using the function options display. One or two lines of text can be specified. If
two lines of text are allowed but only one is needed, the text is placed in the lower of
the two lines.

You can control whether the explanatory text appears by changing the usage of the
*CMDTXT1 and *CMDTXT2 fields on the associated standard header function‘s device
design.

Function Keys

Chapter 9: Modifying Device Designs 305

Subfile Selector Value Explanatory Text

Subfile selector value explanatory text is only built if there are subfile selector values for
the function.

You have a choice of two different positions in which to place any subfile selection
explanatory text: you can either place it as part of the function key explanation text
(normally at the bottom of the display), or you can place it as a separate line on the
subfile control record (CUA standard).

The position at which subfile selector value explanatory text is placed depends on
whether you specify that the *SELTXT fields on the subfile control field are to be
displayed.

■ If the *SELTXT field or fields (up to two lines are permitted) are visible, the
explanation text appears at the position indicated by them on the subfile control
format.

■ If the *SELTXT fields are hidden, the selection value explanation text appears at the
position indicated by the *CMDTXT field or fields as specified by the associated
standard header function. If there is only one line of *CMDTXT, the subfile
explanation text appears on the same line. If there are two lines of *CMDTXT, then
subfile explanation text appears on the first line and the function key explanations
on the second.

Whether the *SELTXT fields are available on panel designs is controlled by:

■ Enable selection prompt text function option on the associated standard header
function

■ Usage (hidden H or output O) of the *SELTXT fields on the device display

 This is shown by the following table.

DFNSCRFMT Device Design Resulting Position of
Text

CMDTXT
1 usage

CMDTXT
2 usage

Enable
pmt txt

SELTXT1
Usage

SELTXT2
Usage

– – N – – No text explanations

O – – – Selection and
command text in
*CMDTXT1 field

O O 1 – – Selection in
*CMDTXT1,

Command text in
*CMDTXT2

Function Keys

306 Building Applications

DFNSCRFMT Device Design Resulting Position of
Text

CMDTXT
1 usage

CMDTXT
2 usage

Enable
pmt txt

SELTXT1
Usage

SELTXT2
Usage

O – 1 O – Command text in
*CMDTXT1

Selection in *SELTXT1

O – 2 O H Command text in
*CMDTXT1

Selection in *SELTXT1

O O 2 O O Command text in
*CMDTXT1&2

Selection in
*SELTXT1&2

The selection text fields (*SELTXT1& *SELTXT2) can be preceded by a third field, the
selection prompt field (*PMT) contains an explanation of how to use the explanation
fields.

For example: Type: option, press Enter.

Form of the Explanatory Text

To build the text, CA 2E examines the action diagram to determine how the function
keys and subfile selection values are used. It then uses the condition name associated
with each function key condition or selection value condition found to create a text
string according to the design standard specified by the model value YSAAFMT.

Function Keys

Chapter 9: Modifying Device Designs 307

CUA Entry Format

If the YSAAFMT model value has the value *CUAENTRY, text has the form:

nn=Action nn=Action
Fn=Function Fn=Function

For example:

D=Delete
F3=Exit F9=Change mode

CUA Text Format

If the YSAAFMT model value has the value *CUATEXT, text has the form:

/ = Select(1)
Fn = Function Fn = Function

For example:

/ = Select
F3 = Exit F9 = Change mode

Specifying Panel Design Explanatory Text

For functions that can operate in more than one mode, there can be two versions of the
explanatory text, one for each mode in which the function can operate. You can change
or add to the explanatory text for the different modes using the Edit Screen Design
Command Text panel that is available from the Edit Screen Design panel.

Changing the Number of Function Key Text Lines

308 Building Applications

Changing the Number of Function Key Text Lines

You can specify alternative values for standard function key meanings. For functions
with an action bar, the function key text defaults from the action bar accelerators.

Each panel design includes one or two lines of explanatory text for the function keys on
the footer format. The text is built from the function key conditions referenced in the
action diagram of the function, for example, references to conditions attached to the
*CMD key field. Text for the HELP, HOME, ROLLUP, ROLLDOWN, and ENTER keys is not
displayed on the panel design.

The number of lines of text (one or two) and the positioning of the function key
explanations can be changed by altering the device design of the standard header
function associated with the device design.

Function key explanatory text is always placed in the position specified for the *CMDTXT
fields on the standard header function Design Screen Format (DFNSCRFMT) associated
with the function whose device design you are editing. You can specify one or two lines
of text. If you specify two lines and only one line is needed, the text is placed in the first
line.

To change the number of function key text lines:

1. Go to the Function Options panel for the header/footer default.

2. Change the enable selection prompt text field (number of selection prompt text
lines).

3. Change the usage of the *CMDTXT1 or *CMDTXT2 accordingly.

Note: You are changing the standard header/footer default. All footers associated with
this default are affected.

Table of Panel Design Attributes
Screen Design Attribute Initially Set By Changed by Override on

Standard Header/
Footer

Override on
Function

Default header/footer and
Action Bars and Windows

DSNSTD
parameter of
YCRTMDLLIB

Default option on header/
footer or YCHGMDLVAL for
YSAAFMT

N Y

Position of selection text Dependent on
default Standard
header/footer

Altering Standard
header/footer

Y N

Style of function key and
selection text explanations

DSNSTD
parameter of
YCRTMDLLIB

YCHGMDLVAL for
YSAAFMT

N Y

Editing Device Designs

Chapter 9: Modifying Device Designs 309

Screen Design Attribute Initially Set By Changed by Override on
Standard Header/
Footer

Override on
Function

Default function keys DSNSTD
parameter of
YCRTMDLLIB

Change LST conditions for
*CMDKEY in model or
YCHGMDLVAL for
YSAAFMT

N N

Fixed display attributes DSNSTD
parameter of
YCRTMDLLIB

YEDTDFTATR N Y

Dot leaders DSNSTD
parameter of
YCRTMDLLIB

YCHGMDLVAL for
YLHSFLL,YCUAEXT

N N

Right-hand side text YCUAEXT set to
*CUA89

YCHGMDLVAL for
YCUAEXT

N N

Virtual Field Indenting YCUAEXT set to
*CUA89

YCHGMDLVAL for
YCUAEXT

N N

Prompt YCUAPMT set to
*MDL

YCHGMDLVAL for
YCUAPMT

N N

Editing Device Designs

The default device designs that are created when the functions are defined can be
modified to suit specific needs. This topic provides you with information on how to
make changes to the default device designs.

For more information on prototyping your CA 2E device design using Toolkit, see the
Implementation Guide and the Toolkit Concepts Guide.

Editing Device Designs

310 Building Applications

Editing the Device Design Layout

CA 2E lets you edit the layout of your device design to display the information that you
need to see. Only 80 characters of the panel design can display at a time. This means
there are times when all fields in a record cannot be displayed. There are function keys
that allow you to shift the panel horizontally, moving left to right, to realign or to display
the selected fields of your record that exceed the 80-character design layout.

Depending on where you are in CA 2E, you have more than one option for getting to
your device design. Use one of the following sets of instructions.

Note: These instructions are only provided here, in the beginning of this chapter. Other
instructions in this chapter assume that you are at the device design level.

From the Edit Database Relations Panel

1. View the list of functions. Type F next to the selected relation and press Enter.

The Edit Function panel appears.

2. Type S next to the selected function and press Enter.

The device design for the selected function appears.

From the Open Functions Panel

Type S next to the selected function and press Enter.

The device design for the selected function appears.

From the Edit Function Details Panel

Press F9.

The device design for the selected function appears.

From the Edit Model Object List Panel

Type 17 next to the selected function and press Enter.

The device design for the selected function appears.

Editing Device Designs

Chapter 9: Modifying Device Designs 311

Changing Fields

You can change the usage of a field on a device and conditionally set the display
attributes.

To Change the panel’s format relations

1. Select the field. At the device design, place the cursor on the selected field and
press F7.

Note: The selected field must be a field in the first subfile record excluding the
subfile select field.

The Edit Screen Format Relations panel appears.

Editing Device Designs

312 Building Applications

Note: Use the Edit Report Format Relations panel for report designs.

2. Change the format relations. Select one of the following options to change the
format relations and press Enter. An explanation of each option is provided.

■ O = optional

■ R = required

■ N = no error

■ U = user checking

■ S = select alternate prompt function

■ T = cancel alternate prompt function selection

For more information on the format relations options, see the Editing Device Design
Formats later in this chapter.

CA 2E optional F4 prompt function assignment enables you to override the function
assigned to the access path relationship at the access path and function levels. Using F4
prompt function assignment you can assign any external function other than Print File to
the relation. The relation must be a file-to-file relationship.

To Assign the Override at the Function Level:

1. At the Edit Screen Format Relations panel, type S next to the selected relation and
press Enter.

The Edit Function panel appears.

2. Type X next to the selected function and press Enter.

To Cancel the Override Selection type T next to the selected relation to turn off the
selection override. CA 2E now overrides the default function assigned to the access path
relationship.

For more information on F4 prompt function assignment, see SELRCD in the chapter
"Defining Functions."

To Change the Field’s Format Details

1. Select the field. At the device design, place the cursor on the selected field and
press F5.

The Edit Screen Format Details panel appears.

Editing Device Designs

Chapter 9: Modifying Device Designs 313

Editing Device Designs

314 Building Applications

Or,

Place the cursor on the selected field and press Enter.

The Edit Report Entry Details panel or the Edit Screen Entry Details panel appears,
depending on the function type.

F10 toggles between the detail format and tabbing sequence panels.

This panel allows you to see the sequence in which fields are displayed and if you
are using ENPTUI, to adjust the sequence as you prefer. For further information, see
the section on ENPTUI later in this chapter.

Note: You can modify I/O usage on this panel, which allows you to hide the field.

2. Change the format details. Select one of the following options to change the format
details and press Enter. An explanation of each option is provided below.

■ I = input

■ O = output

■ H = hide

■ – = drop

The panel is refreshed and your selection is reflected in the Ovr (Override) field.

Editing Device Designs

Chapter 9: Modifying Device Designs 315

Hiding/Dropping Fields

To hide or drop fields from your device design you need to change the device field entry
properties of the device design fields.

Note: Only fields on the control key format or fields on the Prompt Record (PMTRCD)
function type can be dropped. Record/detail fields can only be hidden. If the option is
available for a field, it is generally better to drop a field rather than to hide one. Hidden
fields generate associated processing while dropped fields do not. You can use access
paths with dropped fields to achieve the same result.

Setting the Subfile End Indicator

The Subfile End (YSFLEND) model value controls whether the ‘+’ sign or
More. . .’ appears in the lower right location of the subfile to indicate that the subfile
contains more records. This capability is available for all subfile functions. The setting
can be overridden with the associated function option. The possible values are:

■ *PLUS—A ‘+’ sign indicates that the subfile contains more records. This is the
shipped default.

■ *TEXT—‘More. . .’ indicates that the subfile contains more records. ‘Bottom’
displays to indicate that the last subfile record is displayed. Use of *TEXT prevents
the last character of the last line of the subfile from being overridden by the '+'.

Existing functions default to *MDLVAL. To change to *TEXT everywhere, change the
model value and regenerate your subfile functions.

Editing Device Designs

316 Building Applications

Editing Device Design Function Keys

While you are in your device design, you can move or rearrange the order of the fields
on your display using the following function keys.

■ F1 moves the field 40 positions to the left.

■ F2 animates the panel using Toolkit.

■ F3 exits the panel.

■ F4 moves the field 40 columns to the right.

■ F5 edits device format details of the format where the cursor is positioned.

■ F6 cancels the pending operations.

■ F7 displays the Edit Device Design Format Relations panel.

■ F8 moves the selected field to the cursor position.

■ F9 wraps text onto the next line starting from the field on which the cursor is
positioned.

■ F10 moves text one column to the right.

■ F11 removes the line on which the cursor is positioned.

■ F12 aligns text below the cursor position.

■ F13 fast exits the panel.

■ F15 moves panel window to the left margin.

■ F16 moves window to the right margin.

■ F17 displays a list of device formats.

■ F18 displays the Edit Field Attributes panel.

■ F19 adds new function fields to the device design.

■ F20 edits the function field on the device design.

■ F21 adds a line above the cursor position.

■ F22 moves text one column to the left.

■ F23 adds a constant field to the device design.

■ F24 aligns all fields under the cursor position.

Editing Device Designs

Chapter 9: Modifying Device Designs 317

Modifying Field Label Text

You can modify the field details of the device using the following steps:

1. View the field text details. At the device design, place the cursor on the field you
want to modify and press Enter.

The Edit Screen Entry Details panel appears.

2. Modify the labels for the selected field.

Changing Display Length of Output-Only Entries

From the Edit Screen Entry Details you can override the display length of any
output-only entry by entering a value in the Override length field. An entry is considered
output-only if its I/O Usage is O.

Note: You can also use this method to override the model-wide length of the input
capable *SFLSEL (subfile selector) entry for a function.

Override length field guidelines:

■ The value you enter must be shorter than or equal to the actual length of the entry.
The current display length is shown in the Display length field.

■ If you enter 0 or leave the Override length field blank, the display length defaults to
the value shown in the Display length field. For *SFLSEL, if the Override length field
is 0 or blank, the display length defaults to the model-wide length.

■ If data for the entry is longer than the display length, the data is truncated.

■ If you change the I/O usage for the entry to I (input), you cannot change the entry’s
display length.

Editing Device Designs

318 Building Applications

Displaying Device Design Formats

You can see which formats are present in a device design using the following
instructions:

View the design formats. Press F17.

The Display Screen Formats panel appears.

Editing Device Design Formats

You can see which field entries are present in a device design format using the following
steps:

1. Edit the formats. Place the cursor on the selected field on the format and press F5.

The Edit Screen Format Details panel appears.

Note: If there is more than one format, CA 2E shows you all choices. Select the
format you want to edit.

2. Modify the format details.

Editing Device Designs

Chapter 9: Modifying Device Designs 319

Viewing and Editing Format Relations

Each of the database fields present on a function’s device format is there because of a
relation. Each relation in the access path to which the function attaches gives rise to a
device design relation. Each of these relations is resolved into one or more field entries
in the device format.

By default, all of the relations on an access path are present on the device design.
Depending on the function type, you can override the defaults to drop particular
relations. Dropping relations has the effect of dropping the panel field entries resulting
from the resolution of the relation.

File-to-file relations, such as Refers to, can also lead to referential integrity checking.
This check is implemented as a Read to the Referred to file in order to ensure that a
valid key was specified. You can improve performance by dropping or using these checks
for functions where this check is not required. This would typically be on those
functions that do not update the associated foreign key. The Edit Screen Format
Relations panel is used to adjust how these relations are processed.

To edit the format entries, use the following steps:

1. View the details. At the device design, place the cursor on the field you want to
modify and press Enter.

The Edit Screen Entry Details panel appears.

2. View the format relations. Press F7 to view the relations.

The Edit Screen Format Relations panel appears.

Note: Use the Edit Report Format Relations panel for report designs, which you
reach through the Edit Report panel.

When CA 2E generates a program to implement the function, it normally includes
source code to check that all of the relations are satisfied. For a particular relation on
the device design you can specify that this enforcement of the device design relations
should not take place. You can specify five different degrees of enforcement:

1. Required Relations

The relation is always enforced. Any field arising from the relation must be entered with
a non-zero or non-blank value. If the relation is a file-to-file relation, a record must exist
for each field on the referenced file.

2. Optional Relations

The relation is only enforced if a value is entered for any of the fields that resolve the
relation.

Editing Device Designs

320 Building Applications

3. Dropped Relations

The relation will be dropped. The field arising from the relation is omitted from the
format altogether. Dropped relations are only allowed for Print File and Prompt Record
functions.

4. User Relations

The relation will not be checked. Fields arising from the relation are still present on the
format. You can add your own validation for the relation at an appropriate point in the
action diagram.

5. No-Error Relations

The relation is checked (under the same conditions as for optional). If no record is
found, no error is flagged. The relation is used only to retrieve information, if present.

The following table identifies the relations and how they can be set using the Edit
Screen Format Relations panel.

Function Type REQUIRED OPTIONAL DROPPED USER NO-ERROR

PMTRCD Any Rel Any Rel Any Rel Any Rel File to File

DSPRCDn Any Rel None Any Rel

EDTRCDn Any Rel Non-key None Any Rel File to File

SELRCD Any Rel None Any Rel

EDTFIL Any Rel Non-Key None Any Rel File to File

SELRCD Any Rel None Any Rel

DSPFIL Any Rel None Any Rel

DSPTRN (2) Any Rel Non-key None Any Rel File to File

EDTTRN Any Rel None Any Rel

Editing Device Designs

Chapter 9: Modifying Device Designs 321

Adding Function Fields

You can add or edit function fields to the device designs of functions using the following
steps:

1. View the function fields. At the device design, place the cursor to the left of where
you want to add the function field and press F19.

The Edit Function Field panel appears.

 2. Add the function fields. Type the name of the field that will be added or
choose the selected function field from a list by entering: ?.

If you are adding a new function field, use ? to display all fields and F10 to create a new
one. During this selection process, you can define any new function field for use in this
or any other function.

Editing Device Designs

322 Building Applications

Modifying Function Fields

You can change the definition of an existing function field while in the device design.
Remember that this changes the definitions of the field for all functions using this
definition.

1. At the device design, place the cursor on the selected field and press F20.

The Edit Function Field panel appears.

2. Type a ? next to the field name and press Enter.

The Display Fields panel appears.

Note: If you know the name of your function field you can type it after the ?. This
positions the cursor on that function field when the panel appears.

3. Zoom into the field and modify the edit field details.

4. Press F3 to exit the field details and return to the device design.

Deleting Function Fields

You can remove a function field from the device design using the following steps:

1. At the device design, place the cursor on the selected function field and press F20.

The Edit Function Field panel appears.

2. Delete the function field. Press F11.

Note: Deleting a function field immediately removes the field from your device
design, even if you exit the device design without saving your changes.

Deleting a derived function field and exiting without saving does not remove the
function field from the action diagram.

Editing Device Designs

Chapter 9: Modifying Device Designs 323

Adding Constants

You can add constants to the device format using the following instructions:

Add the constant. At the device design, place the cursor on the field after which the
constant is to appear and press F23.

The Edit Screen Constant or Edit Report Constant panel appears.

Deleting Constants

You can remove a constant using the following instructions:

Delete the constant. At the device design, place the cursor on the constant press Enter,
and then press F11. The Edit Screen Constant panel appears.

Note: Deleting a constant immediately removes the constant from your panel design,
even if you exit the panel design without saving your changes.

Modifying Action Bars

Depending on the function, CA 2E provides logical action bar defaults for action bar
choices, action bar mnemonics, pull-downs, and associated descriptive text, and
pull-down accelerator keys.

The standard (*STD CUA) action bar header/footer default choices are described next.

Editing Device Designs

324 Building Applications

CUA Text Standard Action Bars

Depending on the function, CA 2E provides logical action bar defaults for action bar
choices, action bar choice mnemonics, pull-downs and associated descriptive text, and
pull-down accelerator keys.

The *STD CUA Action Bar header/footer default choices are described below.

File

The File choice is for actions that apply to the primary conceptual object to which the
panel applies. The following actions are used for one or more panels:

Action Meaning

New Switch to add mode

Open Switch to change mode

Reset Reset panel

Delete Delete the object instance

Cancel Return to previous panel

Exit Leave without update

Function

The Function choice is for actions that apply to the whole panel or interface object.
When the action bar definition panel is loaded, each *CMDKEY condition that is
referenced in the function’s action diagram and not already in the action bar definition
is loaded as a Function pull-down choice. The following action is used for one or more
panels:

Action Meaning

Actions *CMDKEY conditions loaded from the action diagram

Editing Device Designs

Chapter 9: Modifying Device Designs 325

Selector

The Selector choice is for actions that apply to a part of the panel or interface object.
When the action bar definition is loaded, each *SFLSEL condition referenced in the
function’s action diagram and not already in the action bar is loaded as a Selection
choice. The following actions are used in one or more panels:

Action Meaning

Delete item Delete the defined item or items

Selectors *SFLSEL conditions loaded from the action diagram

Help

The Help choice is for actions associated with Help. The following actions are used in
one or more panels:

Action Meaning

Help Help for the part of the panel where the cursor is located

Ex help Help for the whole panel

Keys help Help for accelerator keys

Help index Help index

Editing Device Designs

326 Building Applications

You can override the action bar defaults, using the Action Bar Editor and the following
instructions.

1. Go to the Action Bar Editor. Move the cursor to the action bar at the top of the
panel and press Enter.

The Action Bar Editor appears.

2. Select the option you need to make your modifications. The first panel, Work with
Choices, allows you to modify action bar choices. From this panel, you can access
other panels on which you can modify the pull-down choices. These panels are as
follows:

■ A—Work with Actions of a Choice

■ F7—Work with Actions

■ Z—Edit a Choice (panel displays details)

■ N—Edit Narrative

Modifying Windows

A window can range in size from 5 columns by 5 rows, not including the borders, to just
less than the full size of the display. When implementing DDS windows, i OS adds two
columns on each side of your window and one additional row. The columns protect the
display attributes of the underlying panel. The additional row is reserved for i OS system
messages. Therefore, the application program window appears slightly larger than when
viewed in the panel design.

Attribute Values

Width 76

Editing Device Designs

Chapter 9: Modifying Device Designs 327

Attribute Values

Depth 22

Location A for Auto (the program automatically places the window).

The other option for Location is U (the window location is
defined by the programmer). To locate the window, use the
Row, Column, and Corner settings. The corner that you specify
is placed in the displacement specified from the top left of the
screen.

Row 1

Column 1

Corner TL

In the following example, the window’s displacement is specified by naming the row and
column at which a particular corner is to be positioned, for example, top left (TL), top
right (TR), bottom left (BL), or bottom right (BR).

Note: You do not see the displacement when editing the device design.

To change the window size and other window features, use the following steps:

1. Go to the Windows Options. From the device design, place the cursor on the
function title and press Enter.

The Edit Function’s Windows Options panel appears.

2. Modify the defaults to meet your requirements.

Editing Device Designs

328 Building Applications

Modify the defaults to meet your requirements. Modifying Display Attributes and
Condition Fields

The display attributes of a field are initially set by default to the model standards. These
attributes define how a field is displayed; for example, if it is input, output, or in error.
You can change the model standards and the controlling condition using the Edit Default
Device Field Attributes (YEDTDFTATR) command.

The display attributes for an individual field on a panel can be changed using the
following steps:

1. At the device design, place the cursor on the selected field and press F18.

The Edit Screen Field Attributes panel or Edit Report Field Attributes panel appears.

Editing Device Designs

Chapter 9: Modifying Device Designs 329

2. Modify the attributes or conditions.

Note: If you enter Y for Apply to field text and if the condition to display the field as
output is true, the LHS text, RHS text, or column heading associated with the field
assumes the output field attributes you assigned for the field.

Fields can be switched to another set of display attributes depending on the condition.
This includes switching to output only or to non-display. If you need to condition the
field based on a complex or compound condition, you should consider adding a derived
function field that sets a true/false condition field to the panel as a non-display field.

This change should yield a true/false status condition. The associated action diagram
can contain a compound condition. Using this technique, any combination of
parameters and conditions can be encapsulated as a single status condition and used to
condition a panel field.

Usages Display Printer

O Y Y

I Y -

B Y -

H Y Y

Display Attributes Display Printer

HI Y –

UL Y Y

RI Y –

CS Y –

BL Y –

ND Y Y

Editing Device Designs

330 Building Applications

Editing Panel Design Prompt Text

Panel designs can include two types of explanatory text:

■ Explanations of the standard function key meanings (such as, F4 prompt, under the
CUA Entry standard)

■ Explanations of the standard subfile selector value meanings (such as, 4-Delete on
CUA Entry, Delete is an action bar choice on CUA Text)

An initial version of this text is automatically built for each device design from the action
diagram of the device function. You can modify it if needed.

The way the explanation text strings are provided and the order in which they are
placed on panel designs depends on the interface design standards you use.

Function Key Text

Function key selection text is always placed in the position specified for the *CMDTXT
fields on the standard header function Define Screen Format (DFNSCRFMT) associated
with the function of the device design you are editing. You can change the current
standard header for the function using the Function Options panel. One or two lines of
text can be specified. If two lines of text are specified, but only one is needed, the text is
placed in the lower of the two lines.

You can control where the text appears by changing the usage of the *CMDTXT1 and
*CMDTXT2 fields on the associated standard header function’s device design.

Editing Device Designs

Chapter 9: Modifying Device Designs 331

Subfile Selector Text

Subfile selector value explanatory text is built only if there are subfile selector values for
the function.

You have a choice of two different positions in which to place any subfile selection
explanatory text:

■ Place the text as a separate line on the subfile control record (CUA standard).

■ Place the text as part of the function key explanation text. Typically at the bottom
of the display (System 38 standard).

To manually change the text, use the following step to refresh the text from any action
you take in the action diagram:

Place the cursor on any line of explanatory text and press Enter. The Edit Command Text
panel appears.

The position at which subfile selector value explanatory text is placed depends on
whether you specify that the *SELTXT fields on the subfile control fields display on the
associated standard header/footer.

1. If the *SELTXT fields (up to two lines are permitted) are visible. The descriptive text
appears at the position indicated on the subfile control format.

2. If the *SELTXT fields are hidden, the selection value explanation text appears at the
position indicated by the *CMDTXT fields as specified by the associated standard
header function. If there is only one line of *CMDTXT, the subfile explanation text
appears on the same line. If there are two lines of *CMDTXT, subfile explanation
text appears on the first line and the function key explanations on the second.

Note: If you hide these fields on any device design then they are hidden and the
associated text is not moved or adjusted.

Whether or not the *SELTXT fields are available on screen designs is controlled by the
Enable Selection Prompt Text function option of the associated standard header
function and the usage (hidden - H or output - O) of the *SELTXT fields on the device
display.

The selection text fields (*SELTXT1 and *SELTXT2) can be preceded by a third field, the
selection prompt field (*SELPMT), which tells you how to use the explanation fields.

For example: Type option, press Enter.

Editing Device Designs

332 Building Applications

Selector Role

For fields that are selectors on the control formats of DSPFIL and SELRCD functions, you
can specify the nature of the selection in terms of a relation operator. This can be one of
the following:

■ Relational Operator (EG, NE, LT, LE, GE, GT)—Selects records with field values that
satisfy a test specified by the operator and the selector field value.

For example: GT 10, EQ IBM, LT 100

■ Start Operator (ST)—Selects records with field values that start with the specified
value (character fields only).

For example: A selector field value of TXT would select TXTDTA and TXTSRC but not
QTXTSRC.

■ Contains Operator (CT)—Selects records with field values that contain the specified
value for the field (character fields only).

For example: A selector field value of TXT would select QTXTSRC, FREDTXT, and
TXTDTA.

If a value is entered for the selector field, selection is only applied at execution time. If a
value is entered in more than one selector field, the selection criteria are logically
ANDed together.

For example, on the following DSPFIL function example, three different types of selector
role are specified.

Editing Device Designs

Chapter 9: Modifying Device Designs 333

Add SFLFOLD/SFLDROP to a Subfile Function

You can automatically add Subfile Fold (SFLFOLD) and Subfile Drop (SFLDROP)
functionality to your generated subfile functions. SFLFOLD/SFLDROP lets you define a
command key for the function so that it can be used to toggle between folded mode
and dropped mode. In folded mode, the subfile displays as it does in the screen
designer, with each subfile record taking up more than one display line. In dropped
mode, the operating system automatically truncates each subfile record so that only the
data fields that appear on the first display line are displayed. This means that twice as
many subfile records are displayed.

SFLFOLD/SFLDROP functionality is only applicable to multiline subfiles. That is, subfiles
where one subfile record extends over more than one line on the screen. It is available
for the following function types:

■ DSPFIL – Display file

■ DSPTRN – Display transactions

■ EDTFIL – Edit file

■ EDTTRN – Edit transactions

■ SELRCD – Select record

Follow these steps:

1. Edit the device design for a subfile function.

2. Verify that the subfile record extends over more than one display line.

Editing Device Designs

334 Building Applications

3. Press F17 to display the DISPLAY SCREEN FORMATS panel and select option Z
(Details) against the Subfile Control format to display the EDIT SCREEN FORMAT
DETAILS panel.

4. Enter the desired command key to use for SFLFOLD/SFLDROP, toggling in the
Command Key for SFLFOLD field.

Valid values are 03, 05–11, or 13–24. All other keys are reserved for other use by CA
2E.

Notes:

■ It is your responsibility to ensure that the selected command key does not
interfere with a command key that is already in use for this screen. The 05
command key is usually selected for the *CMD key field *Reset list condition.
However if 05 is not used in the *Reset list condition, then the 05 command
key is available to be used for SFLFOLD/SFLDROP toggling.

■ If this field is left blank, SFLFOLD/SFLDROP functionality is not enabled for this
function. Because automatic checking is not done to ensure that the selected
command key is not used by the function, it is your responsibility to ensure that
the specified SFLFOLD/SFLDROP key does not clash with a command key used
by the function.

In the following example, 06 has been chosen as the SFLFOLD/SFLDROP command
key:

Editing Device Designs

Chapter 9: Modifying Device Designs 335

5. Return to the main screen design page, move the cursor to the command key text,
and press Enter to display the EDIT COMMAND TEXT panel.

6. Press F5 to refresh the display. The text for the specified command key is added
automatically.

Edit or remove the text: the Fold/Truncate text is retrieved from message identifier
Y2F5361 in message file Y2ALCMSG, which can be edited to globally change the
default text. Whether this text is displayed or not, the SFLFOLD/SFLDROP
functionality is still enabled for the function.

When the function is generated, code is automatically included in the DDS for the
display file and in the source for the program to set and check the subfile mode
before and after the screen is displayed. The subfile mode is available
programmatically through the *Subfile mode field in the PGM context. It has an
internal DDS name SFM, and has the following conditions:

*Folded VAL 0 0

*Truncated VAL 1 1

7. Within the action diagram, setting the PGM.*Subfile mode field prior to the screen
being displayed causes the screen to be displayed in the desired format (folded or
dropped). By default, a screen displays in folded mode. Pressing the specified
SFLFOLD/SFLDROP command key when the screen is displayed does not return
control to the program but simply causes OS/400 to redisplay the screen in the
alternate format (folded or dropped). Upon return from the display, because you
have pressed another command key or the Enter key, the value of the PGM.*Subfile
mode field can be rechecked to see if the mode has been changed since the screen
was displayed.

Editing Device Designs

336 Building Applications

Example SFLFOLD/SFLDROP

In the previous procedure, when the screen is initially displayed, it displays as follows,
where only four records are displayed, each showing the full subfile record:

Pressing F6 redisplays the screen, showing only the first line of each subfile record, with
up to 12 records partially displayed. The following panel demonstrates this screen:

ENPTUI for NPT Implementations

Chapter 9: Modifying Device Designs 337

ENPTUI for NPT Implementations

The enhanced non-programmable terminal user interface (ENPTUI) within CA 2E,
provides options for:

■ Menu bars

■ Drop-down selection fields

■ Cursor progression

■ Entry field attributes

■ Multi-line entry

■ Edit mask

The environment required to implement ENPTUI features includes:

■ V2R3 of i OS or V2R2 of i OS with PTFs.

■ An InfoWindowII workstation with a workstation controller that supports an
enhanced data stream. Alternatively, V2R3 of Rumba/400 supports the ENPTUI
features. ENPTUI functions are ignored or display with varying degrees of quality on
other terminals.

For more information on display and terminals, see IBM’s Manual Creating a Graphical
Look with DDS SC4101040.

ENPTUI for NPT Implementations

338 Building Applications

Creating Menu Bars

You can generate DDS menu bars instead of CA 2E Action Bars with ENPTUI. To indicate
whether to generate the run-time action bars or DDS menu bars for NPT, use the model
value:

YABRNPT

This model value is used for NPT generation only and can be overridden at the function
level with function options. The Panel Design Values panel from the Display Model
Values panel (YDSPMDLVAL) displays this model value.

Valid values are:

*ACTBAR = Create CA 2E Action Bars, default for models created prior to COOL:2E
Release 5.0.

*DDSMNU = Create DDS Menu Bars, the default for models created after COOL:2E
Release 5.0.

You are advised to migrate to DDS Menu Bars if you have upgraded a model from a
release of COOL:2E earlier than 5.0. This is because DDS Menu Bars make use of the new
i OS ENPTUI features that allow the menu bars to be coded in the DDS for the display
file. The CA 2E Action Bars require an external program to be called to process the
action bar. As a result, the DDS Menu Bars are faster, have more functionality, and
create more efficient CA 2E functions.

Note: If you use DDS menu bars, you need to use the User Interface Manager (UIM) to
define help for your actions and choices.

The Edit Function Option panel has the following function option:

If action bar, what type?: (M-MDLVAL, A-Action bar, D-DDS menu bar)

The default value is M, representing MDLVAL.

For DDS Menu Bar:

■ Choices and actions are white

■ The color of a selected choice or action is the same color as the menu bar separator
line

■ The color of the menu bar separator line is the color assigned in YWBDCLR (Window
border color)

■ A separator line is required for menu bar generation

■ If a choice has no actions attached, it does not display

ENPTUI for NPT Implementations

Chapter 9: Modifying Device Designs 339

Unlike CA 2E Action Bars, menu bar selections may not have the same sequence
number. CA 2E currently allows NEW and OPEN to each have a sequence number of 1. It
is not required that this be changed. However, if you do not change it, the generators
reassign the sequence number to 2 for NEW.

Assigning Sequence Numbers for Actions

An example of sequence number assignments from the Work With Actions of a Choice
panel follows:

Opt Sequence Action Usage CUA Model

 1 Open A

 2 New A

 3 Reset A

 99 Exit A

Gaps in the numbering sequence of actions create a blank line between action choices
in the pull-down menu. For example, the menu resulting from this example displays a
gap between the Reset and Exit choices. This i OS feature allows you to group options,
but you can eliminate an unwanted gap by renumbering the actions sequentially.

Working with Choices

If there are more choices than can display on a single line, they wrap to the next line.
The display menu choices can take up as many lines as needed. The remainder of the
device design is displaced downwards. However, CA 2E Action Bars horizontally scroll
the choices without affecting the remainder of the device design.

■ The maximum number of lines that can be devoted to the display of choices is
twelve including one line for the menu bar separator

■ The minimum number of lines required for a DDS Menu Bar is three

■ CA 2E Action Bars require two lines for display

Note: If you change a function from action bar to menu bar it may fail to generate due
to the displacement of the device by the additional lines required for the menu bar
display.

ENPTUI for NPT Implementations

340 Building Applications

Specifying a Drop-Down Selection Field

When a STS field is assigned as a drop-down list, a Window is created in the display file.
The window contains a single choice field (SNGCHCFLD radio button selection), where
the choices for the control equal the available condition values.

Note: If the number of values attached to a condition changes, you must regenerate the
function.

The condition name associated with each condition value appears in the pop-up
window. After you select a value, the window closes and the external value for the
selected condition is placed in the prompted field.

The drop-down list is positioned on the screen with its top left corner in the first
character of the status field. If there is not enough room on the screen, the drop down
list moves left and up until it fits on the screen.

Note: The drop-down list can only be prompted using F4 (or equivalent assignment);
you cannot prompt with a question mark.

The following is an example of a drop-down list:

ENPTUI for NPT Implementations

Chapter 9: Modifying Device Designs 341

When you prompt Allow Credit with the F4 key, the previous window displays and
overlays other fields. When a value is selected, the window is removed.

You can designate a STS (status) field as a drop-down list at the condition level, the field
level, and the screen entry level, as in the partial screen examples that follow:

ENPTUI for NPT Implementations

342 Building Applications

■ Condition level is the highest level from which you can specify a drop-down list with
inheritance by every field that shares this condition

■ Field level assignments override condition level assignments

■ Screen level assignments override field level assignments

On the Field level, F10 toggles between the field control information and the
appearance fields.

To specify,

1. From the Edit List Condition panel, the Edit Field Details panel or the Edit Screen
Entry Details panel, place your cursor in the Prompt Type field.

2. Enter *DDL to specify a Drop-Down List.

Note: The Prompt Type field only displays if the field is STS.

The field may be prompted with a ? to get a list of valid values. Valid values for Prompt
Type at the Condition, Field or Screen level are:

*Drop Down List (or *DDL)

*Condition Values Displayer (or *CVD) is the

 default value

Defaulting of Prompt Type

If you do not specify a Prompt Type from the device design:

■ The default value is the value assigned at the field level

■ If there is no value assigned at the field level, the default is taken from the
condition level assignment

■ If no condition level assignment is set, the default prompt is the Condition Value
Displayer

The Prompt Type displays as:

■ Normal intensity when displaying the default assigned at a previous level

■ High intensity if the default is overridden

ENPTUI for NPT Implementations

Chapter 9: Modifying Device Designs 343

Some Specifics of Drop-Down Lists

Some things to keep in mind when specifying a drop down selection list are:

■ Status fields with more than 22 condition values do not generate as drop-down
lists, since they are too large for the display.

■ There is a maximum of 99 drop-down lists associated with a single program.

■ For EDTRCDn and DSPRCDn functions, if the same status field appears on more than
one screen, then all instances should be the same prompt type. That is, either all
condition value displayer or all drop-down list. Each instance of the field should also
be assigned the same check condition whether condition value list or drop-down list
is used.

Mnemonics

You can assign mnemonics using the Edit Field Condition Details panel. They are also
displayed on the Edit Field Conditions panel. When assigning a mnemonic, note that:

■ The character chosen as the mnemonic must be a single-byte character present in
the condition name

■ The character must not be duplicated within the same status field

■ Blank and greater than (>) characters cannot be used as mnemonics

■ DBCS mnemonics are not supported by DDS

National Language

For national language applications (NL3), the condition value text is translatable at run
time. The size of the Drop-Down List window is large enough to hold the maximum
length condition value name, which is 25 (for nonNL3 applications, the window is only as
wide as is necessary to display the longest condition value name within the given check
condition). Just as with the condition value displayer, the condition values file must be
translated. Mnemonics are not available in national language applications unless
translators embed the mnemonic indicator ‘>’ in the translated text. If this is done, the
translator must be careful not to duplicate mnemonics within a single check condition.

ENPTUI for NPT Implementations

344 Building Applications

Assigning Cursor Progression

Cursor progression assignments give you the ability to assign a tabbing sequence
between fields that are logically grouped together within generated functions. For each
field within a record format, you can assign its position within the tabbing sequence. For
back tabbing, cursor progression assignments are reversed.

Note: The last field displayed within a format should be the highest field in the tab
sequence order. This is a design suggestion, because if not designed in this way, tabbing
within the generated function loops within a single format.

To edit the cursor progression assignments, press F10 from Edit Screen Format Details
panel. This panel is shown earlier in this chapter in the Editing Device Designs section.

You can assign tabbing sequence and change the order in which fields display from the
Edit Screen Format Details panel. "F8 = move", from the device design editor, was the
only way to change the order in which fields displayed. When you use F8 to move a
field, that field is assigned a new display sequence number equal to that of the target
field plus 0.01. Therefore, if you key in new display sequence numbers, you should key
in only integer values.

Cursor Progression and Subfiles

For RCD context, valid values for tabbing sequence number are 0 and 1.

■ Value 0 means that no specific tabbing requirements are to be generated and the
cursor should progress to the next field in the same subfile record.

■ Value 1 means that when TAB is pressed in the indicated field then the cursor
should advance to the same field in the next subfile record.

All functions are created with default tabbing sequence numbers of 0 to indicate default
tabbing: left to right, top to bottom.

Setting an Entry Field Attribute

The Entry Field Attribute allows attributes to be assigned to a field and used when the
cursor enters that field by tabbing or with a pointing device (mouse). You can only set
these attributes for input capable fields. They are maintained on the Edit Screen Field
Attributes panel shown earlier in this chapter, in the row labeled Entry. The default
setting is blank for no attribute change.

Note: Entry Field Attributes are ignored if the field is converted to output or, at run
time, if the first character in the input field is protected by an edit mask.

You can use the YEDTDFTATR command to set a default for Entry Field Attribute.

ENPTUI for NPT Implementations

Chapter 9: Modifying Device Designs 345

Assigning Multi-Line Entry

Any alphanumeric field with a length greater than one may be designated as a multi-line
entry field (MLE). MLEs are long text fields that are wrapped into a text box.
Assignments made at the field level are inherited by all screen entries based on this
field. Multi-line entry fields cannot be specified for STS type fields or for any field in the
RCD context, that is, it cannot be used on a subfile.

Examples of how to specify that a text field display as an MLE follow.

1. From the Edit Field Details - Field Control panel, press F10 to access the appearance
panel. This panel shows the line:

Display as Multi Line Entry: Height: Width:

The multi-line entry field displays in normal intensity if it uses the default value
from the field definition and displays in high intensity if the default has been
overridden.

2. Specify either height or width. When you specify one, the other is calculated for
you. Height is the number of rows; width is the number of columns.

If a field is an MLE, then on the device design editor the field displays with a length
equal to the column width assigned to the MLE.

All parts of the MLE display on the device design editor; however, it is the responsibility
of the designer to ensure that no fields are overwritten by the additional lines of the
MLE. Positioning of other fields is relative to the first line of the multi-line entry field.

For workstations that are not attached to a controller that supports an enhanced data
stream, the different parts of the continuation field are treated as separate fields for
editing, but when enter is pressed, a single field is returned to the program.

ENPTUI for NPT Implementations

346 Building Applications

Using an Edit Mask

Edit Mask allows input capable fields to contain format characters that are ignored. For
example, in the formatted phone number field, "(_ _ _)_ _ _-_ _ _ _", when the user
enters data, the cursor skips the protected format characters. If Mask input is set to Y
then each non-blank character in the selected edit code is masked. The value 0 is not
masked. If the field containing the edit mask is initially displayed with no data, then the
masked characters do not display but the cursor still skips over the protected positions.
When the field is redisplayed with data, the masked characters appear.

If the first character in an EDTWRD is a format character, as in the phone number
example, that character does not display for NPT DDS. This is a limitation of DDS that
can be corrected by allowing for an integer to the left of the left-most format character,
for example, ‘0() - ‘; in this case you also need to increase the field length by one.
Alternatively, you can create your own EDTCDE definition using the i OS Create Edit
Description (CRTEDTD) command.

Note: Do not mask fields that represent a quantity or value. If an attempt is made to
mask a numeric quantity, unpredictable results occur. For example, masked characters
are not returned to the application, so the decimal place is lost if it is masked. The edit
mask feature is intended for numeric fields that are always formatted in the same
manner, such as phone number, social security number, part number, date, and time.

The edit mask option is maintainable at the field and screen levels.

Note: The edit mask option is ignored when the workstation is not attached to a
controller that supports an enhanced data stream.

1. Set the field level value for the mask input option on the Edit Field Details panel.

2. Enter Y in the field:

Edit Codes.....: Mask input edit code (Y,’ ‘)

The default value is blank, for do not mask. F10 toggles between the field control
information and the appearance fields.

ENPTUI for NPT Implementations

Chapter 9: Modifying Device Designs 347

3. The Edit Screen Field Attributes panel is used to override the field level assignment.

4. To reset to the field level default, enter a blank for Mask Input and press Enter.

The data displays in:

■ Normal intensity if it is displaying the default assigned at the field level

■ High intensity if the default is being overridden

Edit Mask - ZIP + 4 Example

To edit Zip+4 zip codes with a hyphen in front of the additional four digits:

Specify an EDTWRD in YEDTCDERFP with the format:

'_ _ _ _0-_ _ _ _'. This displays as: '_ _ _ _ _-0000'.

If you indicate that this field should be masked, all blank characters, except 0, are
masked. The cursor jumps over the - as data is keyed into the field. Without the 0 in the
EDTWRD definition, the zip 12345- would display as 1-2345.

Editing Report Designs

348 Building Applications

Editing Report Designs

CA 2E provides a default device design for printed reports. However, you can modify the
device designs to suit your specific needs. The following topics provide you with
information on how to modify the report structure and formats.

CA 2E provides you with two distinct steps in defining a report. They are:

■ Specification of the individual report design. A default report design is provided
automatically for each print function, such as each PRTOBJ or PRTFIL function that
you define. You can then modify the design.

■ Inclusion of the individual report designs within an overall device structure. You
specify how this is to be done by explicitly connecting the functions together and
specifying the parameters to pass between the functions.

You can modify the device design at the format and field level:

■ Modify the device design at the format level to

– Suppress (by either dropping or hiding) formats

– Modify the spacing between formats

– Specify whether the format is to be reprinted on overflow

– Modify the format indentation

■ Modify the device design at the field level to:

– Rearrange the order of fields

– Drop fields or field text

– Add extra fields and or text

– Modify field text

Note: You cannot override the output field length.

Standard Report Headers/Footers

The top and bottom lines of the report designs are defined by the DFNRPTFMT function.
The name of the standard header function associated with each function is shown on
the Edit Function Options panel. Unless you explicitly selected a particular
header/footer, this defaults to the default header/footer function. The shipped standard
report page header is 132 characters wide, but can be changed to an alternate width.

Editing Report Designs

Chapter 9: Modifying Device Designs 349

Understanding PRTFIL and PRTOBJ

There are two different types of report functions: Print File(PRTFIL) and Print
Object(PRTOBJ).

■ The PRTFIL function is an external function type that specifies a complete report in
itself

■ PRTOBJ is an internal function type that specifies a segment of a report for inclusion
within another report function.

Note: Page headings and footers are always defined by the PRTFIL function.

PRTFIL

Each PRTFIL function specifies the layout and processing you use when printing records
from an access path. It specifies the indentation of any embedded PRTOBJ functions
within the overall report design. It specifies all global properties of the report such as
page size and page headings.

■ A print file function must be based on a Retrieval(RTV), Resequence(RSQ), or
Query(QRY) access path.

■ Calls to embedded PRTOBJ functions are inserted at the appropriate points in the
action diagram of the embedding function.

■ Each PRTFIL function has its own default report design that can be edited.
Embedded PRTOBJ report designs are shown as part of the PRTFIL report design but
are protected and cannot be edited directly. Only the indentation (distance of
embedded design from the left-hand margin of the report) can be changed.

A PRTFIL function and its embedded PRTOBJ functions are implemented as a single i OS
printer device file (PRTF) plus a single HLL program.

PRTOBJ

Each PRTOBJ function specifies the layout and processing you use when printing records
from an access path.

■ A PRTOBJ function must be based on a Retrieval (RTV), Resequence (RSQ), or Query
(QRY) access path.

■ The access path can contain several key fields, giving rise to several formats in the
report design layout, and several key breaks in the logic of the action diagrams for
the function.

■ Each PRTOBJ function has its own default report design that can be edited.

■ Page headings are not specified.

Editing Report Designs

350 Building Applications

Modifying Report Design Formats

Report designs are made up of report design formats. When you first create a report by
nominating an access path and a report function type, CA 2E automatically defines the
appropriate formats for the report design. There are eight different report design
formats. A typical report includes some or all of the following formats.

■ The Report Heading Format—Includes the title, originator, and page information,
defined by a Define Report Format (DFNRPTFMT) function. There is one Report
Heading format per Print File function. This appears at the beginning of the report
and on each page of the report. The information on this format is common to all
report designs that share the same DFNRPTFMT function. This format cannot be
dropped or hidden.

■ The Top of Page Heading Forma—Includes the information to be repeated on each
page. By default, this format is empty. There is one Top of Page Heading format per
PRTFIL function. The information on this format is specific to the individual report.
This format is not available for PRTOBJ.

■ The First Page Heading Format—Includes the information to be printed before the
first level heading or detail records for a given print function. By default, this format
is empty. There is one First Page Heading format per report function (PRTOBJ or
PRTFIL) only printed once per report function.

■ The Level Heading Format—\-Contains fields appropriate to the key level. There is
one key field per report function (PRTOBJ or PRTFIL). By default, this format is
printed before the first detail or subheading within a level break. If the access path
contains only one key field, this format is omitted.

■ The Detail Format—Contains fields from the based-on access path. There is one
Detail format per report function (PRTOBJ or PRTFIL). By default, this format is
printed for every record read. This format cannot be dropped, only hidden.

■ The Level Total Format—Contains fields appropriate to the key level. There is one
level total format per level break per report function (PRTOBJ or PRTFIL). By default,
this format is printed after the last detail record or subtotal within a level break. If
the access path contains only one key field, this format is omitted.

■ The Final Total Forma—Contains totals of previous total levels. By default, this
format contains only the constant Final Totals; user fields must be added for
totaling. By default, this format is printed after the last level total format.

■ The End of Report Format (report footer) at the end of the report—Is defined by a
Define Report Format (DFNRPTFMT) function type. There is one End of Report
format per PRTFIL. This format is printed after all other formats in the report. This
format is not available for PRTOBJ.

These format types are present on PRTFIL and PRTOBJ functions.

The following example shows the general appearance of a report design, including
report design format types and page headings.

Editing Report Designs

Chapter 9: Modifying Device Designs 351

You use the Display Report Formats panel to view which formats are present in the
report device design. This is where you determine the available formats, if they are
printed, the positioning and overflow treatments, and zoom into the format details. To
access the Display Report Formats panel, press F17 from the report device design.

Editing Report Designs

352 Building Applications

Automatic Choice of Report Formats

A single detail format is automatically defined containing all the fields from the
underlying access paths.

Additional header and total formats are automatically defined for each key level present
in the access path as follows:

■ If the access path is not unique, header and total formats are defined for each key
level present.

■ If the access path is unique, header and total formats are defined for each key level
present except for the lowest.

Report Header, Top of Page, First Page, and End of Report formats are provided
automatically as follows:

■ A First Page format is defined for both PRTOBJ and PRTFIL functions.

■ A Report Header, Top of Page, and End of Report format are defined only for PRTFIL
functions.

Formats are ordered relative to each other as follows:

■ Formats appear in hierarchical order of level: overall headings, level break
headings, detail record, level totals, and overall totals.

■ Level headings appear in key order, as specified by the access path on which the
report design is based.

■ Each format starts on a new line. A default number of spaces are used between
each format.

■ Formats are indented.

 HDR Report headings
 TOP Topof page headings
 1PG First page headings

 xHD Level n headings
 . .
 xHD Level 2 Headings
 xHD Level 1 headings
 RCD Detail format
 xTL Level 2 totals
 xTL Level 2 totals
 . .
 nTL Level n totals
 . .
 ZTL Final report
 EOR End of report

Editing Report Designs

Chapter 9: Modifying Device Designs 353

Automatic Choice of Report Fields

Fields within a format are laid out left to right across the page in the order in which they
appear in the access path. All fields from the access path are available on all formats but
can be hidden or dropped by default.

Fields will, by default, be present or dropped at a given format level according to the
following rules:

■ Key fields are present on their respective heading and total formats and all lower
level formats.

■ Non-key fields that are virtual fields are present on a format if all the fields resulting
from the resolution of the virtual field’s defining relation are also present on the
format. That is, if the necessary key fields to retrieve the virtual field are also
present. Any such virtual fields are also present on all lower level formats.

■ Key fields that are virtual fields are present together with their associated real fields
if the print function is based on a Query access path. That is, the real fields resulting
from the resolution of the virtual field’s defining relation. These fields are also
present on all lower formats.

■ Non-key fields that are neither virtual fields nor fields associated with a virtual key
are present only on the detail record.

Fields will, by default, be hidden or shown at a given format level according to the
following rules:

■ Key fields (including virtual keys) are, by default, hidden except on the respective
heading and total formats which they control.

■ Non-key fields that are virtual fields are shown on the format containing their
controlling key fields, if any. If a virtual field is present on a higher-level format
then, by default, it is hidden on the detail level format.

■ Non-key fields associated with a virtual key are shown on the format containing
their associated virtual keys. They are hidden on the detail format.

■ Non-key fields which are neither virtual fields nor fields associated with a virtual key
are, by default, shown on the detail format.

Access Path Entries KHD RCD KTL

K Key field (real) O H O

K Key field(Virtual) O H O

Virtual field O H O

Fld associated with virtual key O H O

Detail field – O –

Editing Report Designs

354 Building Applications

Access Path Entries KHD RCD KTL

Key O: Present and shown by default
 H: Present but hidden by default
 –: Dropped by default

Field text is obtained as follows:

■ If a field is present on a detail record, the Column Heading text is used as the text
heading for the field

■ If a field is present on a heading or total format, the Before text is used as the label
for the field.

The following example shows a report device design made up of eight formats:

Editing Report Designs

Chapter 9: Modifying Device Designs 355

Defining Report Designs

There are two steps involved in defining a report with CA 2E.

■ Specification of the individual report design: a default report design is provided
automatically for each print function such as each PRTOBJ or PRTFIL, that you
define. You can then modify the design.

■ Inclusion of the individual report designs within an overall device structure. You
specify how this is done explicitly, by connecting the functions together and
specifying the parameters to pass between the functions.

You can modify default report layout at both the format and field level. Each of these
steps is identified as follows.

You can modify the device design at the format level to:

■ Suppress (by either dropping or hiding) formats

■ Modify the spacing between formats

■ Specify whether the format is to be reprinted on overflow

■ Modify the format indentation

You can modify the device design at the field level to:

■ Rearrange the order of fields

■ Drop fields or field text

■ Add extra fields or text

■ Modify field text

When adding extra fields you can specify totaling between formats.

Suppressing Formats

By default, a report design has all of the appropriate formats present. You can suppress
a report format in one of two ways:

■ Hiding

■ Dropping

Hiding

Hiding a report format causes the printing of the format to be suppressed. The format is
still logically present. This means that any fields belonging to the format are available for
processing, and any level break processing takes place.

Editing Report Designs

356 Building Applications

Dropping

Dropping a report format causes the format to be omitted completely. Any fields
belonging to the format are no longer available for processing. Level break processing,
such as printing embedded PRTOBJ functions still takes place. Generally, it is better to
drop a format rather than hide it, if the format is not required on the report.

Note: Function fields and constants cannot be copied between formats.

Format Drop
Format
Allow

Drop
Format
Default

Hide
Format
Allow

Hide
Format
Default

Report Heading HDR N - N -

Top of page heading TOP Y N Y N

First page heading 1PG Y N Y N

Level heading KHD Y N Y N

Detail format RCD N - Y N

Level total KTL Y N Y N

Final total ZTL Y N Y N

End of report EOR N - N -

Modifying Spacing Between Formats

CA 2E lets you specify, as part of your device design, any page overflow handling.

Editing Report Designs

Chapter 9: Modifying Device Designs 357

Specifying Print on Overflow

You can specify print overflow at the format level on the Display Report Format Details
panel including

■ How many lines to skip before the format is printed, or a start line

■ Whether the format is to start on a new page

■ Whether the format is to be reprinted on overflow

The following table displays the print control defaults.

Format

Start

Line

Space

Before

Start

New Page

Reprint

Overflow

Alw Dft Alw Dft Alw Dft Alw Dft

Report heading

Top of page
heading

First page

HDR

TOP

1PG

Y 1

 Y -

 Y -

Y -

 Y 1

 Y 1

R Y

 N -

 N -

R Y

 N -

 N -

Level heading

Detail

Level total

KHD

RCD

KTL

Y -

 Y -

 Y -

Y 1

 Y 1

 Y 1

Y N

 Y N

 Y N

Y N

 N -

 N -

Note: R = Required

Changing Indentation

Report design formats can be indented. Indentation controls the position on the printed
report of the starting point of a format. You can control indentation at two levels:

■ Individual format level: Specify an indentation on each format.

■ Function level: Specify an indentation for a PRTOBJ function, then all formats
belonging to the function are indented by the specified amount. For example, the
baseline of the function is indented.

There are two types of indentation specifications:

Absolute

The indentation of a format is relative to the left-hand margin of the whole report and is
unaffected by changes to the indentation of other formats around it. Absolute
indentation applies to formats only.

Editing Report Designs

358 Building Applications

Relative

The indentation is relative to the baseline of the report function that you are currently
editing. Function indents are always relative; format indents can be relative or absolute.

Modifying Indentation

To modify indentation for formats, use the Edit Report Format Details panel. To modify
indentation for embedded PRTOBJ functions, use the Edit Function Indent panel. You
can get to both panels through the Display Report Formats panel by pressing F17 on the
embedded PRTOBJ function. You can only modify the format indentation for the formats
that belong to the function whose design you are editing. The format indentation of
formats belonging to embedded PRTOBJ functions can only be altered by editing the
design for the individual PRTOBJ function.

The following is an example of the indentation formats.

Editing Report Designs

Chapter 9: Modifying Device Designs 359

Defining the Overall Report Structure

Individual report segments are combined into an actual report by means of a device
structure. A device structure specifies which PRTOBJ functions are to be embedded in
the report and at which points:

■ You can link one or more print object functions before or after all report format
types except the header, footer, and top-of-page formats.

■ A call to each embedded PRTOBJ function is added to the action diagram of the
embedded function.

The following table shows the allowed points for embedded PRTOBJ calls.

Format

Embed
Before

Embed After Indentation

Allow
Default

Report
Heading

HDR - - - -

Top of page
heading

First page
heading

TOP

1PG

-

Y

-

Y

-

Y

-

0

Level heading

Detail format

Level total

KHD

RCD

KTL

 Y

Y

Y

Y

Y

Y

Y

Y

Y

+3

+3

 -3

Final total

End of report
format

ZTL

EOR

 Y

-

Y

-

Y

-

0

-

Modifying the Overall Report Structure

Individual report segments (formats) can be combined into an actual report using a
device structure. This is only required if you have a combination of a PRTFIL with one or
more embedded PRTOBJs. A device structure specifies which PRTOBJ functions are
called in the print file of another PRTOBJ and at which points.

■ Link one or more PRTOBJ functions before or after all report format types except
the header, footer, and top-of-page formats.

■ A call to each embedded PRTOBJ function is added to the action diagram of the
function. This must be a PRTFIL or another PRTOBJ.

Editing Report Designs

360 Building Applications

Defining Print Objects Within Report Structure

The overall structure of report designs can be edited using the Edit Device Structure
program. This structure is accessible from the Edit Functions and Display All Functions
panels by typing the line command T next to the calling PRTFIL or PRTOBJ. You can use
the structure editor to:

■ Link in additional PRTOBJ functions before or after each of the report formats

■ Change, delete, move, or copy PRTOBJ calls within a report structure

Note: If parameters are to be passed between print functions, these parameters must
be declared through the action diagram of the embedding function. For example, you
must go to each function call in the appropriate action diagram.

Using Line Selection Options

When editing the overall structure of the report designs on the Edit Device Structure
panel, use the following line selection options.

Value Description

IA Insert After

IB Insert Before

D Delete

Z Zoom into the structure of embedded PRTOBJ

C Copy: B-Before, A-After

M Move: B-Before, A-After

Editing Report Designs

Chapter 9: Modifying Device Designs 361

Linking Print Functions

Embedding PRTOBJ functions is subject to the following rules:

■ You can insert PRTOBJ functions before or after some of the formats in a report
function. More than one PRTOBJ function can be inserted at each point.

■ Indentation of embedded PRTOBJ report segments (function indentation) is relative
with respect to the baseline of the function. However, the indentation of formats
within the PRTOBJ function may be absolute with respect to the left-hand margin of
the complete report. The function indentation is a property of the calling function.
Thus, the same PRTOBJ function can be used in two different PRTFIL functions with
a different function indentation in each.

■ You can embed PRTOBJ functions within other PRTOBJ functions.

■ A PRTOBJ function can be used in more than one other PRTFIL or PRTOBJ function.
A given PRTOBJ function can appear more than once in a given PRTFIL function but
it cannot be called recursively. For example, a PRTOBJ function must not call itself
either directly or indirectly.

Editing Report Designs

362 Building Applications

Zooming into Embedded Print Objects

When editing report design structures, such as linking one or more functions or
inserting subsidiary PRTOBJ functions, Zoom into the structure of the embedded
PRTOBJ. At the Edit Device Structure panel, type Z next to the selected function to zoom
into the structure.

Note: When editing the device design of a PRTFIL or PRTOBJ that contains an embedded
PRTOBJ, the design of the combined functions displays. Moreover, you can only change
the formats and entries of the function itself and not those associated with the
embedded functions.

The following example shows an outline of linking report functions.

Editing Report Designs

Chapter 9: Modifying Device Designs 363

Editing Report Designs

364 Building Applications

Using Function Fields on Report Design

You will want to accumulate the results of calculations upwards through each level
break. You can use function fields to do this.

Function field types include four standard types that provide predefined functions to
carry out calculations between two adjacent levels of a report. The predefined types
are:

■ SUM—Accumulates a value from the current level into a total field on the next
level.

■ CNT—Accumulates a count of the number of instances of a field on the current
level (that is, records containing the field) into a field on the next level.

■ MAX—Places the largest value of a field on the current level into a field on the next
level.

■ MIN—Places the smallest value of a field on the current level into a field on the
next level.

You can specify that the input to a calculation (for example, an accumulation) is the
respective field from the previous level. You do this by means of the CUR and NXT
contexts. If the function field definition is based on the field, CA 2E defaults the context
automatically.

For more information on CUR and NXT contexts, see Understanding Contexts in the
chapter "Modifying Action Diagrams."

The following example shows the use of CUR and NXT contexts in Reports.

Editing Report Designs

Chapter 9: Modifying Device Designs 365

Report Design Example

To design reports with CA 2E, consider the structure of the data, and choose the
appropriate function combinations that map to the structure. The following two-part
example illustrates this by showing:

■ A simple PRTFIL report design. (Example 1)

■ The same PRTFIL report design with embedded PRTOBJ functions
(Example 2)

Each part of the example shows the following:

■ Relations and underlying structure of the data

■ Resulting access path entries

■ Resulting report formats

■ Fields present on the report formats

■ Resulting report layout

Example 1: Simple Report Design

Relations

Consider the following relations to model customer information by geographical region:

FIL Country REF Known by FLD Country code CDE
FIL Country REF Has FLD Country name TXT

FIL Area REF Owned by FIL Country REF
 VRT Country name TXT
FIL Area REF Known by FLD Area code CDE
FIL Area REF Has FLD Area name TXT

FIL Customer REF Owned by FIL Area REF
 VRT Country name TXT
 VRT Area name TXT
FIL Customer REF Known by FLD Customer code CDE
FIL Customer REF Has FLD Customer name TXT
FIL Customer REF Has FLD No of machines NBR

If you wanted to produce a report of customers by geographical region, you would need
the following information:

Editing Report Designs

366 Building Applications

Access Path Entries

A Retrieval access path built over the Customer file might contain the following entries:

Note: If you use a RSQ or QRY access path, you would specify the keys yourself.

Access Path Entries Type Key

Country code

Country name

Area code

Area name

Customer code

Customer name

No of machines

A

V

A

V

A

A

A

K1

K2

K3

Default Report Formats

A report design built over the access path shown in the preceding topic would contain
the following report design formats:

Format Type PRTFIL Fields

STD report header

Top of page

First page format

HDR

TOP

1PG

Y

Y

Y

DFNRPTFMT

User

User

Country code

Area code

Detail line

Area code

Country code

1HD

2HD

RCD

3TL

4TL

Y

Y

Y

Y

Y

Country

Area

Customer

Area

Country

Final totals

End of report

ZTL

FTR

Y

Y

User

DFNRPTFMT

Editing Report Designs

Chapter 9: Modifying Device Designs 367

Report Design Fields by Format

The device design formats would, by default, contain the following fields:

Access Path
Entries

Report
Formats

1HD 2HD RCD 3TL 4TL

K1

K2

K3

Country code

Country name

Area code

Area name

Customer code

Customer
name

No of
machines

A

V

A

V

A

A

A

O

O

-

-

-

-

-

H

H

O

O

-

-

-

H

H

H

H

O

O

O

H

H

O

O

-

-

-

O

O

-

-

-

-

-

Key O: Present and
shown by
default

H: Present but
hidden by
default

 - : Dropped by
default

Editing Report Designs

368 Building Applications

Consequently, the default report structure would be:

HDR Page headings

 1PG First page

 1HD Country code header

 2HD Area code header

 RCD Customer details

 3TL Area code totals

 4TL Country code totals

 ZTL Final totals

FTR End of report

The default report design might then appear as follows:

Editing Report Designs

Chapter 9: Modifying Device Designs 369

Function Fields

You can also add to the report device design a total count of the number of machines on
each format. To do this, you use the function fields as follows:

1. Define a function field Total Number of Machines of the type SUM, based on the No
of Machines field.

2. Add this field to the Area, Country, and Final Total formats accepting the default
parameters.

To add the function fields to accumulate the number of customers you can:

1. Define a CNT function field, Count No. of Customers, with Customer Code field as
the input parameter.

2. Add the CNT field to the Area Total Format.

3. Define a SUM function field, Total of customers, based on the Count No. of
Customers field.

4. Add the SUM field to the Country and Final Total formats, accepting the default
parameters.

Editing Report Designs

370 Building Applications

Modified Report Layout

You can modify the default report layout as follows:

■ To add explanatory information on the page headings (for example, *TOP SECRET)

■ To suppress certain fields, or field text (for example, the Country Code field and the
text on the Area Name field) and the fields displayed by default on the total
formats.

The modified report layout might appear as follows:

Editing Report Designs

Chapter 9: Modifying Device Designs 371

Example 2: Extended Report Design

You can extend the example report design shown earlier by embedding additional
PRTOBJ functions. For example, you could have additional entities and PRTOBJ functions
based on them as follows:

■ County (within Area)

■ Distributor (within Country)

■ Address (by Customer)

■ Orders (for Customer)

County Report Segment

If Area is divided into County as shown by the following relations:

FIL Country REF Known by FLD Country code CDE
FIL Country REF Refers to FIL Area REF
FIL Country REF Has FLD Country name TXT

Then to provide a sublisting of the counties for each area, you need a RSQ access path
with the following entries:

Access Path Entries Type Key

County code

Country code

Area code

County name

A

A

A

A

K3

K1

K2

Note: This access path should be specified so that it has a unique key order.

A Print Counties in Area PRTOBJ function would be based on this access path. Country
Code and Area Code would be made restrictor parameters so that only counties for a
given area would be printed:

PRTOBJ Function ACP Keys on Access Path USG

Counties in area RSQ 1. Country code

2. Area code

3. County code

RST

RST

Editing Report Designs

372 Building Applications

County Default Report Design

This creates a default layout for the report design as follows:

County Modified Report Design

By dropping the formats, the suppression of headings would appear as follows:

Distributor Report Segment

If in each country there are distributors as defined by the following relation:

Editing Report Designs

Chapter 9: Modifying Device Designs 373

Distributor Relations

IL Distributor REF Owned by FIL Country REF
FIL Distributor REF Known by FLD Distributor code CDE
FIL Distributor REF Has FLD Distributor name TXT

FIL Area REF Refers to FIL Distributor REF

 For: Default Sharing: *ALL

To provide sublistings of the following, we need a PRTOBJ on Distributor (Distributors in
Country) and a PRTOBJ on Area (Default Area Distributor), both based on the Retrieval
access paths of the respective files.

Examples:

■ The distributors for each country

■ The default distributor’s details for each area

Distributor Access Path Entries

Access Path Entries Type Key

Country code

Distributor code

Distributor name

A

A

A

K1

K2

Area Access Path Entries

Access Path Entries Type Key

Country code

Area code

Distributor code

Area name

A

A

A

A

K1

K2

Country code would be made a restrictor parameter on the Distributors in Country
function so that only distributors in the given country would appear. Both Country code
and Area Code would be made restrictors on the Default Area Distributor function so
that only the details for the specified distributor would print.

Editing Report Designs

374 Building Applications

Distributor PRTOBJ Functions

PRTOBJ Function ACP Keys on Access
Path

USG

Distributors in
country
(Distributor file)

RTV 1. Country code

2. Distributor code

RST

Dft area distributor
(Area file)

RTV 1. Country code

2. Area code

RST

RST

Distributor Modified Report Design

This function gives a layout, after modification, for the Distributors in Country report
design as follows:

A layout, after modification, for the Default Area Distributor report design as follows:

Note: Only one distributor will be printed as the function is fully restricted. The device
design shows three lines for the detail line format.

Address Report Segment

If each Customer has an Address as defined by the following relations:

FIL Address REF Owned by FIL Customer REF
FIL Address REF Has FLD Address line 1 TXT
FIL Address REF Has FLD Address line 2 TXT
FIL Address REF Has FLD Post code TXT

Then to provide a sublisting of the address for each customer, you would need a RTV
access path with the following entries:

Editing Report Designs

Chapter 9: Modifying Device Designs 375

Address RTV Access Path Entries

Access Path Entries Type Key

Country code

Area code

Customer code

Address line 1

Address line 2

Post code

A

A

A

A

A

A

K1

K2

K3

The Print Customer Address print function would have Country Code, Area Code, and
Customer Code as restrictor parameters so that only the address for the given customer
prints.

Address PRTOBJ Functions

PRTOBJ Function ACP Keys on Access
Path

USG

Customer address RTV 1. Country code

2. Area code

3. Customer code

RST

RST

RST

Address Modified Report Design

This gives a layout, after modification, for the Customer Address report design as
follows:

Note: Only one address is printed as the function is fully restricted. The device design
shows three lines for the detail line format.

Editing Report Designs

376 Building Applications

Order Report Segment

If, for each Customer, there can exist Orders as defined by the following relations:

FIL Order CPT Known by FLD Order number CDE
FIL Order CPT Refers to FIL Customer REF
FIL Order CPT Has FLD Order date DTE
FIL Order CPT Has FLD Order value VAL

To provide a sublisting of the orders for each customer, you would need an RSQ access
path with the following entries:

Order RSQ Access Path Entries

Access Path Entries Type Key

Order number

Country code

Area code

Customer code

Order date

Order value

A

A

A

A

A

A

K1

K2

K3

K4

The Customer’s Orders function would be restricted on Country Code, Area Code, and
Customer Code.

Order PRTOBJ Functions

PRTOBJ Function ACP Keys on Access
Path

USG

Customer’s orders RSQ 1. Country code

2. Area code

3. Customer code

4. Order date

RST

RST

RST

Editing Report Designs

Chapter 9: Modifying Device Designs 377

Order Function Fields

You make a further modification to the Print Customer Orders function to accumulate
the total order value and print it. You can also return the total value so that it can be
accumulated by area and country.

To do this:

1. Define a SUM function field, Total Order Value, based on the Order Value field.

2. Add this field to the Final Totals format, accepting the default parameters. All
intermediate formats must be dropped.

3. Specify the Total Order Value as an output parameter for the PRTOBJ function, so
that the values can be summed into the Area, Country, and Final totals of the
PRTFIL function.

4. In the action diagram of the PRTOBJ function, move the calculated Total Order
Value into the PAR context.

Order Modified Report Design

You would obtain a layout, after modification, for the Customer’s Orders report design
as follows:

Editing Report Designs

378 Building Applications

Overall Device Structure

Having created all of the separate PRTOBJ functions as described previously, you would
then insert them, using the device structure editor, into the basic default structure of
the PRTFIL function. The following illustration shows the device structure editor with
inserted PRTOBJs and the parameters specified for each PRTOBJ.

Note: In the actual device structure editor, parameters are not shown.

Parameters to PRTOBJ Functions

To supply parameters to the PRTOBJ functions called by the PRTFIL Print Customers, you
must edit each function call in the PRTFIL action diagram. In most cases, the default
parameters can be accepted.

Editing Report Designs

Chapter 9: Modifying Device Designs 379

Function Fields

To accumulate the order value, do the following:

1. Define a USR field, Detail Line Order Value, based on the Order Value field on the
Customer’s Orders PRTOBJ function.

2. Attach this field to the Detail line format of the PRTFIL function, and hide it.

3. In the action diagram for the PRTFIL function, specify that the output parameter
Total Order Value from the PRTOBJ function be moved into this USR field.

4. Define a SUM function field Accumulated Order Value based on the Order Value
field.

5. Add this SUM field to the Area, Country, and Final Total formats, supplying
appropriate parameters.

Editing Report Designs

380 Building Applications

Overall Report Design

The separate functions shown previously would be combined to give the following
overall result:

Device User Source

Chapter 9: Modifying Device Designs 381

Device User Source

The device user source feature provides the ability to patch device designs of display
and report functions in order to deploy operating system functionality that is not yet
supported by CA 2E. For straightforward patches such as, inserting one or two data lines
at the beginning of a generated source extent, you type the data lines in the device user
source member that implements the patch. A set of special merger commands is
provided for complex patches such as, applying a change to a specific location in the
generated source based on a condition.

When to Use Device User Source

Device user source contains customized device language statements. Use device user
source when:

■ You require a feature that is not supported by CA 2E; for example, you need the
following functions of the Advanced Printer Function (APF):

– Print logos

– Special symbols

– Large characters

– Bar codes

– Bar charts

– Vertical and horizontal lines that can be used to form boxes

■ You require a facility introduced in the current i OS release that has not yet been
implemented in CA 2E; for example, HTML support.

■ The way an existing feature is implemented is not suitable for your use; for
example, change appearance of an indicator to blinking or reverse image.

■ You need to insert special anchors to support your pre-processor.

Device User Source

382 Building Applications

Understanding Device User Source

The term device user source refers to both:

■ An EXCUSRSRC function that contains device language statements that can be
applied to a device function to customize the associated device design

■ The user-defined device language statements contained in the EXCUSRSRC function

User source attached to a device function is automatically reapplied each time the
device function is regenerated.

Since DDS is the most commonly used device language, you can also use the more
specific term DDS user source to refer to the EXCUSRSRC function and the user-defined
DDS.

User-defined device code must use the same device language used by the device
function to which it is applied. In addition, it is your responsibility to ensure that it
follows the syntax rules of the device language.

The device EXCUSRSRC function may also contain special instructions called merger
commands that specify how device user source is added to or substituted for
automatically generated source for the device design.

The user-defined device source is stored as a separate member of the source file
associated with the device language; for example, QDDSSRC in the generation library.

Attachment Levels

When you apply device user source to a device design property, it is said to be attached.
The word property in this case refers to a specific instance of a device, screen, report,
format, or entry. You can specify the attachment of device user source to the following
types (levels) of device design properties:

■ Device (device-level attachment)

■ Screen/Report (screen- or report-level attachment)

■ Format (format-level attachment)

■ Entry (entry-level attachment)

Multiple device user source functions can be attached to a property. However, a specific
device user function can be attached to a given property only once.

The term extent is used to refer to the set of source statements that describe a device
design property in the generated source member.

Device User Source

Chapter 9: Modifying Device Designs 383

Special Field-Level Attachment

A field-level attachment provides an efficient way to apply a device entry change to all
or most panels and reports that contain a particular field. In other words, when you
attach device user source to a field, it is automatically attached to all derived device
entries based on that field.

Defining a Device User Source Function

1. From the Edit Function panel, define an EXCUSRSRC function with access path
*NONE.

Zoom into the function. From the Edit Function Details panel, reset the device
language, for example, to DDS.

Device User Source

384 Building Applications

Type E against the file to enter DDS source or merger commands.

2. The commands beginning with) are special merger commands that are executed
during source generation. Because merger commands do not follow DDS (or other
device language) syntax, an error message displays and you need to set the ‘Return
to editing’ option to N on the Exit Function Definition panel.

3. Save the source member. Device user source is merged when the function it is
attached to is generated. Following is an example of device user source merged
with generated source for the subfile control format of an Edit File function.

Device User Source

Chapter 9: Modifying Device Designs 385

Attaching Device User Source to a Device Design

1. Go to the device design where you want to attach the device function. In this
example, Edit Horse.

2. Do one of the following depending on the part of the device design where you want
to attach the device user source.

■ For device-level, press F3.

■ For screen-/report-level, press F17.

■ For format-level, position the cursor on the selected format and press F5.

■ For entry-level, position the cursor on the selected entry and press Enter.

Press F11 on the panel that appears to access the Attach Device Functions panel. In
this example, we chose format level.

Device User Source

386 Building Applications

Note: A device user source function was previously attached to this format.

Press F9 to display the Attach Device Function window and attach the device user
function just created.

Specify the device user function just created and press Enter.

The Attached Device Functions panel reappears showing both attached device user
functions.

Device User Source

Chapter 9: Modifying Device Designs 387

From this panel you can:

■ Use the E option to edit device user source

■ Use the D option to detach device user source

■ Use the + and – options to temporarily disable the selected device user source

The sequence numbers specify the order in which the device user functions are
attached to the device design. Sequence numbers are automatically assigned and
can be changed. However, they must be unique for a level. The subfile is sorted by
sequence number when the display is reloaded.

Sequence numbers:

■ Range from 0.01 to 999.99

■ Are incremented by 1.00 when automatically assigned

3. Press F3 to exit. The attached device user source is automatically applied to the
subfile record of the Edit Horse device design whenever it is regenerated.

Entry-Level Device User Source

Device user source can be explicitly attached at the entry level or be implicitly attached
through inheritance from the field level.

Device User Source

388 Building Applications

Explicitly Attaching Entry-Level Device User Source

From the Edit Screen Entry Details panel for the entry press F11 to display the Attached
Device Functions panel. Press F9. The Attach Device Function panel displays where you
can proceed as discussed in the section Attaching Device User Source to Device Design.

You can use the D option to detach the entry-level device user function that is explicitly
attached. You can also use the + and – options to enable and disable the entry-level
attachment.

Note: When the sequence number for an explicitly attached entry-level device user
function is assigned, numbers that are an even multiple of ten are skipped to avoid
conflicts with field-level sequence numbers.

Attaching Device User Source to a Field

This example shows how to attach device user source to a field, which is then inherited
by all device entries derived from this field.

1. Go to the Edit Field Details panel for the field to which the device function is to be
attached. In this example, Edit Horse.

Press F11 to display the Field-Level Device Functions panel. Use this panel to attach
device user source to a field.

Device User Source

Chapter 9: Modifying Device Designs 389

Press F9 to display the Attach Device Function window. Specify the device user
function just created for the Horse name field and press Enter.

The Field-level Device Functions panel redisplays showing the attached device user
function.

The sequence numbers specify the order in which the device user source is applied
to the field. Field-level sequence numbers are:

■ Integers from 1 to 999

■ Incremented by 10 when automatically assigned

2. Press F3 to exit. The device user source is now implicitly attached to derived entries
for the Horse name field on all device designs.

Note: If a device user function is already attached at the entry level when you
attach the same function at the field level, the field-level attachment for that entry
is effectively ignored.

Device User Source

390 Building Applications

Working with Inherited Entry-Level Attachments

1. Go to a device design where the entry is used. In this example, Edit Horse.

Position the cursor on the entry derived from the field where you attached the
device user source; in this example, Horse name. Press Enter to display the Edit
Screen Entry Details panel.

Press F11 to display the Attached Device Functions panel for the Horse name entry.
The device user source you attached to the Horse name field is shown in the list of
device user functions attached to the Horse name entry.

Device User Source

Chapter 9: Modifying Device Designs 391

Overriding an Inherited Entry-Level Attachment

You can override an automatically attached device user source at the entry level in two
ways:

■ Disable the attached device user source at the entry level using the - option. This
blocks the inheritance from the field level.

■ Explicitly attach the device user source at the entry level using the R (rescope)
option.

Note: You cannot use the D option on this panel to detach a device user function that
was inherited from the field-level.

The + and - options are available for all device properties. You can use them to release
or temporarily hold any explicitly attached device function. In addition, for the entry
level you can use them to allow or prevent the inheritance of device user source from
the field level.

If you do not want the inherited device user function applied to this Horse name
entry, type - against it and press Enter.

Device User Source

392 Building Applications

The device user function is no longer highlighted and the * is reset to - indicating
that the function is disabled. When you generate the Edit Horse function, the device
user source is not applied to the Horse name entry.

1. To re-enable the field-level device user source, type + against the function and
press Enter. The * is redisplayed to indicate that the device user source is again
inherited from the field level.

2. To make the entry-level user source independent of the field-level user source type
R (Rescope) against it and press Enter. This explicitly attaches the same device user
function to the entry, overriding the inheritance of the device user source attached
at the field level.

You can now detach the device user source at the field level without affecting the
entry-level attachment.

To reinstate the automatic field-level attachment, detach the entry-level
attachment by typing D against it and pressing Enter.

Device User Source

Chapter 9: Modifying Device Designs 393

Merger Commands for Device User Source

Device user source consists of DDS (or other device language) source statements and
special merger commands specifying how to update the automatically generated source
for the device design.

Each time a property of a device design is generated a special program, Device User
Source Merger (the merger), is invoked to merge any device user source attached to the
property. The merger interprets all encountered commands and updates the original
generated source according to the requested actions.

Merger commands provide basic features available in classic line-editing word
processors. The main concept of such tools is the current line a floating anchor around
which the original text is updated. Two types of merger commands are required to
complete similar tasks within a device user source function: one to position to the line in
the source and another to edit the line.

Several device user source functions can be attached to a device property. When the
first one is applied, the current line is the first line in the generated extent (default). As a
result of the positioning instructions coded in the device user function, the location of
the current line is changed. For subsequent device user source functions, the current
line is not reset back to the beginning of the extent. This lets you separate positioning
commands from editing commands in different device functions. Such granulation of a
requested action makes each device function less specific and increase its reusability
and efficiency.

The available merger commands are:

no operation OVERLAY (Table Text Center)REPLACE

* or # PAINT (Table Text Center)SCAN

FIND POSITION (Table Text Center)SKIP

INSERT QUIT (Table Text Center)UPDATE

MARK (Table Text Center)

Command Syntax

A merger command has the following structure:

) [<command verb> [<parameter> = <value>]. . .]

Device User Source

394 Building Applications

where:

) In column 1, identifies this as a merger
command line rather than a source code
line.

command verb Identifies the main action. In general, each
command has a three-letter abbreviation,
which is shown preceded by | in the
following command descriptions, for
example: {INSERT | INS}.

parameter Clarifies the main action.

value Is a degree of the clarification and can be
up to 60 characters.

The following syntax rules apply:

■ One or more blanks are required as delimiters between the major structural parts.

■ Each merger command must be coded on one line.

■ Command text is not case sensitive unless otherwise noted.

■ If a parameter value contains a blank, enclose it in either ' (single quotes) or "
(double quotes).

■ If a parameter value contains an apostrophe (single quote), either enclose it in "
(double quotes) or enclose it in ' (single quotes) and duplicate the apostrophe.

■ Any number of blanks are allowed between the parameter, equal sign, and value.

■ Parameter names for all merger commands can be abbreviated using the first
letter; for example, COLUMN= can be abbreviated as C=.

■ Two special comment parameters, * and #, let you insert comments anywhere on a
merger command. They are available on all merger commands and can appear
multiple times on the same command. For example,

) # Conditional change for DSPFIL processing (full-line comment)

) SCAN * = ‘Verify type’ FOR = TYPE:DSPFIL # = To_set_condition

) SKIP THROUGH = next * = "Check condition" IF = failed LAST= scan

 <device user source data lines comprising the patch>

) QUIT # = ‘Exit, because the job done’

) MARK TAG = next

Device User Source

Chapter 9: Modifying Device Designs 395

Alphabetical List of Merger Commands

 or # (Full-line Comment)

 (asterisk) or # (pound sign) indicate that the
entire line is a comment.

(asterisk) or # (pound sign) indicate that the entire line is a comment.

 (asterisk) or # (pound sign) indicate that the
entire line is a comment.

) { * | # } [< comment >]

Full-line comment commands are not counted by the SKIP command.

No Operation

The No Operation command consists of only a) in column one. It is counted when
skipped using the SKIP command.

)

Use it for auxiliary purposes such as to indicate the end of a template group for the
OVERLAY command.

FIND

FIND searches the generated source for the search string specified by the TEXT operand.
The search starts from the current line and stops on the first occurrence of the found
text or on the last line in the current device source extent. The search string is case
sensitive.

) {FIND | FND} TEXT=<text>

INSERT

INSERT adds text after the current line. The added text starts immediately after the
command and is interrupted by any line with) in column 1.

) {INSERT | INS}

If the insert is successful, the current line is set to the last line added. If no lines were
inserted, the current line remains unchanged.

Device User Source

396 Building Applications

MARK

MARK defines a label that can be referred to on the SKIP command to delimit a group of
skipped commands. Place the MARK command after the last command to be skipped in
the device user source. The label need not be unique; the choice is up to you.

) { MARK | MRK } TAG = < tag name>

OVERLAY

OVERLAY uses the following user source lines as a template group to overlay the
corresponding columns of the current line in the generated source. Each template line
can potentially change columns 1 to 72. In case of a conflicting override by several
templates, the result of the last one remains in effect.

By definition, characters in the generated source line that correspond to a blank
character in the template line are not changed. To replace a character in the source line
with a blank, assign a character to represent a blank on the template using the BLANK
parameter. This character overlays the corresponding character in the source line with a
blank.

) {OVERLAY | OVR} [BLANK = <character>]

Examples

The following lines substitute H for the character in column 10 of the current line in the
generated source. All other characters are left unchanged.

) OVERLAY

 H

The following lines substitute a blank for the character in column 9 and an H for the
character in column 10 of the current line in the generated source. All other characters
are left unchanged.

) OVERLAY BLANK=%

 %H

Device User Source

Chapter 9: Modifying Device Designs 397

PAINT

PAINT modifies the color of all generated lines for the given extent when the basic
DSPF/PRTF source member is viewed. Painting the original device source extent clearly
identifies the related generated source and is recommended before you create and
attach device user source functions. Only lines produced by the CA 2E device generator
are affected by this command.

) {PAINT | PNT} COLOR={CLEAR(CLR) | RED | GREEN(GRN)
| WHITE(WHT) | TURQUOISE(TRQ) |
YELLOW(YLW) | PINK(PNK) | BLUE(BLU) }

CLEAR removes any previous color. The abbreviation of a color in parentheses is
equivalent to the main name.

Note: For all colors, the PAINT command paints only unchanged lines within the
processed extent. For example, suppose an extent of source lines was painted yellow
and then its second line was changed using the UPDATE command. If the entire extent is
then painted blue later in the device user source, line two remains yellow whereas all
others appear in blue.

POSITION

POSITION explicitly changes the current line to the requested location:

) {POSITION | POS} [TO={NEXT | FIRST | LAST}]

In case of a conflict with the requested value, the current line location remains
unchanged; for example, specifying LINE=NEXT for the last line.

QUIT

QUIT unconditionally stops processing of the device user source. No parameters other
than comments are available

) {QUIT | QIT}

Device User Source

398 Building Applications

REPLACE

REPLACE substitutes one or more lines in the generated source with source statements
in the device user source function. The deleted lines are not physically removed but are
commented out and painted in red. They are excluded from the normal processing and
are invisible to any subsequent FIND commands.

The inserted lines are the ones located between the REPLACE and the next command.

) {REPLACE | RPL} LINES={1 | <1–999>}

The actual number of lines after the current line may be less than the specified
<number>. The added lines are always inserted AFTER the current line.

SCAN

SCAN searches the current line for the string specified by the FOR parameter.

) {SCAN | SCN}

[FOR = <text>]
[OCCURRENCE = {FIRST | LAST | <nn>}]

where: <text>

<nn>

Can be up to 60
characters long
and is case
sensitive.

Is the
occurrence (up
to 70) of the
FOR text being
scanned for.

Device User Source

Chapter 9: Modifying Device Designs 399

SKIP

SKIP skips a specified group of subsequent commands in the device user source
depending on whether the search run by the command identified by the LAST
parameter failed or was successful. The skipped group begins with the command
following the SKIP command and ends with the command identified by the COMMANDS
or THROUGH parameters.

) {SKIP | SKP}

[COMMANDS = {ALL | <nn>}]

[THROUGH = <tag name>]

[LAST = {FIND | SCAN }]

[IF = {FAILED | SUCCESSFUL}]

where: nn

<tag name>

Is the number
of commands
to skip

Is a label within
the device user
source defined
by the MARK
command to
delimit the
group of
commands to
be skipped.

Device User Source

400 Building Applications

Notes

■ Which commands to skip is determined by the COMMANDS and THROUGH
parameters. These parameters are mutually exclusive:

– The COMMANDS parameter skips either a specified number of merger
commands (<nn>) or all remaining commands (ALL) in the device user source.

– The THROUGH parameter specifies the label that delimits the end of the group
of commands to be skipped. The label is defined by the MARK merger
command, which must appear after the SKIP command. If the label is not
unique, the first occurrence is used.

■ When to skip a group of commands is determined by the LAST and IF parameters.

– The LAST parameter specifies whether the SKIP command action depends on
the result of the previous FIND (line search within entire generated extent) or
SCAN (column search within the current line) command. FIND is the default.

– The IF command specifies whether the SKIP command action depends on the
success or failure of the command identified by the LAST parameter.

Possible results are:

Value FIND SCAN

FAILED SKIP the specified
commands if the TEXT
value was not found in
the current extent in the
generated source.

SKIP the specified commands if the
FOR value was not found on the
current line.

SUCCESSFUL SKIP the specified
commands if the TEXT
value was found in the
current extent in the
generated source.

SKIP the specified commands if the
FOR value was found on the current
line.

■ Full-line comments are not counted while skipping.

■ Inserted data lines are considered as part of the preceding merger command and
are not independently counted.

Device User Source

Chapter 9: Modifying Device Designs 401

UPDATE

UPDATE replaces a portion of text in the current line. It first locates the text to be
updated within the current line using the SUBSTRING and COLUMN parameters. It then
replaces this text with the text specified by the BY parameter. If the length of the text to
be updated differs from the length of the replacement text (the default length), use the
LENGTH parameter to specify the number of characters to be replaced.

) {UPDATE | UPD}

[SUBSTRING = <updated text>]
[COLUMN = {1 | * | <nn> }]
BY = <updating text>
[LENGTH = [assign the value for
mm in your book]]

where
:

nn

*

mm

Is the column
number where text
to be updated
starts. The default
is 1.

The column located
by the previous
SCAN.

Is length of text to
be replaced;
defaults to length
of text specified by
the BY parameter.

Notes

■ If SUBSTRING is omitted, the COLUMN parameter indicates the beginning of the
text to update.

■ If SUBSTRING is specified, scanning starts from the position defined by the explicit
or default value of the COLUMN parameter.

■ If SUBSTRING is specified and the scan for it failed, the current line is not updated.

■ To replace multiple occurrences of the specified text in the current line, first use
SCAN to locate the beginning of the specified occurrence of the replaced text. Then
use UPDATE with COLUMN=*, which sets the column position to the position
referred to by the last SCAN.

Device User Source

402 Building Applications

Device User Source Example

This example shows how to:

■ Attach device user source to a field, which is then inherited by all device entries
derived from this field.

■ View and work with attached device user source from a device design

■ View attached user source in the generated source of a device function; for
example, a Print File (PRTFIL) function.

Create a field; for example, DDS BARCODE (CODEABAR).

The following steps show how to attach a device user source function to this new
field. Type Z against the field.

Device User Source

Chapter 9: Modifying Device Designs 403

Press Enter to display the Edit Field Details panel.

Press F11 to display the Field-Level Device Functions panel.

Press F9 to define and attach the device user source function.

Device User Source

404 Building Applications

Specify the file to which the new function is attached, in this case File B, and create
a new EXCUSRSRC function. Type Z against the new function.

Device User Source

Chapter 9: Modifying Device Designs 405

Press Enter.

Type DDS instead of the current HLL name and press Enter. Note that the Type
option changes from ‘Execute user source’ to ‘Edit device user source.’ Type E
against the function to invoke SEU for the source member.

Type the DDS source statements that you want applied to device entries derived
from the DDS BARCODE (CODEABAR) field.

Device User Source

406 Building Applications

Exit and save the function. On the Edit Functions panel, select the device user
source function.

Press Enter.

Device User Source

Chapter 9: Modifying Device Designs 407

From this panel you can

■ Use the E option to edit the device user source

■ Use the D option to detach a device user function

1. Press F3 to exit to the Field-Level Device Functions panel. The device user source
function, Insert BARCODE keyword, is now implicitly attached to derived entries for
the DDS BARCODE (CODEABAR) field on all device designs and is applied the next
time the device designs are regenerated.

2. Press F3 to exit the Edit Field Details panel.

Enter the device design of an existing PRTFIL function.

As an example, you can add DDS BARCODE (CODEABAR) as a function field to the
device design (press F19).

Device User Source

408 Building Applications

Position the cursor on the DDS BARCODE (CODEABAR) entry and press Enter to
display the Edit Report Entry Details panel.

Press F11 to view the device user source attachments for the entry.

Device User Source

Chapter 9: Modifying Device Designs 409

3. Press F3 to exit.

View the generated result.

Copying Functions That Contain Attached Device User Source

■ Device-level device user source is always copied even if the target file (ACP) is not
the same as the source file.

■ Screen, report, and format level device user source is copied unless the
corresponding entity in the target function is excluded due to a change of function
type.

■ Entry-level device user source is copied unless the corresponding entry in the target
function is excluded due to an access path change.

Reference Field

A reference field inherits all device user source attached to the original field when it is
created. Subsequent changes to device user source attached to the original field are not
reflected in the reference field.

Device User Source

410 Building Applications

Documenting Functions

The listing produced by the Document Model Functions (YDOCMDLFUN) command
indicates whether functions contain device user source. Specifying either *BASIC or
*FULL for the PRTDEVDTL parameter provides a separate summary of attached device
user source functions.

Guidelines for Using Device User Source

The following guidelines will help you decide which attachment level to specify when
attaching device user source.

Attachment Levels Are Not Hierarchical

Before attaching Device User Source, it is important for you to understand what each of
the four device user source attachment levels cover.

■ Device (device-level attachment)

■ Screen/Report (screen- or report-level attachment)

■ Format (format-level attachment)

■ Entry (entry-level attachment)

The attachment levels do not form a hierarchy. For example:

■ Attaching a section of device user source at format-level does not enable it over a
field within that format.

■ Attaching device user source at device-level only has relevance at device-level, not
at any lower level.

Note: This discussion does not apply to the field attachment level, which provides a
generic way to apply user source to all derived entries for a field.

Device User Source

Chapter 9: Modifying Device Designs 411

Understanding Extents

When using device user source, it is helpful to think of the CA 2E generated source as a
collection of independent source text extents rather than as a single source member.
When device user source is merged with the CA 2E source, it is merged with an extent,
not with the source member as a whole. You select the appropriate extent when you
specify the attachment level.

The following points are important to keep in mind regarding extent:

■ Each extent contains a different section of code that corresponds to one of the
attachment levels.

■ Each extent is entirely separate from every other one.

■ One attachment level can be resolved into several non-contiguous extents. For
example, a multi-line column header can result in up to four extents.

Note: The following examples for DDS are true for SDF as well.

After all device user source is merged, the result is a DDS source file suitable for input to
the DDS compiler.

Example:

A typical PMTRCD display file might consist of the following extents, in top-down order:

Extent Description

Device extent

Format extent (key screen record format)

Entry extent (key screen 1st field entry)

Entry extent (key screen 2nd field entry)

Format extent (detail screen record format)

Entry extent (detail screen 1st field entry)

Entry extent (detail screen 2nd field entry)

Entry extent (detail screen 3rd field entry)

Entry extent (detail screen 4th field entry)

Entry extent (detail screen 5th field entry)

Screen extent (detail screen 5th field entry)

Device User Source

412 Building Applications

A common error is to attach device user source for a DDS field (entry-level extent) to the
DDS record (format-level extent) that contains the selected field. If the device user
source contains a FIND merger command to locate the selected field, the field is not
found since the scope of a FIND is restricted to the specified extent and the format
extent contains only record data definition lines.

By definition, FIND sequentially checks all available lines after the current one and stops
at the last one making it the new current line. The search has actually failed, but if SKIP
is not used, the following INSERT command places the patch after the current line, for
example, at the end of DDS format definition and not in the DDS field definition as
intended.

Device User Source

Chapter 9: Modifying Device Designs 413

Visualizing Extents

If it is not clear which attachment levels to use for a particular change, you can make a
self-educating demonstration for each external function type. To do so, produce:

■ A set of device user source functions, one for each attachment level. Each function
contains only a PAINT command and comments defining the boundaries of the
extent.

■ A set of simple samples of each external function type, containing no more than
one or two fields per format.

You then attach the device user source functions to your sample external functions to
cause the device source comprising each extent to display in a separate color. The color
indicates the attachment level to which the extent belongs.

In the future when you are attempting to attach device user source to one of your
complex functions you can use these sample, painted functions as a reference to help
you locate the correct attachment point for your patch within the device design of the
function.

The following steps are basic recommendations for painting generated device source.

1. Define DDS and SDF files of STR type. For better maintainability, keep all painting
functions (see examples below) built over the two files accordingly.

2. Create ‘painting’ device user source functions, one per attachment level (Device,
Screen/Report, Format, and Entry) and per device language (DDS, SDF).

3. Name the ‘painting’ functions to reflect the attachment level that is to be painted.

4. Type in similar user source that inserts the boundary comments (<<<...>>>) and
paints the entire extent in a selected color. Use unique colors for each device user
source function within the scope of device language.

5. Attach ‘painting’ device user source functions to all available attachment points of
the selected external function. In order to cover Header/Footer entities, create a
special version of the Header/Footer function in advance, and paint it as you would
paint any external function.

6. Generate the selected external functions and enjoy seeing the fully painted device
source produced by CA 2E. This should assist you in understanding what extents are
and how to use the power of the device user source feature.

Device User Source

414 Building Applications

Examples of ‘Painting’ Functions

Device User source function ‘Paint FIELD source’ built over DDS file:

 * <<<<<<<<< The beginning of FIELD extent >>>>>>>>>>

) POSITION TO=LAST

 * <<<<<<<<< The end of FIELD extent >>>>>>>>>>>>>>>>

) PAINT COLOR=BLUE

Device User source function ‘Paint FORMAT source’ built over SDF file:

<<<<<<<<< The beginning of FORMAT extent >>>>>>>>>>

) POSITION TO=LAST

<<<<<<<<< The end of FORMAT extent >>>>>>>>>>>>>>>>

) PAINT COLOR=RED

Device User Source

Chapter 9: Modifying Device Designs 415

Contents of Extents

Device Extent

The Device extent covers the T*, Z*, and H* lines that are automatically generated for
CA 2E source, plus any file-level lines that are automatically generated, such as the
definition of the print key, help key, and so on. In other words, it covers every source
line from the top of the source member to the first record format definition line. For
example,

T* Test EDTRCD2 for DDS SRC Edit record(2screens)
Z* CRTDSPF
Z* RSTDSP(*YES)
H* MEMBER-ID: UUAXE2R#
*
H* Generated by :SYNON/2 Version: 1037
H* Function type:Edit record(2 screens)
*
H* Company :RMHR6MDL
H* System :RMHR6MDL
H* User name :RMH
H* Date :01/23/98 Time :15:42:00
H* Copyright :RMHR6MDL
*==
M* Maintenance :
*==
A INDARA
A PRINT(YPRTKEY$)
A ALTHELP(CA01)
A ALTPAGEXCUSRPGM(CF07)
A ALTPAGEDWN(CF08)
A CHGINPDFT
A HELP
A HLPTITLE(‘Test EDTRCD2 for DDS SRC-
A - Help’)
A HLPPNLGRP(‘UUAXE2RH’ UUAXE2RH)
A*Window borders definition
A WDWBORDER((*COLOR BLU)
A)

Note: Device user source containing format-level data, like non-standard command key
usage, such as CA01(03 ‘Exit’), should normally be attached to a record format.
However, if the device user source applies to all formats within the file it can be
attached at device-level.

Device User Source

416 Building Applications

Format Extent

The Format extent covers only those sections of the DDS source file that refer to
format-level code, such as Command key definition, SETOFs, Help specifications, and
cursor location specifications. It does not cover any of the fields that exist within that
format. For example,

A R #RCDKEY TEXT(‘KEY SCREEN’)
A SETOF(98 ‘Force input format’)
A BLINK OVERLAY
A INDTXT(86 ‘Enable PUTOVR’)
A 86 PUTOVR
A 04
AO 25 CSRLOC(ZZCSRW XXCSCL)
A INDTXT989 ‘’ADD’ mode’)
A* Command keys
A VLDCMDKEY(29 ‘Valid command key’)
A CA03(03 ‘Exit.’)
A CF09(09 ‘Change mode.’)
A CF05(05 ‘Reset.’)
A CF04(04 ‘Prompt.’)
A* SETOFFS.................................
A SETOF(99 ‘Global error flag’)
A SETOF(31 ‘Invalid: #1ADCD’)
*
* Help specifications
A H HLPARA(*NONE)
A HLPPNLGRP(‘INTRO’ UUAXE2RH)
A H HLPARA(*NONE)
A HLPPNLGRP(‘KEY’ UUAXE2RH)
A H HLPARA(*NONE)
A HLPPNLGRP(‘FUNCK" UUAXE2RH)
A H HLPARA(*NONE)
A HLPPNLGRP(‘DATAK’ UUAXE2RH)
A HLPEXCLD
*
* Reposition cursor to where?
A ZZCSRW 3 OH TEXT(‘Cursor row’)
A ZZCSCL 3 OH TEXT(‘Cursor Column’)

Device User Source

Chapter 9: Modifying Device Designs 417

Entry Extent

The Entry extent covers only those sections of the DDS source file that describe the
characteristics of specific device entries (fields) within a format. For example,

A #1ADCD 3 B 415 TEXT(‘Key code’)
A CHECK(FE)
A N25 OVRDTA
A 31 DSPATR(R1)
A N31 DSPATR(UL)
A 31
AON31N98N99 DSPATR(PC)
A N25 OVRATR

Screen Extent

The Screen extent covers the message subfile and confirm prompts that appear at the
base of each screen. For example,

.*===

. R #CONFIRM TEXT(‘Prompt confirm’)

. VLDCMDKEY(29)

. OVERLAY PROTECT PUTOVR CLRL(*NO)

. 24 64 ‘CONFIRM.’

. ##CFCD 1 H TEXT(‘*CONFIRM’)

. V#CFCD 1 B 24 73 TEXT(‘*CONFIRM : External Image’)

. CHECK(ER)

. DSPATR(HI UL)

. 96 ERRMSGID(Y2U0014 Y2USRMSG)

. 24 75 ‘(Y/N)’

.*===

. R #MSGRCD TEXT(‘Program messages’)

. SFLCTL(#MSGRCD)

. MSGKEY SFLMSGKEY

. ##PGM SFLPGMQ

.*===

. R #MSGCTL TEXT(‘Program messages’)

. SFLCTL(#MSGRCD)

. SFLPAG(01) SFLSIZ(03)

. 86 OVERLAY PUTOVR

. SFLINZ SFLDSP SFLDSPCTL

. 25

.ON25 SFLEND

. ##PGM SFLPGMQ

.*===

Device User Source

418 Building Applications

Device Source Extent Stamp (DSES)

The number and content of generated extents for a particular device entity varies from
one function type to another. Prior to Release 6.1, separate device user source functions
were required to produce a similar change to functions of different types.

To resolve this problem and expand the power of device user source, the generators
insert an identifying comment before each extent that is part of a device entity that has
device user source attached. The comment contains the following information:
attachment level, header/footer type, program name, and function, entity, screen,
format, and entity types. This comment is called the Device Source Extent Stamp (DSES)
and consists of the following components.

Note: Not all extents have all components.

Component Description Valid Values

A@L:n Attachment level; read as
Attached at Level:

E (entry), F (format), S
(screen), R (report), and D
(device)

HDR:nnnnn Header/Footer type POPUP, F/SCR, PRINT

FUN:nnnnnnnnnn Program name For example, UUABEFR

TYPE:nnnnnnn Function type EDTRCD, DSPTRN, PRTFIL,
etc.

SCR#:n

RPT# :n

Screen/Report number 1, 2, 3,4

FMT:nnn Format type RCD, CTL, HDR, FTR, etc.

ENT:n Entity type F (field description)

1, 2, 3, L, R (column
headers)

Special field values: P
(program name), ! (screen
title, $ (selection text), #
(command key text)

Device User Source

Chapter 9: Modifying Device Designs 419

By specifying values contained in the DSES on a SCAN command, you can conditionally
test whether or not the processed extent should be modified. For example, to attach
user source to a field description rather than to a field column header, scan for ‘ENT:F’
rather than ‘ENT:1’ or ‘ENT:L’.

Note: DSES is always the first line in any extent. To ensure that the current line is
positioned at the DSES, include a POSITION TO=FIRST command in the user source.

The DSES is not protected from change, so be careful not to modify it accidentally.

Examples of Device Source Extent Stamp

This shows DSES for several contiguous extents along with comment boundaries of
each extent (<<<...>>>) that were embedded by the attached ‘painting’ functions.

This shows the device source header including pre-processor directives *Y, *Z, and
so on. The stamp does not have screen-, format- and entry- components.

Device User Source

420 Building Applications

This shows the Detail Screen 3 (SCR#:4) containing the Confirm prompt window
description.

This shows the Prompt Key Details format (FMT:KEY) on the Prompt Key screen
(SCR#:1).

This shows the Date atr (DT8) field of the Detail Format 2 format (FMT:2ND) on the
Detail Screen 2 screen (SCR#:3) presented by two extents describing Left Hand Side
Text (ENT:L) and the field itself (ENT:F), respectively.

This shows the same field belonging now to the Detail line format (FMT:RCD) on the
only report (RPT#:1) of the function (TYPE:PRTFIL) with selected Standard Report
Header/Footer (HDR:PRINT).

Chapter 10: Modifying Action Diagrams 421

Chapter 10: Modifying Action Diagrams

This chapter describes the components that make up an action diagram, how to use the
action diagram editor, and how to edit a function’s action diagram.

This section contains the following topics:

Understanding Action Diagrams (see page 422)
Naming a Function as an Action (see page 425)
User Points (see page 428)
Understanding Constructs (see page 429)
Understanding Built-In Functions (see page 433)
Understanding Contexts (see page 489)
Understanding Conditions (see page 535)
Understanding Shared Subroutines (see page 540)
Understanding the Action Diagram Editor (see page 542)
Using NOTEPAD (see page 548)
*, ** (Activate/Deactivate) (see page 551)
Protecting Action Diagram Blocks (see page 552)
Using Bookmarks (see page 554)
Submitting Jobs Within an Action Diagram (see page 556)
Viewing a Summary of a Selected Block (see page 562)
Using Action Diagram Services (see page 563)
Additional Action Diagram Editor Facilities (see page 568)
Exiting Options (see page 573)
Understanding Action Diagram User Points (see page 575)
Understanding Function Structure Charts (see page 596)

Understanding Action Diagrams

422 Building Applications

Understanding Action Diagrams

Action diagrams record the basic constructs that make up a procedure. The action
diagram is used to specify the procedural steps that make up a CA 2E function. These
procedural steps encompass a list of actions; each action can either be a call to another
function or a number of low-level built-in functions.

Depending on where you are in CA 2E, use one of the following sets of instructions to
get to the action diagram of a function. These instructions are only provided here, in the
beginning of this chapter. Other instructions in this chapter assume that you are already
at the Edit Action Diagram panel.

When a parameter is being passed as an array there is a single subfile line that indicates
an array being passed.

Note: If the called function’s parameter interface is modified to toggle the parameter
Passed as Array field from Y to blank, the behavior of the EDIT ACTION – FUNCTION
DETAILS changes accordingly to match.

The Edit Database Relations Panel

To use the Edit Database Relations panel

1. Go to the function. At the Edit Database Relations panel, type F next to any relation
for the file.

The Edit Functions panel appears.

2. Go to the action diagram. Type FF next to the selected function.

The Edit Action Diagram panel appears.

The Open Functions Panel

To use the Open Functions Panel

1. Go to the action diagram.

2. Type F next to the selected function at the Open Functions panel, and then press
Enter.

The Edit Action Diagram panel appears.

Understanding Action Diagrams

Chapter 10: Modifying Action Diagrams 423

The Edit Function Details Panel

To use the Edit Functions Detail panel

■ If you are at the Edit Function Details panel, press F5 to display the Edit Action
Diagram panel.

The Display All Functions Panel

To use the Display All Functions panel

1. Go to Display Services.

2. From within CA 2E, press F17.

The Display Services Menu appears.

3. Go to the list of all functions, select the Display all functions option, and then press
Enter.

The Display All Functions panel appears.

4. Go to the action diagram.

5. Type F next to the selected function and then press Enter.

The Edit Action Diagram panel appears.

Specifying an Action in an Action Diagram

To specify an action use the Action Diagram Editor with this two-step process

1. Specify where in the action diagram you want the action to execute.

2. Specify the function details for the new action.

Understanding Action Diagrams

424 Building Applications

Adding an Action

To add an action

■ Specify IA against the line in the action diagram where you want to add the action:

Specifying a Function as an Action

To specify the details for the new action

■ Enter F against the line just added:

Naming a Function as an Action

Chapter 10: Modifying Action Diagrams 425

Alternatively, you can add or specify a function as an action in one operation by entering
IAF in the subfile selection column.

Naming a Function as an Action

This provides a subsidiary display on which you can specify the name of the function
that constitutes the action. The display is preloaded with a ? in the Function file and
Function fields to facilitate inquiries for these fields.

Naming a Function as an Action

426 Building Applications

Specifying Parameters for an Action Function

If there are any parameters for the called function, you can specify which fields from
which contexts within the calling function are to be passed as parameters. To do so,
press F9.

If the function has more than eight parameters, a parameter selection field appears in
the header. Press F15 to display undefined parameters.

When Action Function parameters are undefined, the default model context appears in
the upper right corner where you can change it. For example, if the model default is the
WRK context you can change the value to LCL or NLL context and press F10=Default
parms.

Naming a Function as an Action

Chapter 10: Modifying Action Diagrams 427

Calling a Function with a Parameter Passed as Array

When there is only one item passed as array, as in the above example, Ctx defaults to PAR.

For more information on parameter usage see the Parameter Usage matrix (see page 274).

User Points

428 Building Applications

User Points

The majority of the CA 2E standard functions have default action diagrams. The
exceptions are Execute User Source (EXCUSRSRC) and Execute User Program
(EXCUSRPGM). Portions of the action diagram are essential to the program’s function,
and as such, are not alterable. However, you can insert logic into the action diagram to
add processing that is specific to that function.

The areas that you can modify in the action diagram are called user points. The user
points vary for each standard function and are accessed according to the function. User
points are identified in the action diagram of a function by arrows, made up of a
chevron and two dashes, in the right margin of the Edit Action Diagram panel.

To list and access the user points in an action diagram, press F5 to display the available
user points for the function.

The Action Diagram User Point window appears.

If the user points contain user-defined action diagram statements, they are identified by
three chevrons in the right margin of the window.

For more information on individual user points for each function type, see the
Understanding Action Diagrams User Points topic, later in this chapter.

Understanding Constructs

Chapter 10: Modifying Action Diagrams 429

Understanding Constructs

Constructs are the basic building blocks of an action diagram. By combining different
types of constructs, you define the procedural logic of an action diagram.

The action diagram allows those basic constructs, action and condition, to be combined
into other types of constructs. The combination constructs are as follows:

■ Sequential

■ Conditional

■ Iterative

CA 2E executes all actions in a bracket construct in order, from top to bottom.

The following is an example of the presentation convention for action diagrams.

 > Process subfile <==TITLE
 .-- <==SEQUENCE
 : Read next changed SFL record
 : .=REPEAT WHILE <==ITERATION
 : |-Changed record found on SFl <==CONDITION
 |
 : | .-CASE
 |
 : | |-RCD. *SFLSEL *Zoom <==CONDITION
 : | |>USER DEFINED SELECTION <<<
 : | |.-- <<<
 : | |:.Display user details <==ACTION <<<
 : | |:PAR: Date |: ‘Date of Birth’
 : | |’-- <<<
 : | |-*OTHERWISE <==CONDITION
 : | |>USER DEFINED LINE VALIDATION <<<
 : | |.-- <<<
 : | |:.-CASE <<<
 : | |:|-RCD.Date of birth * GT JOB.Job date <<<
 : | |:|.Send error message ‘Invalid DOB’ <==ACTION
 : | |:|PAR: Date|:’Date of Birth’
 : | |:’-ENDCASE <<<
 : | |’--
 : | ‘-ENDCASE
 : | Update SFL record
 : Read next changed SFL record

 : ‘-ENDWHILE
 ‘--

Understanding Constructs

430 Building Applications

Sequential

Sequential statements are the simplest of the constructs. They specify a list of actions or
other constructs that are executed in the order in which they are written. The logic that
you insert in a sequential statement is normally executed as a subroutine within the HLL
program.

Sequential statements are denoted by brackets that enclose dotted lines.

 .—

 : ...
 : ...
 : ...
 ‘--

Conditional

Conditional constructs allow actions to be conditionally executed within the action
diagram logic. Conditional constructs generally conform to nested IF THEN ELSE logic
statements or SELECT sets. Conditional constructs are called CASE blocks because they
are denoted by CASE and ENDCASE statements. Conditions that are more complex can
be constructed using compound conditions. You use CASE blocks to execute actions
based on the condition being tested. Actions within a condition construct are generated
as inline code.

Condition constructs are denoted by brackets that enclose broken vertical bars.

 .-CASE

 |-Order status is Held
 | ...
 | ...
 | ...
 ‘-ENDCASE

Understanding Constructs

Chapter 10: Modifying Action Diagrams 431

Iterative

Iterative constructs represent repetitive logic that executes when a specific condition is
true. The iterative statement is denoted by REPEAT WHILE and ENDWHILE statements.
CA 2E implements the iterative construct as an HLL subroutine. You must define a
controlling condition within the iterative loop to determine whether the logic is to be
repeated.

Note: The actions within the iterative construct are executed only while the initial
condition is true. This may require a preceding action to set the initial condition.

Iterative constructs are denoted by brackets that enclose solid vertical lines.

 .=REPEAT WHILE

 -Order status is Held
 ...
 ...
 ...
 ‘-ENDWHILE

Understanding Constructs

432 Building Applications

Capabilities of Constructs

You can nest constructs. For example, you can insert a conditional CASE construct within
a REPEAT WHILE construct; in this manner you test for a conditional value while the
controlling condition is executed. You can nest sequential actions within any other
construct.

 .=REPEAT WHILE
 | |-END OF CURRENT CUSTOMERS NOT REACHED
 | |...Read customers
 | |...
 | |.-CASE
 | |-Order value is *LT 100
 | | ...
 | | ...
 | ‘-ENDCASE
 | ...
 ‘-ENDWHILE

You can exit a construct at any point within the processing logic by means of either one
of two built-in functions: *QUIT or *EXIT PROGRAM.

■ The *EXIT PROGRAM built-in function allows you to leave the current HLL program
or CA 2E external function.

■ The *QUIT built-in function allows you to leave the current subroutine logic of the
sequential construct block or CA 2E internal function.

There are consequences for using *QUIT and *EXIT PROGRAM within constructs. Other
constructs are implemented as inline code within the current subroutine. The *QUIT
built-in function allows you to leave the current subroutine logic of the construct block.
The *EXIT PROGRAM built-in function allows you to leave the current HLL program.

 .—SEQUENCE

 : .Order status is Held
 : ...Review order
 : .-CASE
 : |...Order value is RELEASE
 : | <--*QUIT
 : ‘-ENDCASE
 : ...
 ‘--

For more information on user points, see Understanding Action Diagram User Points at
the end of this chapter.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 433

Understanding Built-In Functions

CA 2E built-in functions specify low-level operations that you can use within the user
points in action diagrams to implement a specific field manipulation or to control an
action within the action diagram.

Follow these steps to insert a built-in function at an action diagram user point.

1. Enter IAF next to the location in the action diagram where you want to insert the
function. The Edit Action - Function Name window appears.

■ Leave the Function File option blank to default to the *Built in functions file.

■ Enter ? for the Function option and press Enter to display a list of the built-in
functions. Alternatively, you can enter the name of the built-in function.

2. Select the built-in function you want. The Edit Action - Function Name window
appears. Press Enter to display the Edit Action - Function Details window and enter
parameters for the built-in function you selected.

3. Press Enter to continue editing the Action Diagram.

Each of the built-in functions are listed alphabetically and described on the following
pages.

Add

The *ADD built-in function specifies an arithmetic addition on two operands.

There are three parameters for this function type:

■ Two input parameters, which are the two operands.

■ One output parameter, which is the *Result field containing the result of the
addition

All three parameters must be a numeric field type such as PRICE or QUANTITY.

CA 2E implements the *ADD built-in function as an ADD statement for all generators.

Example

This is an example of the *ADD built-in function

 > USER: Process detail record
 .--
 : WRK.Cost = RCD.Cost + RCD.Tax <<<
 ‘--

Understanding Built-In Functions

434 Building Applications

Commit

The *COMMIT built-in function enables you to add your own commit points to a
program that is executing under i OS commitment control. Commitment control is a
method of grouping database file operations that allow the processing of a database
change to be either fully processed (COMMIT) or fully removed (ROLLBACK).

There are no parameters for this built-in function.

CA 2E implements the *COMMIT built-in function as an RPG COMMIT statement, and as
a COBOL COMMIT statement.

Example

The following is an example of the *COMMIT built-in function.

 > USER: Create DBF record

 .--
 : .Call EDTRCD function <<<
 : .-CASE: <<<
 : | -PGM.*Return code is Not blank <<<
 : | Rollback <<<
 : | <--QUIT <<<
 : ‘-ENDCASE <<<
 : Call EDTTRN function <<<
 : .-CASE: <<<
 : | -PGM.*Return code is Not blank <<<
 : | Rollback <<<
 : | <--QUIT <<<
 : | -*OTHERWISE <<<
 : | Commit <<<
 : ‘-ENDCASE <<<
 ‘-- <<<

For more information about commitment control, see this module, in the chapter,
"Modifying Function Options."

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 435

Compute

The *COMPUTE built-in function enables you to define a complex arithmetic expression
using the following mathematical operators on a single compute expression line.

Operator Operation Definition

+

–

*

/

\

*ADD

*SUB

*MULT

*DIV

*MODULO

addition

subtraction

multiplication

division

modulo

For more information on these operations, see, Understanding Built-In Functions *ADD,
*SUB, *MULT, *DIV, and *MODULO subtopics earlier in this chapter.

There is one output parameter, the *Result field of the object type FLD, associated with
this function type. It contains the result of the computation expression.

Note: You can define several additional parameters as needed by the details of the
compute statement.

By default, intermediate results for each operation are contained in *Synon (17,7) Work
fields. You can override the work fields with any valid field in the action diagram to
contain intermediate results.

Note: The precision of the intermediate result fields affects the overall precision of the
*COMPUTE expression. For example, the default fields are defined with a length of 7
decimal digits. Any rounding you specified for a multiplication or division operation
occurs only in the following cases:

■ The intermediate result has more than 7 decimal digits

■ The operation is last in the *COMPUTE expression and the length of the final result
field has fewer decimal digits than the calculation requires

To force rounding, ensure that intermediate and final result fields have the appropriate
number of decimal digits.

Understanding Built-In Functions

436 Building Applications

Defining a Compute Expression

Enter the built-in function *COMPUTE or press F7 on the Edit Action Function Details
panel to convert an existing arithmetic built-in function to a compute expression. This
action causes the Edit Action-Compute Expression panel to display.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 437

On the Edit Action - Compute Expression panel the *Compute expression appears as an
input-capable character field. Specify the arithmetic expression using the correct
mathematical formula.

CA 2E writes the correct field contexts and expressions under the compute line. You
must then use the F or FF line commands to edit the function name or the function
details associated with each pair of terms and operations in the expression.

For more information on the line commands, see the Understanding the Action Diagram
Editor topic in this chapter.

Note: Encapsulating the compute expression in a derived field allows the expression to
be easily re-used in several functions.

Understanding Built-In Functions

438 Building Applications

Concatenation

The *CONCAT built-in function provides the means of joining or concatenating two
discrete strings of data into a single string.

For more information on concatenating numeric data without conversion to character
data, see this topic, Convert Variable.

There are four parameters for this function type.

■ Three input parameters: a character field, *String 1 of usage VRY which is the first
string to be joined; a character string, *String 2 also of usage VRY which is the
second string to be joined to *String 1; and a numeric field, *Number of blank, that
determines the number of blanks between the two strings.

The following three conditions are supplied with the *Number of blanks
parameter.

Condition Result

*None No blanks between the two strings

*One Single blank between the two strings

*All Retain all trailing blanks of the first string

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 439

■ One output parameter, which is the *Resulting string or the string that comprises
the two joined strings

CA 2E implements the *CONCAT built-in function as an RPG CAT statement. In COBOL
CA 2E implements the *CONCAT function as a STRING statement.

The following example shows a concatenation function that concatenates the fields
Name and Last Name and does not put any blanks between the two strings.

Understanding Built-In Functions

440 Building Applications

The following example shows how the concatenation appears in the Action Diagram:

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 441

Convert Variable

The *CVTVAR built-in function specifies that the value of one CA 2E field is to be moved
to another field of a different type; that is, the two fields do not have to be of the same
domain. CA 2E converts the field values according to the assignment rules of the HLL
language in which you create the function.

An example of the use of this function might be to move a numeric code, stored in a
CDE field, into a NBR field.

Note: To convert among date (DTE, DT#, TS#), time (TME, TM#), and number (NBR) data
types, use the *MOVE built-in function instead.

You can also use the *CVTVAR built-in function with the ELM context to move data
between a field and a data structure. In CA 2E a data structure is equivalent to a single
element array. This provides a method for decomposition or (re)composition of field
data in a single operation.

For example, you can use this technique to compose a complex data string into a single
parameter required by a system API (Application Interface Program) or a third party
application. Conversely, you can use this technique to decompose and recompose a
telephone number or postal code.

For more information on the ELM context field, see Understanding Contexts in this
chapter.

There are two parameters associated with the *CVTVAR function type:

■ One input parameter (*FACTOR2)—The field of any attribute or domain that is to
be moved.

Note: Fields with a context of CND or CON are not appropriate for the *CVTVAR
input parameter.

■ One output parameter—The *Result field, also of any attribute or domain, into
which the field is to be moved.

By default, CA 2E implements the *CVTVAR built-in function as an RPG MOVEL
statement when moving from a numeric field into an alphanumeric field. CA 2E uses an
RPG MOVE statement when moving from an alphanumeric field into a numeric field. CA
2E implements the *CVTVAR function as a COBOL MOVE statement.

If the *Result field is longer than the moved field the result field is blanked out or
converted to zeroes prior to the move. Any excess characters are converted to blanks or
zeros.

Note: If you move an alphanumeric field to a numeric field, COBOL does not convert
spaces to zeroes. This can cause decimal data errors.

Understanding Built-In Functions

442 Building Applications

Example 1

This example shows how to move a number into a code field.

Example 2

This example shows how to decompose a field (Customer postal code) into a structure
defined by an array.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 443

Date Details

The *DATE DETAILS built-in function returns information about a given date; for
example, day of week, length of month, or whether it is in a leap year. You specify the
kind of information you need using the *Date detail type parameter.

Note: You should check the return code set by this function in order to catch any errors
encountered.

There are seven parameters for this function type:

■ Six input parameters:

– *Date is the date for which information is to be returned. A field of type NBR is
interpreted as the number of days since January 1, 1801 (day one).

– *Date detail type specifies the kind of information returned for the *Date field.
See the table at the end of this topic.

– *Excluded days of week specifies days that are normally excluded from the
operation; for example, weekends.

– *Date List name specifies the name of an existing date list. Date lists let you
override selection rules set by the *Excluded days of week parameter for
particular dates; for example, holidays. The specified date list needs to be in
the *Date Lists array when the built-in function executes.

– *Date List autoload specifies whether the function automatically loads the date
list into the *Date Lists array when it executes.

– *Select days/dates lets you reverse the selection determined by the *Excluded
days of week and *Date List name parameters. The default is to provide date
details for included days only.

■ One output parameter, *Date detail. This field contains the requested information
for the input date. Its meaning is determined by the *Date Detail Type.

For more information on the selection input parameters, see the Selection Parameters
for Date Built-In Functions subtopic later in the Date Details topic.

The possible values for the *Date detail type and the effect of each on the meaning of
the output field are summarized in the following table.

*Date Detail Type Values Effect on the *Date Detail Parameter

*ABSOLUTE DAY The result is the number of days that have
elapsed since January 1, 1801 (the day one) for
the given date.

*DAY OF YEAR The result is an integer from 1 to 366, specifying
the number of selected days that have elapsed
since the beginning of the given year.

Understanding Built-In Functions

444 Building Applications

*Date Detail Type Values Effect on the *Date Detail Parameter

*DAY OF MONTH The result is an integer from 1 to 31, specifying
the number of selected days that have elapsed
since the beginning of the given month.

*DAY OF WEEK The result is an integer from 1 to 7, specifying
the number of selected days that have elapsed
since the beginning of the given week. The days
of the week are numbered sequentially
beginning with 1=Monday.

*SELECTED? The result specifies whether the given date was
selected. See the *Select Days/ Dates parameter.

1=the date was selected.

0=the date was not selected.

*MONTH The result is an integer from 1 to 12, specifying
the month of the given date.

*MONTH LENGTH The result is an integer specifying the number of
selected days in the month for the given date.

*YEAR The result is the year of the given date, in the
format YYYY.

*LEAP YEAR? The result specifies whether the given date is in a
leap year.

1=the date is in a leap year.

0=the date is not in a leap year.

*YEAR LENGTH The result is the number of selected days in the
year for the given date.

Note: The result in *Date detail reflects only selected days unless you specify
*ABSOLUTE DAY, *MONTH, *YEAR, or *LEAP YEAR for *Detail type.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 445

Example

Suppose you want to calculate the day of the week an order was placed. For example, if
the order date was, August 4, 1994, the result is Thursday. Following are parameter
specifications for the *DATE DETAILS built-in function that produce this result. Scroll to
view the *Selected days/dates parameter.

To insert this *DATE DETAILS built-in function into the action diagram, press Enter.

Understanding Built-In Functions

446 Building Applications

Selection Parameters for Date Built-In Functions

This topic gives details about the selection parameters for the *DATE DETAILS, *DATE
INCREMENT, and *DURATION built-in functions. It also discusses the related *Date list
autoload parameter. The selection parameters are

■ *Excluded days of week

■ *Date List name

■ *Select days/dates

Note: For the *DATE INCREMENT and *DURATION built-in functions, you can specify a
value other than *NO or NONE for the selection parameters only if the *Duration type
parameter is *DAYS.

*Excluded Days Of Week

This parameter is a condition field or derived field of type STS. Use this parameter to
specify days that are normally to be excluded from an operation; for example, weekends
or days not worked by part-time employees.

Each value you specify for this parameter consists of seven digits. Each digit can be 1 or
0 and corresponds to a day of the week beginning with Monday. A 1 indicates that the
day is to be included in the operation; a 0 indicates that the day is to be excluded.

The possible values are shown in the following table.

 *Excluded Days of Week Values Description and Examples

*NO Include all days of the week. The value is
1111111.

*SUNDAY Exclude Sundays. The value is 1111110.

*SATURDAY Exclude Saturdays. The value is 1111101.

*SATURDAY,

SUNDAY

Exclude Saturdays and Sundays. The value
is 1111100.

User-defined You define which days of the week to
include and exclude; for example, if your
department works Tuesday through
Saturday, define a condition with value
0111110.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 447

You can modify the selection rule set by this parameter using the other two selection
parameters.

■ Use *Date List name to exclude or include particular dates.

■ Specify *EXCLUDE for *Select days/dates to reverse the effect of the selection; in
other words, to select excluded days.

■ *Date List Name

This parameter specifies the name of an existing date list.

Date lists let you override the selection rules set by the *Excluded days of week
parameter for particular dates; for example, holidays. A date list consists of a unique
name, a list of dates, and a 1 or 0 for each date to indicate whether to include or
exclude the date. To use a date list, specify its name on the *Date List name parameter.

Note: You can specify dates for different years on the same date list.

The default for *Date List name is NONE; in other words, no date list is specified. This
value is required in the following cases.

■ The *Duration type parameter is other than *DAYS on the *DATE INCREMENT and
*DURATION built-in functions.

■ The *Date detail type parameter is *ABSOLUTE DAY, *MONTH, *YEAR, or *LEAP
YEAR on the *DATE DETAILS built-in function.

When a date built-in function uses a date list executes, it expects to find the specified
*Date List name in the *Date Lists array. This array and the function needed to create it
are shipped with CA 2E. Each element of the array is comprised of the following fields:

Field Name Type

*Date List Name

*Date absolute day

*Date flag

VNM

NBR

STS

Key

Key

Atr

Understanding Built-In Functions

448 Building Applications

For more information on arrays, see Building Access Paths, in the chapter "Defining
Arrays."

To load a date list into the *Date Lists array you can do one of the following:

■ Write instructions in the action diagram to load the information into the array
before executing the built-in function.

■ Specify *YES for the *Date list autoload parameter. The *Date list autoload
parameter determines whether the function is to automatically load the specified
date list into the *Date Lists array, if it does not find the name in the array. The
possible values are

– *YES: The specified *Date List name is automatically loaded from the *Date
List Detail file into the *Date Lists array when the built-in function executes.
You can specify *YES only when *Date List name is other than NONE.

– *NO: You need to provide instructions in the action diagram to load the date
list into the *Date Lists array before executing the built-in function.

To create date lists for use with the *Date list autoload capability, you can use the Work
with Date List function that is shipped with CA 2E in the *Date List Header file. The
information you enter is stored in the *Date List Header and *Date List Detail files.

The *Date List Header and *Date List Detail physical and logical files are supplied in the
generation library in addition to being defined in the model. If you want to maintain
these files, you need to regenerate and compile them.

Notes:

■ You need to generate and compile the Work with Date List function into your
generation library. You invoke it using its implementation name.

■ Before you can compile functions with *Date list autoload set to *YES, you
need to generate and compile the PHY, RTV, and UPD access paths for the
*Date List Detail file.

Suppose Company ABC is closed for business on certain holidays. The following example
shows a date list, created using the Work with Date List function that excludes those
holidays.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 449

You can create a similar date list to include days that are not considered normal
business days. For example, suppose the employees of Company ABC are required to
work on a Saturday for the company inventory. The date list would contain an entry like
the following.

70994 1 Company Inventory Day

You can reverse the effect of the selection rule set by a date list by specifying *EXCLUDE
for the *Select days/dates parameter; in other words, you can select excluded days
instead of included days.

*Select Days/Dates

This parameter lets you reverse the selection set by the *Excluded days of week and
*Date List name parameters. Normally, only included days are selected and considered
by a date built-in function. This parameter lets you select excluded days instead.

The possible values for this parameter are shown in the following table.

*Select Days/ Dates Values Effect on the Output of the Date Built-In
Function

*INCLUDED Select only days that are either

Flagged as included on the *Date List.

2. Not excluded by *Excluded days of week
and not flagged as excluded on the *Date List.

This is the default.

Understanding Built-In Functions

450 Building Applications

*Select Days/ Dates Values Effect on the Output of the Date Built-In
Function

*EXCLUDED Select only days that are either

Flagged as excluded on the *Date List.

Excluded by *Excluded days of week and not
flagged as included on the *Date List.

This lets you reverse the default selection.

*NO The default is automatically changed to *NO
when the built-in function does not require
selection; for example, when *Duration type is
not *DAYS or when *Date details is *ABSOLUTE
DAY. If the built-in function requires selection,
you cannot specify *NO.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 451

Date Increment

The *DATE INCREMENT built-in function lets you add a quantity to a given date. You
specify the kind of quantity to add using the *Duration type parameter. Note that you
should check the return code set by this function in order to catch any errors
encountered. This function is the converse of the *DURATION function.

The *DATE INCREMENT built-in function performs the operation:

*Date1 = *Date2 + *Duration

There are eight parameters for this function type:

■ Seven input parameters

– *Date2 specifies the beginning date. If it is of type NBR, it is interpreted as the
number of days since January 1, 1801 (day one).

– *Duration specifies the quantity to be added to the beginning date. Its meaning
is determined by the value of *Duration type.

– *Duration type specifies the meaning of the quantity to be added to the
beginning date. See the table at the end of this topic.

– *Excluded days of week specify days that are normally not to be included in the
sum.

– *Date List name specifies the name of an existing date list. Date lists let you
override selection rules set by the *Excluded days of week parameter for
particular dates. The specified date list needs to be in the *Date Lists array
when the built-in function executes.

– *Date list autoload determines whether the function is to automatically load
the specified date list into the *Date Lists array when the function is executed.

– *Select days/dates lets you reverse the date selection determined by the *Date
List name and *Excluded days of week parameters. The default is to select
included dates.

■ One output parameter, *Date1, which specifies the result date. If it is of type NBR,
it is interpreted as the number of days since January 1, 1801 (day one).

For more information on the selection input parameters briefly described here, see the
Selection Parameters for Date Built-In Functions topic in the *DATE DETAILS built-in
function description.

The possible values for *Duration type and the effect each has on the meaning of the
*Duration parameter are shown in the following table.

*Duration Type Values Effect on the *Duration Parameter

Understanding Built-In Functions

452 Building Applications

*Duration Type Values Effect on the *Duration Parameter

*DAYS Number of selected days to add to the
specified date (*Date2). This is the default.

*MONTHS Number of full months to add to the
specified date (*Date2). Partial months
are ignored.

*YEARS Number of full years to add to the
specified date (*Date2). Partial years are
ignored.

*YYMM Number of years and full months in YYMM
format to add to the specified date
(*Date2); partial months are ignored. For
example, 1011 means 10 years and 11
months; 1100 means exactly 11 years.

*YYMMDD Number of years, months, and days in
YYMMDD format to add to the specified
date (*Date2). For example, 100923
means 10 years, 9 months, and 23 days;
110000 means exactly 11 years.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 453

Example

Suppose you want to calculate the next interest payment date for a loan where an
interest payment is due every 20 days, not including weekends. For example, if the last
payment date was, August 4, 1994, the next interest payment is due, September 1,
1994. Following are parameter specifications for the *DATE INCREMENT built-in
function that produce this result. Scroll to view the *Date list autoload and *Selected
days/dates parameters.

To insert this *DATE INCREMENT built-in function into the action diagram, press Enter.

For more information on
*DATE INCREMENT, see Calculation Assumptions and Examples for Date Built-In Functions at the end of this

section.

Understanding Built-In Functions

454 Building Applications

Divide

The *DIV built-in function specifies an arithmetic division of one field by another. You
can specify the shipped field *Rounded to determine whether the result of the division
is half-adjusted or not; CA 2E provides two conditions for this purpose.

There are four parameters for this function type:

■ Three input parameters which are the dividend (*FACTOR1), the divisor
(*FACTOR2), and the *Rounded field.

■ One output parameter which is the *Result field containing the result of the
division.

*FACTOR1, *FACTOR2, and the *Result field must all be numeric field types.

CA 2E implements the *DIV built-in function as an RPG DIV statement and as a COBOL
DIVIDE statement.

Example

This is an example of how to use the *DIV built-in function.

 > USER: Process detail record
 .--
 :–CTL. Average value = WRK.Total val/WRK.Total <<<
 no.
 ‘--

Divide with Remainder

The *DIV WITH REMAINDER built-in function specifies an arithmetic division of two
fields with the remainder being stored in an additional field.

There are four parameters for this function type:

■ Two input parameters, which are the dividend (*FACTOR1) and the divisor
(*FACTOR2).

■ Two output parameters which are the *Remainder field and the *Result field
containing the result of the division.

All parameters must be numeric field types.

CA 2E implements the *DIV WITH REMAINDER built-in function as an RPG MVR
statement, and as a COBOL DIVIDE statement followed by a COBOL MOVE statement.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 455

Duration

The *DURATION built-in function calculates the elapsed time between a beginning date
and an ending date.

Note: You should check the return code set by this function in order to catch any errors
encountered. This function is the converse of the *DATE INCREMENT built-in function.

The *DURATION built-in function performs the operation:

*Duration = *Date1 – *Date2

The result is positive if *Date1 is after *Date2; it is negative if *Date1 is before *Date2.

There are eight parameters for this function type:

■ Seven input parameters

– *Date2 and *Date1 specify the beginning and ending dates, respectively. When
either date is of type NBR, it is interpreted as the number of days since January
1, 1801 (day one).

– *Duration type specifies the meaning of the result of the operation. See the
table at the end of this topic.

– *Excluded days of week specifies the days to exclude from the operation; for
example, weekends or days not worked by part-time employees.

– *Date List name specifies the name of an existing date list. Date lists let you
override normal selection rules set by the *Excluded days of week parameter
for particular dates. The specified date list needs to be in the *Date Lists array
when the built-in function executes.

– *Date list autoload determines whether the function automatically loads the
specified date list into the *Date Lists array when the function is executed.

– *Select days/dates lets you reverse the selection determined by the *Excluded
days of week and *Date List name parameters. The default is to select included
dates.

■ One output parameter, *Duration. The meaning of this parameter is determined by
the value of *Duration type.

Note: The *Date list, *Excluded days of week, and *Select days/dates parameters affect
only days/dates after the beginning date. If the ending date is before the beginning
date, these parameters affect only days/dates after the ending date.

For more information on the selection input parameters, see the Selection Parameters
for Date Built-In Functions topic in the *DATE DETAILS built-in function description.

The possible values for *Duration type and the effect each has on the meaning of
*Duration are shown in the following table.

Understanding Built-In Functions

456 Building Applications

*Duration Type Values Effect on the *Duration Parameter

*YEARS The result is given as a number of full years; partial
years are ignored.

*MONTHS The result is given as a number of full months; partial
months are ignored.

*YYMM The result is given as a number of years and full
months in YYMM format; partial months are ignored.
For example, 1011 means 10 years and 11 months;
1100 means exactly 11 years.

*YYMMDD The result is given as a number of years, months, and
days in YYMMDD format. For example, 100923 means
10 years, 9 months, and 23 days; 110000 means
exactly 11 years.

*DAYS The result is the number of selected days. This is the
default.

Elapsed Time

The *ELAPSED TIME built-in function calculates the elapsed time between a beginning
time and an ending time. It is the converse of the *TIME INCREMENT built-in function.

The *ELAPSED TIME built-in function performs the operation:

*Elapsed Time = *Time1 – *Time2

The result is positive if *Time1 is after *Time2; it is negative if *Time1 is before *Time2.

There are four parameters for this function type:

■ Three input parameters

– *Time2 and *Time1 specify the beginning and ending times, respectively. When
either time is of type NBR, it is interpreted as the elapsed time since 0 a.m.

– *Time unit specifies the meaning of the *Elapsed time output parameter.

■ One output parameter, *Elapsed time. The meaning of this parameter is
determined by the value of *Time unit.

The valid values for *Time unit and the effect each has on the meaning of *Elapsed time
are shown in the following table.

*Time Unit Values Effect on the *Elapsed Time Parameter

*SECONDS The result is given as an integer specifying the number
of elapsed seconds.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 457

*Time Unit Values Effect on the *Elapsed Time Parameter

*MINUTES The result is given as the number of elapsed minutes;
partial minutes are ignored.

*HOURS The result is given as the number of elapsed hours;
partial hours are ignored.

*HHMM The result is given as the number of elapsed hours and
minutes in HHMM format.

*HHMMSS The result is given as the number of elapsed hours,
minutes, and seconds in HHMMSS format.

Exit Program

The *EXIT PROGRAM built-in function specifies an exit from a program.

The only parameter for this built-in function is the *Return code. You can use the
*Return code parameter to inform the calling program of the circumstances under
which the program was exited.

CA 2E supplies the *Return code field from the PGM context as an input parameter, by
default. You can also supply alternate conditions to the *Return code field, other than
those supplied by default, such as *Record does not exist.

CA 2E implements the *EXIT PROGRAM built-in function as a call to a CA 2E supplied exit
subroutine, ZYEXPG. This issues an *EXIT PROGRAM in COBOL or in RPG. If closedown
program is specified, RPG also sets on the LR indicator.

New Topic

The following is an example of the *EXIT PROGRAM built-in function.

 > Fast exit <<<
 .—CASE: <<<
 |-CTL. *CMD key is CF13 <<<
 | *Exit program – return code CND. *User QUIT request <<<
 ‘--ENDCASE

Understanding Built-In Functions

458 Building Applications

Modulo

The *MODULO built-in function specifies the remainder of a division of two fields. The
*MODULO function provides more control over the remainder precision and is a single
value field as opposed to the *DIV With Remainder, which returns two values. This
allows this function to be used in *COMPUTE functions.

There are four parameters for this function type:

■ Three input parameters which are the divisor, the dividend of the division
operation, and a *Quotient definition field. The latter specifies the field domain to
be used in defining the intermediate work field generated by *MODULO to contain
the quotient of the intermediate division operation.

■ One output parameter, a *Result field that contains the result of the entire
*MODULO function.

Note: The final result of the *MODULO operation depends greatly on the field domain
defined for both the *Quotient definition field and the *Result field. For example,
suppose you want to calculate the modulo for the following expression:

5.30 / 2.10 = 2.5238

The following table shows three different modulo values (*Result) for this operation due
to the field length defined for the *Quotient definition field and the *Result field.

Length of *Quotient
Definition Field

Length of *Result
Field

Quotient

(Work Field VValue)

Modulo

(*Result value)

4.0 6.4 2 1.1

4.2 6.4 2.52 .0080

4.2 6.2 2.52 .00

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 459

You can use the *MODULO built-in function as a sub-function to the *COMPUTE built-in
function, thereby determining the remainder of a division operation within the compute
expression.

CA 2E implements the *MODULO built-in function using similar code to *DIV (with
remainder).

Example

This is an example of the *MODULO built-in function.

>USER: Process detail record
.--
: WRK.MODULO Field = RCD.EXT Price\RCD.Quantity <<<
’--

Move

The *MOVE built-in function specifies that the value of one field is to be moved to
another.

There are two parameters for this function type:

■ One input parameter, which is the field that is to be moved (*FACTOR2).

■ One output parameter, which is the *Result field into which the field is moved.

For all but date and time fields, the moved and result fields must either both be numeric
or both be alphanumeric field types. Refer to Considerations for Date and Time Field
Types at the end of this topic for details about date and time conversions.

Note: If CND is specified for the context of *FACTOR2 and the field is a status field, the
condition must be a VAL condition. If the field is not a status field and CND is specified,
the condition must be a CMP condition with an operation of EQ.

CA 2E implements the *MOVE built-in function as an RPG Z-ADD statement for numeric
fields and as a MOVEL statement for alphanumeric fields; in COBOL CA 2E implements
the *MOVE function as a MOVE statement.

Example

This is an example of the *MOVE built-in function.

> USER: Process subfile record
.--
: Execute another function <<<
: PGM. *Reload subfile = CND. *Yes <<<
’--

Understanding Built-In Functions

460 Building Applications

*MOVE ARRAY Built-in Function

The *MOVE ARRAY built-in function allows you to move multiple instances of an array.
To specify an array subfield, specify the Array Subfield name, Array Name and Array
Index (Element Number).

Use *MOVE ARRAY in the following ways:

■ Move the value of one array subfield into another array subfield, either in the same
array or a different array.

■ Move the value of an array subfield into a field in a non-array context, for example,
WRK or LCL.

■ Move the value of a field in a non-array context or a constant value or a valid
condition into an array subfield.

Note: In all these cases, the special value *ALL can be used in place of a field name. *ALL
pertains to all fields in the specified array index.

For more information and examples, see the*MOVE ARRAY Examples (see page 461).

When using the *MOVE ARRAY function, the array must be a multiple-instance array,
using the new ARR context, or a parameter context where the parameter is defined as a
multiple-instance array parameter.

For a working scenario using the *MOVE ARRAY built-in function, see the Appendix How
to Create a Deployable Web Service Using a Multiple-instance Array (see page 727).

*MOVE ARRAY Parameters

The *MOVE ARRAY built-in function uses the following parameters.

Note: The first three parameters define the target field, and the last three parameters
define the source field:

*Result

The target field or the special value *ALL

*Array

The array in which the target field exists (if it is an array subfield)

*Array index

The index number which specifies the element of the array in which the target field
exists (if it is an array subfield)

*Factor 2

The source field or the special value *ALL

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 461

*Array

The array in which the source field exists (if it is an array subfield)

*Array index

The index number that specifies the element of the array where the source field
exists (if it is an array subfield)

Within the Action Diagram, the syntax of each group of three fields is as follows (when
*Array and *Array index are specified):

array-context.array(array-index-context.array-index).array-subfield

Unlike most function calls, some of the parameters, and their contexts, to the *MOVE
ARRAY built-in function can be blank, as shown in the following examples.

*MOVE ARRAY Examples

Use *MOVE ARRAY in the following situations:

■ Move an array subfield within a specified element of an array into another array
subfield, either in the same array or a different array.

In this example, the Product price subfield in the element of the Product Array,
which the current value of the Order line field specifies, is set to the value held in
the Item price subfield in the first element of the Item Array:

This Action Diagram statement displays as:

ARR.Product Array(WRK.Order line).Product price =

ARR.Item Array(CON.1).Item price

Understanding Built-In Functions

462 Building Applications

■ Move an array subfield into a field in a non-array context, for example, a field in the
WRK context.

In this example, the Product price field in the WRK context is set to the value held in
the Item price subfield in the element of the Item Array specified by the current
value of the Order line field:

This Action Diagram statement displays as follows:

WRK.Product price = ARR.Item Array(WRK.Order line).Item price

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 463

■ Move a field or value (including conditions and constants) in a non-array context
into an array subfield.

In this example, the Product price subfield in the element of the Product Array
specified by the current value of the Order line field is set to a value of 12.50:

This Action Diagram statement displays as follows:

ARR.Product Array(WRK.Order line).Product price = CON.12.50

*MOVE ARRAY Usage

If you specify the ARR context, in addition to the code required for the *MOVE ARRAY
function, CA 2E generates code to define the required array structures. Therefore, you
do not need to define arrays in the ARR context. You can define these arrays
automatically by using the *MOVE ARRAY function. When you generate a *MOVE
ARRAY statement, CA 2E generates additional code that checks for array indexing errors.

Multiple instance arrays in 2E are 1-based, the first element in an array is element 1.
You cannot specify a constant value (CON context) less than 1 or greater than the
maximum number of elements in the array in the Action Diagram Editor. However, if
you specify a runtime field value less than 1 or greater than the maximum number of
elements in the array in the *Array index field, you receive an error.

Understanding Built-In Functions

464 Building Applications

If an array indexing error occurs, the PGM.*Return code field is set to a condition value
of '*Array index error', which corresponds to the Y2U0068 message in the Y2USRMSG
message file. This error can be monitored for as in the following example:

WRK.Product price = ARR.Item Array(WRK.Order line).Item price

.-CASE

¦-PGM.*Return code is *Array index error

¦ <-- *QUIT

'-ENDCASE

The *MOVE ARRAY function is only valid in the Execute External Function (EXCEXTFUN)
function type.

If *Result or *Factor 2 is not an array subfield, the following restrictions apply to that
field:

■ The related *Array and *Array index fields must be blank.

■ The context specified must be one that would be valid in a *MOVE statement.

– The valid contexts for *Result are PGM, LCL, WRK and NLL (including any valid
parameter context, if the function has an appropriate output parameter).

– The valid contexts for *Factor 2 are PGM, JOB, LCL, WRK, CND and CON. This
context includes any valid parameter context, if the function has an
appropriate input parameter.

If *Result or *Factor 2 is an array subfield then the following restrictions apply to that
field.

■ The related *Array and *Array index fields cannot be blank.

– The *Array index can be a positive integer constant with a value less than or
equal to the number of elements in the array, or refer to a numeric variable
with no decimal places.

– The *Array index cannot itself be a subfield of a multiple-instance array.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 465

■ The context specified for *Result or *Factor 2, and the related *Array, must be one
of the following contexts:

ARR

Valid for both *Result and *Factor 2.

PAR

Valid for *Result if the specified field exists as an Output, Both or Neither
parameter field on a multiple-instance array parameter. Valid for *Factor 2 if
the specified field exists as an Input, Both or Neither parameter field on a
multiple-instance array parameter.

PRn

n is an integer 1–9.

Same validity as PAR, but used where the function has duplicate parameters.

If *ALL is specified for either *Result or *Factor 2, the following restrictions apply:

■ Certain context-specific restrictions apply when you specify here *ALL is specified:

– If you specify *ALL for *Result, also specify *Factor 2 and vice-versa.

– If you specify *ALL for *Result, you cannot specify CND and CON as the context
for *Factor 2.

– If you specify *ALL for *Factor 2, you cannot specify NLL as the context for
*Result.

■ Code is only generated to move a field if all the following conditions apply:

– The field exists in both the *Factor 2 context and the *Result context

– If the *Factor 2 context is a parameter context, the field must have a usage of
O, B or N

– If the *Result context is a parameter context, the field must have a usage of I, B
or N

■ Any target fields (or target array subfields) that exist in the *Result context, but do
not exist in the *Factor 2 context, are not changed.

Note: The same field type validation rules apply to *MOVE ARRAY as to *MOVE, in
terms of moving numeric fields to non-numeric fields.

From the main Action Diagram Editor screen, you can use the new subfile option I=M to
insert and prompt the *MOVE ARRAY built-in function.

Understanding Built-In Functions

466 Building Applications

Considerations for Date and Time Field Types

The following table summarizes conversions the *MOVE built-in function handles
automatically for fields that represent dates and times.

To
 From

NBR DTE D8#
(DT8) *

DT# TME TM# TS#

NBR + + + 1 + 3 7

DTE + + 0 0 – – 5

D8# (DT8) * + 2 + 0 – – 5

DT# 2 0 0 + – – 5

TME + – – – + 3 6

TM# 4 – – – 4 + 6

TS# 8 9 9 9 10 10 +

* Conversions for the shipped D8# and the user-defined DT8 (8-digit
 internal representation) data types are identical.

 Explanations of codes used in this table:

 + No conversion.

 – Does not apply.

 0 Type conversion between internal formats.

 1 Convert from CYYMMDD.

 2 Convert to CYYMMDD

 3 Insert delimiters.

 4 Remove delimiters.

 5 Convert date-to-date part of timestamp, time part is set to 0.

 6 Convert time-to-time part of timestamp, date part is not affected.

 7 Move numeric value as 6-digit nanoseconds part of timestamp.

 (Timestamp format is yyyy-mm-dd-hh.mm.ss.nnnnnn.)

 8 Move 6-digit nanoseconds part of timestamp to numeric field.

 (Timestamp format is yyyy-mm-dd-hh.mm.ss.nnnnnn.)

 9 Move date part of timestamp to date field.

10 Move time part of timestamp to time field.

■ Since no conversion is provided, you can move numeric date fields to and from a
NBR field to save or set up internal representations of DTE (CYYMMDD)

■ and 8#/DT8 (YYYYMMDD) fields. This is useful, for interfacing with a 3GL file. The
following moves are valid:

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 467

Valid Moves

 DTE NBR DTE

 D8# NBR D8#

Note: It is not valid to use a NBR field as an intermediary between DTE and D8# (DT8)
since these require a conversion. Invalid moves are listed on the next page.

Invalid Moves

The following moves are not valid:

DTE NBR D8#

D8# NBR DTE

When you move a constant into a date, time, or timestamp field, the required format
for the constant depends on the type of the target field. The required formats are
shown in the following table.

Required Format for Constant Target Date/Time Field

CYYMMDD or YYMMDD

YYYYMMDD

YYYY-MM-DD

HHMMSS

HH.MM.SS

YYYY-MM-DD-HH.MM.SS

 DTE

 D8# (DT8)

 DT#

 TME

 TM#

 TS#

For more information on the date and time field types, see Defining a Data Model in the
chapter "Understanding Your Data Model," Using Fields topic.

Understanding Built-In Functions

468 Building Applications

Move All

The *MOVE ALL built-in function specifies that all of the fields from one context are to
be moved to another context by name. You can specify up to four source contexts.

Note: You cannot use CON, CND, and WRK contexts as *Result contexts for this built-in
function.

There are potentially five parameters for this function type:

■ Up to four input parameters, which are the four source contexts that can be moved.

■ One output parameter which is the *Result context field. For each field in the result
context, CA 2E examines the source contexts in the order in which you specify them
in the *MOVE ALL action, to determine instances of the same field.

Note: Function fields are not included by *MOVE ALL. You must explicitly move function
fields to a new context using the *MOVE built-in function.

The *MOVE ALL built-in function performs a series of moves from one context to
another, mapping fields by name.

CA 2E implements the *MOVE ALL built-in function as an RPG Z-ADD statement for
numeric fields and as a set of MOVEL statements for alphanumeric fields. In COBOL, CA
2E implements the *MOVE function as a set of MOVE statements.

Example

In this example, for a given function, the PAR and DB1 contexts contain slightly different
groups of fields as listed in the following table:

PAR. Customer code

PAR. Customer name

PAR. Credit limit

PAR. Start date

PAR. Customer group

DB1. Customer code

DB1. Start date

DB1. Customer name

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 469

All of the fields in the PAR context could be initialized by a single statement. This is done
by inserting a *MOVE ALL function with the following parameters on the Edit Action -
Function Details window:

In other words:

.--
: PAR = DB1, CON By name <<<
’--

This is equivalent to:

> USER: Process DBF record
:--
:PAR. Customer code = DB1.Customer code <<<
:PAR. Customer name = DB1.Customer name <<<
:PAR. Start date = DB1.Start date <<<
:PAR.Credit limit = CON.*ZERO <<<
:PAR. Customer group = CON.*BLANK <<<
’--

Understanding Built-In Functions

470 Building Applications

Multiply

The *MULT built-in function specifies an arithmetic multiplication of two fields.

The *Rounded field allows you to specify whether the result of the multiplication is to
be half-adjusted. Specify the condition *ROUNDED for rounding; specify the condition *
for no rounding.

Rounding consists of adding 5 (-5 for a negative result) one position to the right of the
last decimal position specified for the length of the result field. As a result, rounding
occurs only when the number of decimal positions in the result value exceeds the
number of decimal positions in the result field length.

There are four parameters for this function type:

■ Three input parameters which are the two fields that are to be multiplied
*FACTOR1 and *FACTOR2, and the *ROUNDED field.

■ One output parameter the *Result field.

FACTOR1, FACTOR2, and the *Result field must all be numeric.

CA 2E implements the *MULT built-in function as an RPG MULT statement. In COBOL,
CA 2E implements the *MULT function as a MULTIPLY statement.

Example

This is an example of the *MULT built-in function.

 > USER: Process detail record
 .--
 : RCD.Line value = RCD.Quantity * RCD.Price <<<
 ‘--

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 471

Quit

The *QUIT built-in function specifies an exit from an action diagram sequence construct
or user point; when you specify the *QUIT function, all subsequent steps in the
construct (or subroutine) are bypassed.

When you specify the *QUIT function within a sequential construct, CA 2E defines a
branch to the end of the subroutine.

If you use the *QUIT function outside of a sequential construct, CA 2E defines a branch
to the closest, most recently nested, subroutine which, in many instances, is the user
point. To limit the action of *QUIT, you can enclose actions within a sequential
construct.

There are no parameters for this built-in function.

CA 2E implements the *QUIT built-in function as a GOTO statement for both RPG and
COBOL.

Example

In the following example, the step Update database is not executed if errors occur:

 .--
 : ..Validate fields
 : ..Validate relations
 : .-CASE
 : |-If errors
 : | <--QUIT
 : ‘-ENDCASE
 : ..Update database
 ‘--

Understanding Built-In Functions

472 Building Applications

Retrieve Condition

The *RTVCND built-in function specifies that the name of a given condition is to be
retrieved into a function field. This can be of particular use if you want to show the full
description of a condition next to the condition on a panel or report.

The convert condition values command (YCVTCNDVAL) creates a file that stores the
condition data. This file is in the generation library whenever you execute it.

There are two parameters for this function type:

■ One input parameter, which is the status field name

■ One output parameter, which is the work field into which the condition is retrieved

Both parameter fields are of usage type vary (VRY).

New Topic

To specify that the description of the current value of the Gender field should be shown
in the Gender Name field of an EDTRCD function, you could add a Gender Name field to
the function’s device design, and insert the following action in the function’s action
diagram:

 > USER:
 .-
 : DTL.Gender name = Condition name of DTL.Gender <<<
 ‘-

You can provide Retrieve Condition functionality with F4 prompting by setting the CUA
Prompt (YCUAPMT) model value to *CALC and inserting the *RTVCND built-in function
at a CALC: user point in the action diagram.

For more information on the *CALC value for the YCUAPMT model value, see the CA 2E
Command Reference, the YCHGMDLVAL command.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 473

Rollback

The *ROLLBACK built-in function allows you to add your own rollback points to a
program that is executing under i OS commitment control. Commitment control is a
method of grouping database file operations that allows the processing of a database
change to be either fully processed (COMMIT) or fully removed (ROLLBACK).

There are no parameters for this function type.

CA 2E implements the *ROLLBACK built-in function as an RPG ROLBK statement and as a
COBOL ROLLBACK statement.

For more information on the commit built-in function, see the example with the
information on COMMIT in the start of this topic.

Understanding Built-In Functions

474 Building Applications

Retrieve Field Information

The *RTVFLDINF built-in function specifies that the meta-information about a field is to
be retrieved into one or more fields.

Meta-information about a field consists of information about the field itself (the field
textual name, the DDS name of the field, the field length, and so forth.), irrespective of
the current value of the field. This can be of use if you want to build SQL statements to
retrieve information from the file containing the field or if you want to write your own
utilities to retrieve information about model objects (for instance, for documentation).

The parameters for the *RTVFLDINF function are:

■ There is one input parameter (*Field name). This is the 25-character name of the
field for which you want to retrieve meta-information. You can specify any valid
field context for this parameter, except LCL. Screen contexts (for example, DTL) are
allowed, as is the DB1 context.

■ Output parameters as follows:

■ *Field name

■ *Field DDS name (see Note 1)

■ *Field internal DDS name (see Note 2)

■ *Field text

■ *Field surrogate

■ *Field domain surrogate (see Note 3)

■ *Field attribute code (see Note 4)

■ *Field external data type

■ *Field external length

■ *Field external integers

■ *Field external decimal positions

■ *Field internal length

■ *Field internal integers

■ *Field internal decimal positions

■ *Field contextual name (see Note 5)

■ *Field internal data type

■ If any output parameter is specified using the NLL context, no code is
generated for them.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 475

Note 1: If the field passed in the input parameter specified with the DB1 context, this
returns the name of the field on the file, including the 2-character file prefix. If the field
is passed in any other context, this returns the name of the field with the appropriate
2-character program prefix (WU for a field in the WRK context, and so forth)

Note 2: This is the (typically 4-character) name of the field as it appears in the model,
without any prefix.

Note: 3: If the field passed in the input parameter is a REF field, this parameter returns
the surrogate number of the field to which it is referenced, otherwise it returns the
same value as is returned in the *Field surrogate parameter.

Note 4: This is the 3-character field attribute, for example, VNM, TXT, CDE, NBR and so
on. If the field is a REF field, the attribute of the referenced field is used.

Note 5: This is the name of the field as it is used in the program. For RPG programs, if
the field is specified in the DB1 context, this value is the same as the *Field DDS name,
except that it has the rename prefix applied to it instead of the file prefix. For all other
contexts, this parameter has the same value as the *Field DDS name. For COBOL
programs, this field contains the fully qualified name of the field as it is used in the
program.

Understanding Built-In Functions

476 Building Applications

Set Cursor

The *SET CURSOR built-in function allows you to explicitly position the cursor on any
field on the device design by specifying the field name and the context to which it
belongs. In addition, the *SET CURSOR built-in function allows you to control cursor
positioning based on the occurrence of errors.

There are two input parameters for this function type:

■ Field name on which the cursor is positioned

■ *Override error field that is conditional and can take a value of *YES or *NO. It
determines whether cursor positioning takes place based on the occurrence of an
error

For more information on device designs, see the chapter "Device Designs."

Note: You cannot use *SET CURSOR to override cursor positioning due to errors
generated by display files such as values list errors on status fields. These errors are
implemented below the level of the application program in the display device or file.

The following is an example of the Set Cursor function.

In this example, if the Customer Status field is Active, move the cursor to the Customer
Name field.

The following diagram shows the parameters for the example.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 477

Understanding Built-In Functions

478 Building Applications

Substring

The *SUBSTRING built-in function allows you to extract a portion of a character string
from one field and insert it into another.

There are five parameters for this function type:

■ Three input parameters which are a character string, *String 1, denoting the
character substring that is to be extracted, the *From position field denoting the
position from which the extraction of the character string occurs, and the *For
length field denoting the length of the character substring to be extracted.

■ Two output parameters which are the *Resulting string into which the extracted
substring is inserted and a *Return code to determine the result of the attempted
insertion. Return code is an implied parameter and is set to condition *NORMAL
when insertion completes successfully.

The *For Length field has two special conditions: *FLDLEN which indicates that the
entire length of the field or constant is to be used and *END which means that the
extraction occurs from the position of the *From position field to the end of the field or
constant.

CA 2E implements the *SUBSTRING built-in function in RPG using the SUBSTR statement
in COBOL using the STRING statement. For COBOL 85, it uses a reference modification
and for COBOL, 74 it is uses string manipulation.

The following is an example of a substring function.

This example extracts the first six characters from the Full Name field.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 479

The following diagram contains the parameters for the previous example.

Subtract

The *SUB built-in function specifies an arithmetic subtraction on two operands,
*FACTOR1 and *FACTOR2.

There are three parameters for this function type:

■ Two input parameters which are the two operands, *FACTOR1 and *FACTOR2.

■ One output parameter which is the *Result field containing the result of the
subtraction.

All three parameters must be numeric field types.

CA 2E implements the *SUB built-in function as an RPG SUB statement and as a COBOL
SUBTRACT statement.

Understanding Built-In Functions

480 Building Applications

Time Details

The *TIME DETAILS built-in function returns information about a given time. You specify
the type of information you need using the *Time Detail parameter.

There are three parameters for this function type:

■ Two input parameters

■ *Time is the time for which information is to be returned. If it is of type NBR, it
is interpreted as the elapsed time since 0 am.

■ *Time detail type determines the meaning of the output parameter, *Time
detail.

■ One output parameter, *Time detail, returns the requested information for the
specified time.

The possible values for the *Time detail type parameter and the effect of each on the
meaning of the result are summarized in the following table.

*Time Detail Type Values Effect on the *Time Detail Parameter

*SECONDS An integer from 0 to 59 specifying the number of
seconds in the specified time (*Time).

*ELAPSED SECONDS An integer containing the number of elapsed seconds
since 0 am for the given time (*Time).

*MINUTES An integer from 0 to 59 specifying the number of
minutes in the specified time (*Time).

*ELAPSED MINUTES An integer specifying the number of elapsed minutes
since 0 am for the specified time (*Time).

*HOURS An integer from 0 to 23 specifying the number of
hours in the specified time (*Time).

*HHMM The number of hours and minutes represented by the
given time (*Time) in HHMM format.

*HHMMSS The number of hours, minutes, and seconds
represented by the given time (*Time) in HHMMSS
format.

*PM? An integer that indicates whether the given time is
am or pm. The possible values are 1=pm and 0=am.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 481

Time Increment

The *TIME INCREMENT built-in function lets you add a quantity to a given time. It is the
converse of the *ELAPSED TIME built-in function.

The *TIME INCREMENT built-in function performs the operation:

*Time1 = *Time2 + *Elapsed Time

There are four parameters for this function type:

■ Three input parameters

■ *Time2 specifies the beginning time. If it is of type NBR, it is interpreted as the
elapsed time since 0 am.

■ *Elapsed time specifies the quantity to be added to *Time2.

■ *Time unit specifies the meaning of the *Elapsed time input parameter. Refer
to the table at the end of this description.

■ One output parameter, *Time1, specifies the ending time. If it is of type NBR, it is
interpreted as the elapsed time since 0 am.

The number of hours in the sum is factored by 24 to produce an integer from 0 to
23. In other words, if the number of hours is 24 or greater, the hours are divided by
24. The final number of hours in the *Time1 parameter is the remainder of the
division. For example, if the sum is 64 hours and 32 minutes, the result in *Time1 is
16 hours and 32 minutes (64/24=2 + a remainder of 16).

The possible values for the *Time unit parameter and the effect of each on the meaning
of *Elapsed time are shown in the following table.

*Time Unit Values Effect on the *Elapsed Time Parameter

*SECONDS An integer specifying the number of seconds to add to
the specified time (*Time2).

*MINUTES An integer specifying the number of minutes to add to
the specified time (*Time2).

*HOURS An integer specifying the number of hours to add to the
specified time (*Time2).

*HHMM The number of hours and minutes, in HHMM format, to
add to the specified time (*Time2).

*HHMMSS The number of hours, minutes, and seconds, in HHMMSS
format, to add to the specified time (*Time2

Understanding Built-In Functions

482 Building Applications

Calculation Assumptions and Examples for Date Built-In Functions

Since months and years do not contain equal numbers of days, date calculations
involving these units are adjusted to conform to common sense standards rather than
to pure mathematical accuracy. This section presents assumptions made to the output
results for the *DATE INCREMENT and *DURATION built-in functions. A set of examples
explain possibly confusing results and show recommended function usage.

CA 2E makes the following assumptions to provide consistent results for the *DATE
INCREMENT and *DURATION functions independent of the input value:

■ Duration between "today" and "today" equals 0 days.

■ Duration between "today" and "tomorrow" equals 1 day.

■ Since mathematical necessity requires that either the Start date or the End date not
be counted when calculating date duration or date increment, CA 2E does not count
the Start date (*Date2).

Note that this is significant only when you have explicitly excluded specified dates
from calculations using selection parameters or a date list.

Business and Everyday Calendars

Since the calculation units (months/years) are not always equally long, the idea of a
business calendar and an everyday calendar are introduced here to help explain the
results produced by the *DATE INCREMENT and *DURATION built-in functions.

Business Calendar

If you specify *DAYS for the *Duration Type parameter, CA 2E bases its calculations on a
user-defined "business" calendar. You define a business calendar using the *Excluded
Days of Week and *Date List Name parameters to specify working days, non-working
days, holidays, and other special days for your business.

The resulting "day-centric" calculations are always mathematically accurate because all
units (days) are equally long. In other words, date calculations based on a business
calendar are easily understood.

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 483

Everyday Calendar

If you specify a value other than *DAYS for the *Duration Type parameter, CA 2E bases
its calculations on an "everyday" calendar in which all seven days of each week are
included in the calculations. Date Lists and *INCLUDED/*EXCLUDED selections are not
used by definition; so all issues associated with these parameters can be ignored.

The resulting "month-centric" calculations are not always mathematically accurate
because the units involved are not equally long. The results of such calculations are
often approximate because CA 2E adjusts them to common sense standards rather than
to mathematical accuracy. For example, December 31, 1995 (*Date2) incremented by 2
months (*Duration) returns a result of February 29, 1996 (*Date1) rather than the
arithmetically correct February 31, 1996!

The remainder of this section gives examples of specific assumptions CA 2E makes to
adjust results to common sense standards and to produce consistent results.

*DATE INCREMENT Rules and Examples

*DATE INCREMENT performs the following operation:

Start date + Increment = End date

■ If a Start date is incremented by one unit (month/year), the End date is the same
day in the next unit.

Start date Increment End date

January 05, 1996 1 (*MONTH) February 05, 1996

January 05, 1996 1 (*YEAR) January 05, 1997

■ If a Start date that is the last day of a month is incremented by one unit
(month/year) and the next unit (month/year) is shorter than the current one, the
End date is adjusted to the last day of the next unit.

Start date Increment End date

March 31 1996 1 (*MONTH) April 30, 1996

February 29, 1996 1 (*YEAR) February 28, 1997

Understanding Built-In Functions

484 Building Applications

As a result, the End date for the one-unit increment case is always within the
contiguous unit, which can be the next or previous unit depending on the sign of
the increment.

■ The one-unit (month/year) increment case can be generically expanded to any
combination of month(s) and/or year(s)

Start date Increment End date

May 31 1996 4 (*MONTH) September 30, 1996

December 30, 1993 102 (*YEAR) February 28, 1995

■ When the Start date is the last day of the unit (month/year) it is always associated
with the last rather than with the same day of the End unit.

Start date Increment End date

February 29 1996 –1 (*MONTH) September 30, 1996

December 30, 1993 102 (*YEAR) February 28, 1995

Start date Increment End date

February 29, 1996 –1 (*MONTH) January 31, 1996
(not January 29)

February 29, 1996 2 (*MONTH) April 30, 1996
(not April 29)

■ The *DATE INCREMENT result can be reversed for any day other than the last day of
the month by simply changing the sign of the increment. Following is an example
where the operation is reversible.

Start date Increment End date

January 13, 1996 1 (*MONTH) February 13, 1996

February 13, 1996 –1 (*MONTH) January 13, 1996

Following is an example where the operation is not reversible.

Start date Increment End date

Jnuary 29, 1996 1 (*MONTH) February 29, 1996

February 29, 1996 –1 (*MONTH) January 31, 1996

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 485

■ The most confusing effect deriving from processing the last day of a month is that
different Start dates (usually close to the last day of the Start month) give the same
End date (always the last day of the End month) when incremented by the same
unit.

Start date Increment End date

January 29, 1996 1 (*MONTH) February 29, 1996

January 30, 1996 1 (*MONTH) February 29, 1996

January 31, 1996 1 (*MONTH) February 29, 1996

This is a good example of the approximate calendar calculations mentioned
previously.

Note: The everyday calendar can be widely used for business purposes. For
example, to process a bank statement when the billing cycle is defined as a time
interval between the first and the last day of every month.

■ When the increment unit is composed of days, months, and years (*YYMMDD),
then calculation is broken into two steps. First, the Start date is incremented by the
months/years. Second, the adjusted intermediate date is incremented by days.

Start date Increment End date

November 29, 1993 10315 (*YYMMDD) March 15, 1995

Following are the steps used to produce this result; namely, the Start date is
incremented subsequently by 1 year, then by 3 months, and then by 15 days:

Start date Increment End date

1. November 29, 1993 1 (*YEARS) November 29, 1994

2. November 29, 1994 3 (*MONTHS) February 28, 1995
(Note that the last
day is adjusted.)

3. February 28, 1995 15 (*YYMMDD) March 15, 1995

Note: The (*YYMMDD)' increment may not always be equal to (*DAYS); for example, if
days were excluded from the calendar using a Date List or a selection parameter.
However, the (*YEARS) and the (*MONTHS) always equal (*YYMMDD) and the
(*YYMMDD).

Understanding Built-In Functions

486 Building Applications

*DURATION Rules and Examples

*DURATION performs the following operation:

End date - Start date = Duration

The *DURATION function result is often not as obvious and easily predictable as the
*DATE INCREMENT result. For example, what is the duration expressed in *MONTHS
between Start date (December 31, 1995) and End date (February 29, 1996)? The
function returns two months even though three months are involved in the calculation.
This is another example of the Everyday calendar’s approximation.

The remainder of this section gives examples of specific assumptions CA 2E makes to
adjust results to common sense standards and to produce consistent results.

■ The *DURATION function counts a month if the number of covered days is greater
than or equal to the number of days in the End date month. A Duration month is
defined as the number of days in the End date month. Note that the first day of a
duration interval is never counted.

Start date End date Duration Actual Days

December 31, 1995 January 31, 1996 1 (*MONTHS) 31

December 19, 1995 January 23, 1996 1 (*MONTHS) 35

December 28, 1995 January 23, 1996 0 (*MONTHS) 26

January 31, 1996 February 29, 1996 1 (*MONTHS) 29

■ The *DURATION function counts a year if any twelve consecutive months are
covered. This is the definition of a Duration year. Note that the first day of a
duration interval is never counted.

Start date End date Duration Actual Days

December 31, 1995 December 31, 1996 1 (*YEARS) 365

December 31, 1996 December 31, 1997 1 (*YEARS) 365

June 30, 1996 June 30, 1997 1 (*YEARS) 365

Understanding Built-In Functions

Chapter 10: Modifying Action Diagrams 487

■ For the *YYMMDD duration type, DD represents the number of days not included in
either the Duration year (YY) nor the Duration month (MM).

Start date End date Duration Actual Days

November 12, 1995 March 23, 1997 1 (*YEARS) 497

November 12, 1995 March 23, 1997 16 (*MONTHS) 497

November 12, 1995 March 23, 1997 104 (*YYMM) 497

November 12, 1995 March 23, 1997 10410 (*YYMMDD) 497

Following are the steps used to produce this result.

a. Calculate years. From within the range of dates, identify any whole years
consisting of 12 consecutive whole months. For example, December 1, 1995 to
November 30, 1996 = 1 year.

b. Calculate months. From within the remaining dates, identify any whole
months; in this example, December 1996 + January 1997 + February 1997 = 3
months.

c. Calculate days. All that remains from the original date range are parts of the
first and last months in the range; namely, November 12, 1995 to November
30, 1995 (18 days) and March 1, 1997 to March 23, 1997 (23 days). The total
number of remainder days is 41 (18 + 23 = 41). Since 41 days is greater than the
Duration month of 31, add one month to the total number of months (3 + 1 = 4
months).

Recall that the DD portion of the *YYMMDD duration type represents the
number of days not included in either the Duration year (YY) or the Duration
month (MM). In other words, Remainder days (DD) – Duration month = 10 days
(41 – 31 = 10).

The final result in *YYMMDD format is 10410.

■ The *DURATION function calculates one month if both the Start and End dates
represent the same day in contiguous months.

Start date End date Duration Actual Days

December 1, 1995 January 1, 1996 100 31

January 1, 1996 December 1, 1995 –100 –31

February 12, 1995 March 12, 1995 100 28

February 12, 1996 March 12, 1996 100 29

Understanding Built-In Functions

488 Building Applications

Application of this rule sometimes causes different, but close, Start and End dates
to return the same duration.

Start date End date Duration Actual Days

May 19, 1996 June 20, 1996 102 32

May 20, 1996 June 20, 1996 100 (2) 31

May 21, 1996 June 20, 1996 100 30

May 22, 1996 June 20, 1996 029 29

(1) The End month, June, has 30 days; so the Duration month
 in this example is 30. DD=Actual Days–Duration month=02.
(2) The arithmetic result 101 is adjusted to 100 since the Start
 and End dates represent the same day in contiguous months.

■ The *DURATION function calculates one year if both Start and End dates represent
the same day and month in contiguous years.

Start date End date Duration Actual Days

December 8, 1995 December 8, 1996 10000 366

February 1, 1995 February 1, 1996 10000 365

February 1, 1996 February 1, 1995 –10000 –365

Application of this rule sometimes causes different, but close, Start and End dates
to return the same duration.

Start date End date Duration Actual Days

February 28, 1995 February 29, 1996 10000 366

February 28, 1995 February 28, 1996 10000 (1) 365

(1) This result was adjusted since the Start and End dates represent the same day and
month in contiguous years.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 489

Understanding Contexts

A CA 2E context is a grouping of the fields that are available for use at a particular
processing step in an action diagram. A context specifies which instance of a particular
field is to be used. Fields can be referenced for use as parameters in functions and in
conditions to control functions.

Different contexts are available at different points of the action diagram depending on
the function type, the stage of processing, and the particular nature of the user point;
that is, whether a subfile control format or a record detail format is being processed.

Each type of context is identified by a three-letter CA 2E code. For example, PAR for
parameter fields, CON for constant fields, and WRK for work fields. The following pages
describe the context types and their usage.

Database Contexts

DB1

The Database One (DB1) context contains the fields that are in the first, or only, format
of the access path to which a function is attached.

Any field in the access path format is available for processing in the DB1 context.

The DB1 context is available to all function types that perform update or read functions
on a database file after reading and before writing to the database file. Those functions
are CRTOBJ, CHGOBJ, DLTOBJ, and RTVOBJ.

In the generated source code, the generated names of fields from the DB1 context are
prefixed by the format prefix of the appropriate DBF file.

For example, if the following relations are present in an access path for the Company
file:

FIL Company REF Known by FLD Company code CDE
FIL Company REF Has FLD Company name TXT

Company name is present in the DB1 context of functions using that access path and can
be used in action diagrams (where access to the database is allowed), for example:

WRK. Company name = DB1. Company name <<<

Understanding Contexts

490 Building Applications

DB2

The Database Two (DB2) context contains the fields that are in the second format of the
access path to which a function is attached.

Any field in the second access path format is available for processing in the DB2 context.

The DB2 context is available only to functions that are attached to a Span (SPN) access
path; the DB2 context applies to the detail file (or second format) in the SPN access
path. The DB2 context is available only within an EDTTRN function to access the
secondary format.

In the generated source code, the generated names of fields from the DB2 context are
prefixed by the format of the appropriate DBF file.

Consider the following example. A Span (SPN) access path is created for Order and
Order Detail and the second (detail) format for Order Detail contains the following
relations:

FIL Order detail CPT Owned by FIL Order QTY
FIL Order detail CPT Refers to FIL Product REF
FIL Order detail CPT Has FLD Order quantity QTY

Order Quantity is present in the DB2 context of functions using that access path. It may
be used in the action diagram where access to the database is allowed, for example:

WRK. Order quantity = DB2. Order quantity <<<

Understanding Contexts

Chapter 10: Modifying Action Diagrams 491

ELM

The ELM context contains the fields defined for the last-accessed element of a specified
array. This context is valid only in the *CVTVAR built-in function and may be specified
for either the input or output parameter.

Since a single element of an array is equivalent to a data structure, you can use the ELM
context

■ To decompose a field into a structure. A move of an element of an array to a field
constitutes a move of the array’s structure to the field.

■ To group a set of fields into a single field.

Note: You must define a key for an array even if the array holds a single element.

Following is more information on these two usages.

Move from a Field to a Structure

■ The array is the output of the *CVTVAR function.

■ To ensure that the array index is not corrupted by the move, the array must be
defined as a single-element array.

■ The *CVTVAR function is implemented as a MOVEL operation from the field to the
data structure (array). Blanks are moved to the array element before the data is
moved.

Here is an example of how this operation might look in an action diagram.

Understanding Contexts

492 Building Applications

Move from a Structure to a Field

■ The array is the input of the *CVTVAR function.

■ The *CVTVAR function moves the last accessed array element of the named array to
the named field. In this case, the array may contain multiple elements.

■ The *CVTVAR function is implemented as a MOVEL operation from the associated
data structure (array) to the field.

Here is an example of how this operation might look in an action diagram.

For more information:

■ On the *CVTVAR built-in function, see section, Understanding Built-In Functions.

■ On decomposing and recomposing character data, see this chapter, Understanding
Built-In Functions topic, *CONCAT and *SUBSTRING functions.

■ On arrays, see the section Using Arrays as Parameters (see page 276), and see the
chapter "Defining Arrays" in the Building Access Paths Guide.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 493

Device Contexts

KEY

The Key (KEY) context contains the fields that are on the key panel display of the device
functions that have key panels. These keys apply to the record functions: Edit Record
(EDTRCD 1,2,3) and Display Record (DSPRCD 1,2,3).

All the key fields on the access path to which the function is attached are available in
this context, along with any associated virtual fields. If you map parameters to the
device panel (as mapped or restrictor parameters), they are also available in this
context.

The shipped field *CMD key is present in this context only in the exit program user
point. It is also present in the detail format. You cannot add function fields to a key
panel.

Consider the following example. An Edit Record function is defined for an Employee file,
using an access path that has keys defined as follows:

FIL Company REF Known by FIL Company code CDE
FIL Company REF Has FLD Company name TXT

FIL Employee REF Owned by FIL Company REF
FIL Employee REF Known by FLD Employee code CDE
FIL Employee REF Has FLD Employee name TXT

Company name is a virtual field on the Employee file through the Owned by relation.
The fields available in the KEY context of the action diagram for the function are:

*CMD key
Company code
Company name
Employee code

Understanding Contexts

494 Building Applications

DTL

The Detail (DTL) context contains fields on the display panels of device functions that
have single, non-subfile detail panels such as EDTRCD, or multiple, non-subfile panels
such as EDTRCD2.

All of the fields from the access path to which the function is attached are available in
the DTL context. If you map parameters to the device panel as mapped or restrictor
parameters, they are also available in this context.

The shipped field, *CMD key, is present in this context. If you add any function fields to
the detail panel display, these fields are available in the DTL context.

The DTL context is available in the action diagrams of PMTRCD, EDTRCD, and DSPRCD.
This context is only available after the key has been successfully validated.

Consider the following example. An Edit Record function is defined on a Stock Item file
using an access path, which includes the following relations:

FIL Stock item REF Known by FLD Stock item code CDE
FIL Stock item REF Has FLD Stock item qty QTY
FIL Stock item REF Has FLD Item price PRC

Stock Item, Qty field and Item Price Field are present in the DTL context for that function
and could be used in the action diagram; for instance:

WRK. Stock value = DTL. Stock item * DTL. Item price <<<

2ND

The Second Detail panel (2ND) context contains the fields that are on the second detail
panel display of a device function that has a multi-part panel design attached to it, such
as EDTRCD2 and DSPRCD2.

All of the fields from the access path to which the function is attached are available in
the 2ND context. If you map parameters to the device panel as mapped or restrictor
parameters, they also are available in this context.

The 2ND context is only available in the action diagrams of the following function types:

■ Edit Record 2 panels

■ Edit Record 3 panels

■ Display Record 2 panels

■ Display Record 3 panels

Understanding Contexts

Chapter 10: Modifying Action Diagrams 495

3RD

The Third Detail panel (3RD) context contains the fields that are on the third detail panel
display of a device function that has a multi-part panel design attached to it, such as
EDTRCD3 and DSPRCD3.

All of the fields from the access path to which the function is attached are available in
the 3RD context. If you map parameters to the device panel as mapped or restrictor
parameters, they also are available in this context.

The 3RD context is only available in the action diagrams of the following function types:

■ Edit Record 3 panels

■ Display Record 3 panels

Understanding Contexts

496 Building Applications

CTL

The Subfile Control (CTL) context contains the fields that are in the subfile control record
of the device functions that have a subfile panel display such as Display File or Edit
Transaction.

The fields available in the CTL context depend on the function type, the access path
used by the function, and whether you have specified restrictor parameters for the
function. The *CMD key shipped field and any parameters specified as mapped or
restrictor parameters are present on the CTL context.

If the function is attached to a SPN access path, the CTL context contains all of the fields
from the header format on the access path.

If the access path is a RTV or a RSQ and the function is:

■ Display type (Display File or Select Record), all of the fields on the access path are
available in the CTL context unless any of those fields have been dropped from the
panel subfile control format. The key fields can be used as positioner parameters,
the non-key fields can be used as selectors.

■ Edit type (Edit File), all of the key fields on the access path are available in the CTL
context unless any of those fields have been dropped from the panel subfile control
format. These fields can be used as positioner parameters. For key fields, which are
restrictor parameters for the function, any associated virtual fields are also present
on the CTL context.

If you defined any key fields as restrictor parameters, any virtual fields are also available
in the CTL context.

The CTL context is available in the action diagrams of all functions that have a subfile
panel display:

■ Display File (DSPFIL)

■ Display Transaction (DSPTRN)

■ Edit File (EDTFIL)

■ Edit Transactions (EDTTRN)

■ Select Record (SELRCD)

The CA 2E shipped field *CMD key provides the means of specifying that a specific piece
of logic is to be executed whenever the user presses a particular function key. The
*CMD key is a status (STS) field and already has defined conditions for many possible
function or control key combinations.

For more information on a list of the default function keys, see this module, in the
chapter, "Modifying Device Designs."

Consider the following example of the use of the *CMD key.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 497

To specify the use of a function key to call another program, you should insert the
relevant processing at the appropriate point in the action diagram, for example:

 > USER: Process command keys
 .--

 : .-CASE <<<
 : |-CTL. *CMD key is CF06 <<<
 : | Print detailed report <<<
 : ‘-ENDCASE

 ‘--

Consider the following example of the indirect use of a *CMD key.

If you want to be able to remap the function keys of your application to another
standard, you should use LST conditions in place of direct function key conditions. For
example, you could:

1. Define a LST condition called Display Print.

2. Condition your action diagram using this condition.

Assign a function key such as F6 to the Display Print condition.

 > USER: Process command keys
 .--

 : .-CASE <<<
 : |-CTL. *CMD key is Display print <<<
 : | Print detailed report <<<
 : ‘-ENDCASE

 ‘--

Understanding Contexts

498 Building Applications

RCD

The Subfile Record (RCD) context contains the fields that are in the subfile record of
device functions that have a subfile panel display such as Display File or Edit
Transaction.

The fields available in the RCD context depend on the function type and the access path
used by the function. The *SFLSEL shipped field is present on the RCD context unless
you specifically remove it from the function options. Mapped parameters specified as
mapped or restrictor parameters are present on the RCD context.

If you have a SPN access path, the RCD context contains all of the fields from the detail
format on the based-on access path.

If you have a RTV or RSQ access path, all of the fields from the based-on access path are
available in the RCD context.

The RCD context is available in the action diagrams of all functions that have a subfile
panel display:

■ Display File (DSPFIL)

■ Display Transaction (DSPTRN)

■ Edit File (EDTFIL)

■ Edit Transaction (EDTTRN)

■ Select Record (SELRCD)

The shipped *SFLSEL (subfile selector) field provides a selection column field for subfiles.
You can optionally remove this field from the panel design using the Edit Function
Options panel. The *SFLSEL field is a status (STS) field and is shipped with some
predefined conditions.

For more information on a list of SFLSEL conditions, see this module, in the chapter,
"Modifying Device Designs."

These conditions can be displayed and changed by pressing F9 at the Edit Field panel of
the *SFLSEL field. If you always see the *SFLSEL conditions using list conditions, you are
able to reuse a single selection code for multiple purposes.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 499

CUR

The Current Report Format (CUR) context contains all of the fields that are in a report
format of a Print File or Print Object function.

The report functions have header and total formats for each key level in the based-on
access path, except for the lowest level key, as well as a final total format. For example,
an access path with three key fields, would have three total formats:

 Headings for level 1 (1HD)
 Headings for level 2 (2HD)
 Detail record, level 3 (RCD)
 Totals for level 2 (3TL)
 Totals for level 1 (4TL)
 Final totals (ZTL)

The detail record format contains all of the fields from the based-on access path while
the heading and total formats for each level contain the key field for that level and any
associated virtual fields. These fields are available in the action diagram where the
processing for a particular format occurs in the CUR context. In addition, any function
fields that you have added to the report format are available in the CUR context.

The CUR context differs from the NXT context in that the NXT context contains fields
that are present in the report format representing the next level break in the report.
The CUR context specifies fields that are being processed at a given point in the action
diagram while the NXT context specifies fields being processed in the following format.

The CUR context is only available in the action diagrams of the following function types:

■ Print File (PRTFIL)

■ Print Object (PRTOBJ)

For example, in a report to print out an Order, if Order Qty and Product Price are fields
present on the access path to which the Print File function is attached and Order Line
Val is a function field attached to the Detail Record (RCD) format, the following
processing might be inserted in the action diagram at the point where detail records are
processed:

 > USER: Process detail record
 .--
 : CUR.Order line val = CUR.Order qty * CUR. Product price
 ‘--

Understanding Contexts

500 Building Applications

NXT

The Next Report Format (NXT) context defines a context relative to the CUR context for
report functions. The NXT context contains fields that are in the next active report
format (not dropped format) that is one level break lower. You could use the NXT
context to specify the placement of the result of a function field (SUM, MIN, MAX, or
CNT) on the appropriate report total format. You can only use the NXT context for result
fields.

The NXT context is only available in the action diagrams of the following function types:

■ Print File (PRTFIL)

■ Print Object (PRTOBJ)

For example, in a report to print out an Order: if the Order detail format contains the
field, Order Line Value, and Total Order Value is a SUM function field based on this field,
the same function field can be attached to two different formats:

■ The Order detail format to sum into the Order totals format (for the Order no. key
level).

■ The Order total format to sum into the Final totals format.

In both cases, the instance of the input field is from the CUR context while the result
field is placed on the NXT context.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 501

The function field is inserted into the action diagram of the report function at the points
where each format is processed.

 > USER: Process Order detail
 .-- <<<
 : Total order value

 : O Total order value NXT Total order value
 : I Order line value CUR Order line value

 ‘--

 > USER: Process Order no. totals
 .-- <<<
 : Total order value

 : O Total order value NXT Total order value
 : I Order line value CUR Order line value

 ‘--

The parameters for each call to the function field can be accessed using the Edit Action -
Function Details window. For example, Order Line Value is input from the CUR context
and Total Order Value is output to the NXT context:

Understanding Contexts

502 Building Applications

If a report format is dropped from a CA 2E report design (using the Edit Design Formats
panel), the NXT context retains its meaning. Any fields in the context are automatically
assumed by CA 2E to be on the next highest format level. Thus, in the previous example:
if the Order Totals format was dropped, the Order Line Value function field would be
assumed to total directly onto the Final totals format.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 503

Literal Contexts

CND

The CA 2E Condition (CND) context enables you to specify that a particular field
condition value is to be supplied as a field value in one of the following ways:

■ As a parameter to a function.

■ As the condition that controls a conditional or iterative construct in the action
diagram.

All field conditions that are attached to a field are available in the CND context for that
particular field.

The CND context is available in the action diagrams of all function types. You can use the
CND context for function parameter and action diagram condition fields. However, you
cannot use the CND context for result fields; that is, you cannot move another field
value into a condition context field.

To use a CND context field as a parameter, you specify that the conditions attached to
the field be passed as a parameter value to a result field.

To use a CND context field as a condition, you specify processing in a CASE construct if a
particular field condition is attached to a field. For example, if CND *Return code is
*User QUIT requested, then *Exit program.

The following example shows both uses of the CND context.

As a parameter:

The CA 2E supplied status field *Return code has several conditions attached to it; for
example, *User QUIT requested. Any one of the conditions can be used as a parameter
on the Edit Action - Function Details window:

Understanding Contexts

504 Building Applications

This is shown in the action diagram as:

 PGM. *Return code = CND. *User QUIT request <<<

As a condition:

If *User QUIT requested is the name of a condition attached to the *Return code field,
then an example of conditioning a CASE statement might be:

 .—CASE <<<
 : PGM.*Return code is *User QUIT requested <<<
 : Exit program <<<
 ‘—ENDCASE

Understanding Contexts

Chapter 10: Modifying Action Diagrams 505

CON

The Constant (CON) context contains any constant or literal values that you want to
specify.

You only use CON context values to specify input values to fields. There are also some
restrictions associated with the usage of this context:

■ You cannot use the CON context with status (STS) fields. You should use the CND
context with STS fields.

■ Numeric constants must be less than or equal to ten characters in length, including
the decimal point and sign. A maximum of five characters is allowed after the
decimal point.

■ Alphanumeric constants must be less than or equal to twenty characters in length.

The CON context is available in the action diagrams of all function types.

To specify that a numeric field Order Quantity is to be set to a value of 15:

This is shown in the action diagram as:

 DB1.Order quantity = CON.15.00 <<<

Understanding Contexts

506 Building Applications

System Contexts

JOB

The Job (JOB) context contains system fields that supply execution time information
about the job that executes the HLL program implementing a function. You cannot add
additional fields to the JOB context. You would use this context primarily to define
system data to a particular field, such as job date, user name, or job execution start
time.

You can only use JOB context fields for input to other functions. They cannot be
changed.

The fields that appear in the JOB context are provided in a shipped file called *Job Data.

Field Attr Role

*USER VNM System name of job user

*JOB VNM System name of job

*PROGRAM VNM System name of HLL program

*Job number NBR Job number

*Job submitted/start date DTE Date job submitted

*Job exec start date DTE Date job started executing

*Job exec start time TIME Time job started executing

*Job date DTE Time and date job started executing

*Job year NBR Current year of job date

*Job month NBR Current month of job date

*Job day NBR Current day of job date

*Job time TME Current time of job date

*Job hour NBR Current hour of job date

*Job minute NBR Current minute of job date

*Job second NBR Current second of job date

*Function main file name VNM System name of function’s main file (1)

*Function main file lib VNM System name of lib. containing file (1)

*Function main file mbr VNM System name of file member (1)

*Function main lib/file CDE Function’s main library and library file (1)

*Current RDB For DRDA

*Local RDB For DRDA

Understanding Contexts

Chapter 10: Modifying Action Diagrams 507

Field Attr Role

(1) Not valid for SQL

The JOB context is available in the action diagrams of all function types.

PGM

The Program context (PGM) contains system fields that control the execution of a
function. An example of a PGM field would be *Program Mode which determines the
program mode in which a program executes.

The fields that appear in the PGM context are defined in a system file called *Program
Data.

The PGM fields are:

Fields Attr condition DSP Value

*Program mode STS *ADD

*AUTO

*CHANGE

*DISPLAY

*ENTER

*SELECT

ADD

AUTO

CHANGE

DISPLAY

ENTER

SELECT

*Return code STS *NORMAL

*User QUIT
requested

*BLANK

Y2U9999

*Record data
changed

STS *NO

*YES

N

Y

*Record selected STS *NO

*YES

N

Y

*Reload subfile STS *NO

*YES

N

Y

*Scan limit NBR - -

*Defer confirm STS *Defer confirm

*Proceed to confirm

Y

N

*Print format STS *Do not print format

*Print format

N

Y

Understanding Contexts

508 Building Applications

Fields Attr condition DSP Value

*Continue
transaction

STS *NO

*YES

N

Y

*Next RDB VNM - -

*cursor filed VNM - -

*cursor row NBR - -

*cursor column NBR - -

*Re-read Subfile
Record

STS *NO

*YES

N

Y

*Initial call STS *NO

*YES

N

Y

*Sbmjob override
string

TXT – –

*Sbmjob job name VNM – –

*Sbmjob job user VNM – –

*Sbmjob job
number

CDE – –

*Synon work field
(15,0)

NBR - -

*Synon work field
(15,2)

NBR - -

*Synon work field
(15,5)

NBR - -

*Synon work field
(17,5)

NBR - -

*Synon work field
(17,7)

NBR - -

*Synon work field
(17,9)

NBR - -

The Display value can be translated to other national languages if appropriate.

You can use the fields in the PGM context to control processing within function.

Each field is discussed briefly following:

Understanding Contexts

Chapter 10: Modifying Action Diagrams 509

*Program Mode

The *Program Mode field specifies the current mode of a program. This field can be
used to provide an override to the default initial mode of CA 2E functions and to
condition processing according to the current mode.

For example, when you first enter an Edit File or Edit Record function, the program is in
*CHANGE Mode unless there are no records in the file to be edited. In this case the
program is in *ADD Mode. If you want the end user to be in *ADD Mode regardless of
the presence of records in the file, you can override the default in the User Initialization
part of the action diagram for the Edit function using the built-in *MOVE function such
as:

 PGM. *Program mode = CND.*ADD <<<

Understanding Contexts

510 Building Applications

*Return Code

The *Return Code field contains a return code that is passed between all standard
functions. This field may be used to communicate with the calling and called functions.

You can add extra conditions to the *Return Code field. A special facility is provided on
the Edit Field Conditions panel for this field, which allows you to define conditions by
selecting from existing message functions. The conditions created have the same name
as the selected message function (for example, user quit requested) and have the
message identifier used to implement the message (USR0156) as a condition value.

If you want to specify a fast exit (for example, pressing F15 when using a function that is
called by another function exits you from both functions), the *Return Code field would
be used in the PGM context as follows:

1. In the called program you would use the *Exit Program built-in function to specify
an exit from the program when F15 is pressed. The parameter for this function is
the *Return code field which you would specify as the condition *User QUIT
requested:

 .—CASE <<<
 |—CTL.*CMD key is CF15 <<<
 | Add new records function <<<
 | *Exit program – return code CND. *User QUIT requested <<<
 ‘—ENDCASE

1. In the calling program you would specify, immediately after the call to the
subsidiary function, that if the return code returned corresponds to the condition
*User QUIT requested, quit the (calling) program:

 Execute subsidiary function

 .—CASE <<<
 |—PGM. *Return code is *User QUIT requested <<<
 | *Exit program – return code CND. *User QUIT requested <<<
 ‘—ENDCASE

Understanding Contexts

Chapter 10: Modifying Action Diagrams 511

*Reload Subfile

The *Reload Subfile field specifies that a subfile is to be reloaded before redisplay. CA 2E
standard functions normally only reload subfiles if it is required by the default
processing. You can use this field if you want to force a subfile reload.

For example, if a Display File function calls a subsidiary function that adds records to the
database, you may want the subfile to be reloaded on return so that the new records
are included in the display. To force a subfile reload, you should move the condition
*YES to the *Reload subfile field immediately after the call to the subsidiary function;
this causes the subfile to be reloaded on return to the Display File function.

 .—CASE <<<
 |—CTL.*CMD key is CF09 <<<
 | Add new records function <<<
 | *PGM. *Reload Subfile = CND. *Yes <<<
 ‘—ENDCASE

Understanding Contexts

512 Building Applications

*Record Data Changed

The *Record Data Changed PGM context field specifies whether the data for the current
record has changed. The value *Yes means the record data has changed; the value *No
means that the record data has not changed; it is initialized to ‘ ‘ (blank). The database
record is updated only when the value of this field is *Yes.

Note: Checking for unchanged record data is done only if the Null Update Suppression
function option is Y or A.

You can access the *Record Data Changed field from all functions that contain an
embedded CHGOBJ function, such as EDTFIL and EDTTRN. It is valid only in the Data
Read and Data Update user points in the action diagram of CHGOBJ functions; other
uses give invalid results. Two ways to use this field are:

■ You can test its value to conditionally perform actions that depend on whether data
has been changed as shown in the example following.

■ You can manually set this field to conditionally force or suppress a database record
update.

The following example illustrates a common technique for setting an audit stamp. The
field, Timestamp, is set to the current date and time only if other fields within the
record have been changed. In other words, if the value of the *Record Data Changed
field is *Yes, then the audit stamp is written to the file.

The Timestamp field has the following characteristics:

■ It is of type TS#.

■ It is on the update access path for the CHGOBJ function.

■ It is a Neither parameter on the CHGOBJ function, which means it is not passed into
the routine and must be set by the action diagram code within CHGOBJ.

 > USER: Processing before Data update
 .— <<<
 :.> Only set the Timestamp field if other data has changed <<<
 :.—CASE <<<
 :|—PGM.*Record Data Changed is *Yes <<<
 :| DB1.Timestamp=JOB.*Job date <<<
 :| DB1.Timestamp=JOB.*Job time <<<
 :’—ENDCASE <<<
 ‘—

For more information on the CHGOBJ function, see this module, in the chapter "Defining
Functions," CHGOBJ—Database Function topic.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 513

*Record Selected

The *Record Selected field specifies that a record read from the database is to be
processed. In CA 2E standard functions that read multiple records from the database,
for instance to load a subfile, you can add user-defined processing to specify which
records are to be included. The record selected field allows you to indicate whether a
record is to be included or omitted.

For example, if you want to add your own selection criteria to the loading of the subfile
in a Display File or Edit File function, you should insert it into the USER: Initialize Subfile
Record from DBF Record part of the Load Next Subfile Page routine in the action
diagram for the function. For instance, if you want to specify that records with a zero
date field are to be omitted:

> Load next subfile page

 REPEAT WHILE
 -Subfile page not full
 PGM. *Record selected = CND. *YES
 Move DBF record fields to subfile record
 > User: Initialize a subfile record from DBF record
 .
 .—
 : .-CASE
 . | -DB1.Date of birth is *ZERO
 : | PGM. *Record Selected = CND. *NO
 : .-ENDCASE
 ‘—
 .-CASE
 | PGM. *Record Selected is YES
 | Write subfile record
 ‘-ENDCASE
 Read next DBF record
 ENDWHILE

*Scan Limit

The *Scan Limit field specifies a limit to the number of records that are to be read at a
time. If additional selection is applied when reading records from the database (for
instance, on the previous *Record selected field), then a limit can be specified on the
number of records that can be unsuccessfully read.

The default value for the Scan Limit is 500. For example, to specify that the Scan Limit is
to be 100, use the built-in function *MOVE to set the *Scan Limit field to this value in
the USER: Initialization exit point of an action diagram:

 PGM. *Scan limit = CON. 100 <<<

Understanding Contexts

514 Building Applications

*Defer Confirm

The *Defer Confirm field only applies to functions where a confirm prompt is available.
In such functions there are likely to be occasions when you want to suppress the
confirm prompt and subsequent processing. On these occasions, *Defer Confirm causes
the panel to be redisplayed as if the user had replied No to the confirm prompt. The
effect is the same, even if the confirm prompt option is not specified on the Edit
Function Options panel.

For example, in an Edit File function, if a line is selected with a Z, you would probably
not want to display the confirm prompt on returning to the Edit file display. To prevent
the program from displaying the confirm prompt, move the condition *Defer Confirm to
the *Defer Confirm field. This causes the confirm and update part of the processing to
be skipped.

 .—CASE <<<

 |—RCD.*SFLSEL is *Zoom <<<
 | Display details function <<<
 | *PGM. *Defer confirm = CND. *Defer confirm <<<
 ‘—ENDCASE <<<

*Print Format

The Print Format field specifies whether a format from a report is to be printed. The
*Print Format option only applies to Print File and Print Object functions. There may be
instances when you want to select more records from the database file for processing
by the function (controlled with the *Record Selected field) than you want to be
printed.

For example, if you want a Print File function to print either a detailed or a summary
report, depending on the value of an input parameter to the function, you can control
which formats are printed in the two reports by means of the *Print Format field.

 > USER: On print of detail format <<<

 .-- <<<
 : .—CASE <<<
 : | -PAR.Report type is Summary <<<
 : | -*PGM.*Print format = CND.*Do not print format <<<
 : ‘—ENDCASE <<<
 ‘-- <<<

Understanding Contexts

Chapter 10: Modifying Action Diagrams 515

*Continue Transaction

The *Continue Transaction field is applicable for transaction functions such as EDTTRN
and DSPTRN that have input restricted key fields. This field can be used to perform the
equivalent of reload subfile for these two functions without returning to the key panel.
This can be done within the action diagram of the function by inserting the following
code in the *EXIT PROGRAM user point:

This piece of action diagram logic enables the subfile of an EDTTRN or DSPTRN to be
reloaded and the subfile redisplayed without having to return to the key panel.

 > USER: Exit program processing <<<

 .— <<<
 : .—CASE <<<
 : |-CTL.*CMD key is *Exit <<<
 : |-OTHERWISE <<<
 : | PGM.*Continue transaction = CND.*No <<<
 : | <--QUIT <<<
 : ‘—ENDCASE <<<
 ‘—

*Next RDB

The *Next RDB field is applicable for functions with distributed functionality. If the value
of *Next RDB is not blank, the value is used to establish a connection prior to
performing database access.

For more information on using DRDA, see Generating and Implementing in the chapter
"Distributed Relational Database Architecture."

*Cursor Field

The *Cursor Field always contains the name (DDS name, for example Z1ABCD) of the
field where the cursor is currently positioned.

IS Comparison Operator You can use the IS comparison operator to
determine whether the cursor is
positioned on a specific field on the panel
by comparing the PGM

Cursor Field to the field. You can use the IS
comparison operator in any condition
statement.

Understanding Contexts

516 Building Applications

The following is an example of the IS comparison operator. This example shows A test
that determines if the cursor is positioned on the Customer Status field.

Use the PGM *Cursor Field to test for cursor position on subfile fields with the RCD
context. In this case, both the field and the subfile record must match the cursor
position for the test to be true. This is implemented automatically by CA 2E.

When testing for cursor position on subfile records, the logical place to insert the CASE
statement in the action diagram would be

USER: Process subfile record (or equivalent user point.)

Some additional logic is required to test for a cursor position in the DSPFIL, EDTFIL, and
SELRCD function types. This is discussed under the example for PGM *Re-read subfile
record field.

PGM *Cursor Field is available for reference only. For example, you are not able to move
conditions or values into this field.

*Cursor Row and *Cursor Column

The *Cursor Row and *Cursor Column field always contains the relative numeric row
and column that the cursor is currently on. As with *Cursor Field, these fields are
available as reference fields only.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 517

*Re-Read Subfile Record

The *Re-read Subfile Record field can be used to force the reprocessing of subfile
records whether or not they have been changed. This is particularly useful when testing
for cursor position on a subfile within the DSPFIL, EDTFIL, and SELRCD function types.

Understanding Contexts

518 Building Applications

Differences in Subfile Processing Between EDTTRN and DSPTRNs Compared to
DSPFIL, EDTFIL, and SELRCDs

The EDTTRN and DSPTRN functions load all records in a subfile before the panel
appears. They also re-process all records in the subfile when the user requests
validation of the data.

In the example described under PGM *Cursor field, this means that the CASE statement
is tested for every subfile record and is able to determine the exact subfile record and
field on which the cursor is currently positioned.

The DSPFIL, EDTFIL, and SELRCD functions load records one page at a time.

They only re-process records that have been modified or touched by the end user. This
processing enables these functions to perform efficiently and ensures that records that
have not been modified are not processed. This means that the USER: Process Subfile
Record (or equivalent user point) is examined for EDTTRN and DSPTRN functions for
every record in the subfile.

Since DSPFIL, EDTFIL, and SELRCD functions only process changed records, the CASE
statement is only tested for those records that have been flagged as modified.

In order for the cursor position to be detected on subfile records in these function
types, you must change the subfile record or you must flag the subfile record to be
re-read in any event.

To achieve the latter, another field PGM *Re-read subfile record can be used.

To ensure that subfile records are re-processed, the PGM *Re-read Subfile Record field
should be set to *Yes as follows:

 PGM.*Re-read Subfile Record = CND.*YES

 <--QUIT

If the DSPFIL had no post-confirm pass, the following additional action diagram logic
would be required at the end of User: Process Subfile Record (pre-confirm) user point.
This would ensure that the subfile records are re-processed again if the subfile was
re-loaded after the processing pass of the records.

You can condition the setting of *Reread Subfile record based on a set of conditions.
This could be used to pre-select records that meet certain status criteria.

For example:

 > USER: Process subfile record (Pre-confirm)

Understanding Contexts

Chapter 10: Modifying Action Diagrams 519

 .--
 :.—CASE
 :|-RCD.Order value is GT CTL.Customer Max Order Value
 :| PGM.*Re-read subfile record = CND.*No
 :| Send information message – Order & 1 will not be accepted
 :|-*OTHERWISE
 :| WRK.Highlight field = CND.*YES Order Value
 :’—ENDCASE
 ‘--

*Synon Work field (15,0) to (17,9)

These fields are available as numeric fields and have the lengths as specified in their
description. These fields can be used as computational work fields.

*Synon Work field (17,7) is the default value intermediate result field that is used when
a compute expression is initially created.

For more information, see "Editing Compute Expressions."

*Initial Call

The *Initial Call field allows you to detect whether the function is being invoked for the
first or subsequent times.

This field is only of use if the function option Closedown Program has been set to *No in
which case the value of PGM *Initial Call is *Yes. For subsequent calls to this function
the value is *No.

COBOL programs also use this field. Nested COBOL programs remain under the control
of the calling program. The *Initial Call field is set to *YES the first time a nested COBOL
program is called. Subsequent calls set the field to *NO.

In order to execute logic that is only performed once when a function is first invoked,
the following action diagram logic can be inserted:

 >USER: Initialize program

 .—CASE
 |-PGM.*Initial Call is *Yes
 | Load Product Info array – Product
 ‘—ENDCASE

The field PGM *Initial Call is available for reference only and is set to *No by the
function automatically.

For more information and examples on how to use the PGM *Initial Call field, see
Building Access Paths in the chapter "Defining Arrays."

Understanding Contexts

520 Building Applications

*Sbmjob override string

The *Sbmjob field provides dynamic overrides of SBMJOB parameters when a job is
submitted for batch processing from within an action diagram. Only EXCEXTFUN,
EXCUSRPGM, and PRTFIL functions can be submitted for batch processing from an
action diagram.

Note: This feature does not support function calls that contain multiple-instance array
parameters.

For more information on submitting jobs from within an action diagram, see Submitting
Jobs Within an Action Diagram (see page 556).

*Sbmjob job name, *Sbmjob job user, *Sbmjob job number

These PGM context fields facilitate additional processing for jobs submitted from an
action diagram; for example, handling spool files, follow-on updates, lock manipulation,
and any other processing that requires submitted job information.

Function Contexts

PAR

The Parameter (PAR) context contains the fields that you define as parameters for the
current function. This includes the function whose action diagram you are currently
editing.

You can specify function parameters using the Edit Function Parameters panel. When
you define a field as a function parameter, CA 2E automatically adds the field to the PAR
context of the function, but availability of the fields associated with the PAR context is
user-point dependent.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 521

If you define parameters for a particular function, then the PAR context is available at all
points in the action diagram of that function.

Consider the following example. If you create a Display file function on a Horse file, you
could specify Horse code as an input parameter and Race date and Race time as output
parameters:

The Horse code could then be used as an input field and the Race date and Race time as
output fields at appropriate places in an action diagram. For example:

 CTL.Horse code = PAR.Horse code <<<

 PAR.Race date = DTL.Race date <<<
 PAR.Race time = DTL.Race time <<<

LCL

The LCL context provides the ability to define variables that are local to a given function.
It is available in all situations where the WRK context is available and all fields defined in
the model are presented for selection.

Although neither parameter provide a method of defining local work variables, this
method requires additional effort and is not as flexible.

Understanding Contexts

522 Building Applications

The LCL context provides an alternative to the WRK context and avoids two major
pitfalls of the latter. Since the WRK context is global

■ A WRK field can inadvertently be changed by an internal function

■ It encourages the dangerous practice of using WRK fields to communicate among
functions without using parameters

Set the Parameter Default Context (YDFTCTX) model value to *LCL to use LCL rather
than WRK as the default context for parameter defaulting in the action diagram editor.

The model-level default context is displayed in the Subfile Control area when an action
has undefined parameters. This field can then be changed prior to pressing F10.
Available default contexts are:

■ LCL – All parameters use the LCL context.

■ WRK – All parameters use the WRK context.

■ NLL – Output parameters use the NLL context.

Both and Input parameters use the LCL context.

Special Considerations

■ Internally, the generators create a new field for each function in which a LCL field is
declared. As a result, although the LCL context defines fields that are local to a
particular function, another function can change the value of the field. For example,
a LCL field passed to another function as a Both parameter can be changed by the
called function.

■ A given program can have up to 9999 LCL parameters.

■ For internal functions that are not implemented as shared subroutines, only one
LCL variable is generated; in other words, all instances of the internal function share
the same local variable. Thus, the LCL context is only logically local to a particular
function.

NLL

The NLL context is available in all situations as a target for output parameters. The
generators process this context by allocating a field from a separate sequence of field
names. Such fields are local to a particular function in the same way as LCL context
fields.

If you change an Output parameter that is supplied using the NLL context to Input or
Both, the action diagram editor displays a message when the function parameters are
prompted.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 523

Benefits

■ You can safely discard output parameters without worrying about whether they are
overwriting a work or local field used elsewhere.

■ You can trim your model of unnecessary functions; for example, a suite of RTVOBJ
functions, each of which returns a different output, can be replaced with a single
general purpose RTVOBJ.

■ You do not need to define special fields to use as discard targets.

■ Since the NLL context is output-only, it can be used repeatedly to receive output
from multiple functions.

Generic RTVOBJ

The NLL context encourages use of a single general purpose RTVOBJ rather than a suite
of RTVOBJ functions, each of which returns a different output.

Understanding Contexts

524 Building Applications

When this function is called from within the action diagram of another function, set the
output parameters you want returned to an appropriate context and set all others to
the NLL context.

WRK

Work (WRK) context fields are useful to contain work variables for interim calculations
or for assigning work data or strings in interim processing.

You can use any field in the data dictionary as a work field. You can add other
user-defined fields to the WRK context by adding them to the data dictionary using the
Define Objects panel.

The WRK context is available at all points in the action diagram of all function types.
WRK context variables are global to the external function and so can be changed at any
point by any function.

As shown in the previous example of two external functions, if you include internal
functions within an external function an umbrella effect allows the internal and the
external function to share the same work field. Consequently, any changes to that
external function’s work field could cause changes to the internal functions.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 525

This means that any actions or functions within the external function can change any
WRK variable without being passed as a parameter. You should only use WRK variables
when there are no intervening function calls that could change the values.

Note: The LCL context provides a method of defining local work variables.

For example, you could use a work field to keep a count of the number of records
processed:

 WRK.Counter = WRK.Counter + CON.1 <<<

ARR

ARR is similar to the WRK context but is used only for a multiple-instance array
parameter. This context is only available on a function call statement in the Action
Diagram of functions of type Execute External Function.

By passing a parameter as an array, multiple instances of data can be passed in or out, in
a single call to a function. For example, if a customer record structure is defined in the
Customer array on the *Arrays file, that array can be used to define a parameter for an
Execute External Function (EXCEXTFUN) or Execute User Program (EXCUSRPGM) being
passed as RCD (ARRAY). Anywhere from a few to thousands of customer records can be
passed in that one parameter in one single function call.

Multiple-instance Arrays and the ARR Context

Arrays are a standard component of the 2E model that you might have utilized in the
past. An array is a structure, comprised of multiple fields (array subfields), that has a
specified number of elements. Arrays are defined in the *Arrays file.

Prior to release 8.6, there were three ways to use an array:

■ Through the use of CHGOBJ, CRTOBJ, DLTOBJ, and RTVOBJ functions built over an
array to process data in the array, treating the array as if it were an access path,
where each element of the array equates to a record.

■ As a structure that can be used to pass parameters to a function.

■ With the *CVTVAR built-in function, you can compose a single string from an array
structure of multiple fields. You can also decompose a single string into its
constituent fields.

For more information on these functions, see the Building Applications Guide and
the Command Reference Guide.

With the second and third uses, only a single instance of the array structure was
referred to – the array was being used only as a structure definition, in other words.

Understanding Contexts

526 Building Applications

With Release 8.6, we increased the ways you can use arrays:

■ Treat an array as a multiple instance structure. In other words, as a true array with
multiple elements within the Action Diagram. In this case use the new *MOVE
ARRAY function – individual fields in a variety of contexts can be copied into array
subfields in a specified instance of the array and vice-versa.

■ Pass a multiple-instance array as a parameter to a function. By passing a parameter
in this way, you can pass multiple instances of data in or out as a single parameter,
in a single call to a function.

Important! As a CA 2E developer, you need to understand the architectural distinction
between the two mechanisms to manipulate array data, despite the ability to use a
common structural definition:

■ Data can exist and be modified in an array by using database functions (Create
Object – CRTOBJ, Delete Object –DLTOBJ, Change Object – CHGOBJ, and Retrieve
Object – RTVOBJ) based over the *Arrays file. However, this array data cannot be
accessed by the *MOVE ARRAY function.

■ Conversely, data can exist and be modified in a multiple-instance array parameter
(in the PAR context) and in the ARR context by using the *MOVE ARRAY function.
However, that array data cannot be accessed by database functions (Create Object
– CRTOBJ, Delete Object –DLTOBJ, Change Object – CHGOBJ, and Retrieve Object –
RTVOBJ) based over the *Arrays file.

To make this new functionality possible, we created a new array-related context, ARR
context. The ARR context is similar to the WRK context, but is used to define a
multiple-instance array. Similar to fields in the WRK context, arrays in the ARR context
are initialized during program initialization.The ARR context is available in the following
circumstances:

■ For use with the *MOVE ARRAY built-in function (see page 460).

■ When passing a multiple-instance array to a function that has a multiple-instance
array parameter. For more details, see Enhanced Array Support (see page 526).

Enhanced Array Support

Before Release 8.6, you could define a parameter to a function to be passed as a FLD,
RCD, or KEY.

■ FLD–Each field specified as a parameter on the parameter details display is passed
as an individual parameter.

■ KEY–A single parameter, where the length is derived from the keys of the specified
access path or array, is passed. An externally defined data structure is used to
define the parameter.

■ RCD–A single parameter, where the length is derived from the specified access path
or array format, is passed. The parameter contains all the fields which are
individually specified as parameters using the parameter details display. An
externally defined data structure is used to define the parameter.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 527

Release 8.6 gives you the ability to pass certain parameters as an array.

By passing a parameter as an array, multiple instances of data can be passed in or out, in
a single call to a function. For example, if a customer record structure is defined in the
Customer array on the *Arrays file, that array can be used to define a parameter to an
Execute External Function (EXCEXTFUN) or Execute User Program (EXCUSRPGM) being
passed as RCD (ARRAY), any amount of customer records can be passed in that one
parameter, in one single function call.

The Edit Function Parameters Panel and the Edit Function Parameter Details Panel were
updated to accommodate this enhancement.

Enhanced Array Support Terms

To assist you with understanding this enhancement, we use two new descriptive terms
throughout the CA 2E documentation:

Multiple-instance array parameter

Describes when a parameter is passed as an array (when the "Pass as Array" flag is
set to 'Y'). The parameter contains multiple instances of data, where each instance
contains all the fields which are individually specified as parameters using the
parameter details display.

Single-instance array parameter

Describes when a parameter defined using an array is not passed as an array (when
the Pass as Array flag is not available or is set to blank). The parameter contains all
the fields which are individually specified as parameters using the parameter details
display.

Enhanced Array Support Restrictions

This new functionality has a number of fundamental restrictions:

■ Only functions of type Execute External Function (EXCEXTFUN) and Execute User
Program (EXCUSRPGM) allow parameters to be passed as array.

■ Parameters can only be passed as array when the parameter structure is defined
using an array based over the *Arrays file.

■ Parameters can only be passed as array when they are being passed as RCD or KEY.

■ No fields can be dropped on a parameter being passed as an array.

■ Does not allow a multiple-instance array parameter in a function call, in both ARR
and PAR context, except when calling an EXCEXTFUN or EXCUSRPGM which has
multiple-instance array parameter. Additionally, the call must be from the top-level
action diagram of an EXCEXTFUN.

■ The Submit job (SBMJOB) feature and Y2CALL command do not support function
calls that contain multiple-instance array parameters.

Understanding Contexts

528 Building Applications

When working with two functions, function A and function B, for example, you can
model in the action diagram of function A a call to function B, where B has a parameter
interface passed as an array. In this case these additional restrictions apply:

■ Function A must be of type EXCEXTFUN, and function B must be of type EXCEXTFUN
or EXCUSRPGM.

■ The parameter context must be PAR or ARR and the array name must exactly match
on the parameter definition of A and B.

■ If a parameter is passed as an array on A it must be passed as an array on B.

■ The parameter must be passed as RCD on both A and B, or KEY on both A and B.

■ Though the usages of the subfields on a parameter passed as an array can be
mixed, the usages must be compatible, such that the calling function can call the
called function.

■ In general, the 2E tool prevents the use of modeling scenarios that cannot be
successfully generated.

Note: For more details, see the sections for Edit Function Parameters Panel (see
page 531) and Edit Function Parameter Details Panel (see page 532), or see the chapter
"Defining Function Parameters" in the Building Applications guide.

Performance Considerations for Multiple-Instance Array Parameters

When using multiple-instance array parameters (MIAPs), the following
performance-related considerations apply:

General performance considerations when using MIAPs

Even though a MIAP can have many instances, only a single pointer is passed by the
operating system to the program, as is the case with a non-MIAP parameter.
Therefore, in terms purely of the parameter being passed as a normal parameter or
as a MIAP, there is no additional performance hit to using MIAPs.

Performance considerations in programs that use MIAPs

Any Neither parameters that are passed to a function are explicitly initialized in the
ZZINIT subroutine in that function. In the case of a MIAP parameter containing
Neither subfields, this initialization occurs for every field, in every element in the
MIAP.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 529

Performance considerations in programs that call other programs that use MIAPs

When one program calls another and passes a structure parameter (RCD or KEY), CA
2E generates code in the calling program to initialize the intermediate structures
used to pass the parameters to the called program, to load those structures from
the variables specified in the Action Diagram and to unload those structures into
the return variables. This code is generated whether the parameter is defined as a
MIAP or as a normal parameter.

When the parameter is defined as a MIAPs

■ If all the MIAP subfields are defined with the same usage (I, O, B or N), then the
generator loads the entire array structure into and out of the intermediate
structure using a single MOVE. By contrast, if the MIAP subfields have different
usages, each field must be moved separately. Since the MOVE is repeated for
every element of the MIAP, this can affect your performance. Additionally, the
amount of code generated for a MIAP with varying-usage subfields can be
significantly greater.

■ As with fields passed as parameters in non-MIAPs, MIAP subfields with a usage
of Neither are explicitly initialized prior to the call – this occurs even if all the
subfields have a usage of Neither.

■ As with fields passed as parameters in non-MIAPs, if any of the MIAP subfields
are ISO-type fields (DT#, TM# or TS#), code is automatically generated to
explicitly initialize them, whether or not they are passed with the same usage
as all other subfields within the MIAP.

To ensure the best possible performance when using MIAPs, follow these guidelines as
closely as you can

1. All subfields within a MIAP should be defined with the same usage (I, O or B).

2. MIAP subfields with a usage of Neither should be avoided.

3. ISO-type MIAP subfields should be avoided.

Understanding Contexts

530 Building Applications

Generated Source

Using either multiple-instance array parameters or the related *MOVE ARRAY built-in
function results in additional fields and structures (and the code to initialize and process
them) to be generated in your source. These fields and structures can significantly
increase the size of the source member. Therefore you can control the level of in-line
source commenting through the YGENCMT model value, as follows:

*STD

A single comment line is generated for each multiple-instance array definition,
control structure definition and initialization

*ALL

A comment line is generated for each multiple-instance array subfield definition,
control structure subfield definition and initialization

Note: This is the only difference between YGENCMT(*STD) and YGENCMT(*ALL);
switching between these two values does not affect any other comment generation
within your source code.

Enhanced Array Support Usage

The following sections show how you can use the Enhanced Array Support in CA 2E
panels.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 531

Edit Function Parameters Panel

The new functionality allows you to specify, in the Edit Function Parameters panel, that
a parameter should be passed as an array, rather than passed as a single-instance
structure.

This is done using the new ‘A’ (Pass as Array) field as follows:

■ Enter Y when the parameter should be passed as array.

■ Leave this field blank when the parameter is a single-instance structure.

The following situations apply when using the 'A' (Pass as Array) field:

■ If the function is not an EXCEXTFUN or an EXCUSRPGM, the field is not available on
this panel.

■ Specifying 'Y' is only valid when the parameter is an array based on the *Arrays file,
and only when the parameter is passed as RCD or KEY.

Understanding Contexts

532 Building Applications

Edit Function Parameter Details Panel

For EXCEXTFUN and EXCUSRPGM only, there are two new values for the Passed as field:

■ RCD(ARRAY) = Parameter is defined using RCD structure and passed as array.

■ KEY(ARRAY) = Parameter is defined using KEY structure and passed as array.

When Passed as has a value of RCD (ARRAY) or KEY (ARRAY), the new Number of
elements field displays the number of elements defined for the array being passed. You
can view and modify the array definition by visiting the *Arrays file. If you use option D
to drop any fields, an error message displays.

Understanding Contexts

Chapter 10: Modifying Action Diagrams 533

Edit Action Diagram Panel

When a parameter is not passed as an array the behavior of the Edit Action Diagram
panel remains the same as previous versions of CA 2E. However, where a parameter is
being passed as an array, there is a new single subfile line that indicates an array being
passed.

Note: If the called function’s parameter interface is modified to toggle the parameter
Passed as Array field from Y to blank, the behavior of the EDIT ACTION – FUNCTION
DETAILS changes accordingly to match.

IOB

A, indicating an Array.

Obj Typ

ARR, indicating array.

Understanding Contexts

534 Building Applications

Ctx

Only PAR or ARR is allowed.

Note: This is an input capable field. ARR is always valid as a choice when the called
function’s parameter is passed as an array. However, if you select PAR, but the
definition of the array on the calling function is incompatible with the definition of
the array on the called function, a warning is sent (after PAR is selected) and the
change to PAR cannot be saved/completed.

Object Name

Item, indicating the name of the array.

Note: This field is output only.

The array’s subfields and their usages are NOT shown on this panel. But you could
examine Function B’s parameter interface (and detailed usage) via F9=Edit Parms.

This screen shows what the function call will look like for passing an array called Item:

When a parameter is being passed as an array,the context defaults to ARR if F10=default
parms is used. If the context is changed to PAR, the panel validates that the selected
array is available in the PAR context and that all array subfields have compatible usages.

Note: MIAPs do not automatically get defaulted to PAR/PRn context, even when they
are available. Your choices for populating MIAP parameters are:

■ Manually specify ARR context which is always valid.

■ Manually specify PAR/PRn contexts if available.

■ Prompt for available contexts.

■ Use F10 to default MIAPs to use ARR context.

Understanding Conditions

Chapter 10: Modifying Action Diagrams 535

Understanding Conditions

A condition specifies the circumstances under which an action, a sequential statement,
or an iterative statement is to be executed. Conditions define a particular value for a
field. The following examples demonstrate how conditions control processing.

A condition controlling a simple action would be an instance where, if a field’s condition
is met, a simple action takes place.

 .—CASE

 |-RCD.*SFLSEL is *SELECT
 | Display record details
 ‘—

A condition controlling a sequence of actions would be an instance within a CASE
construct where, if a field’s condition is met, a sequence of actions executes.

 .—CASE

 |-RCD.*SFLSEL is *SELECT
 | .--
 | : Display record details
 | ‘--
 ‘—-ENDCASE

A condition controlling an iterative constant would be an instance within a REPEAT
WHILE construct where while a field’s condition is met, a simple action takes place

 .= REPEAT WHILE

 |-RCD.Status is Held
 | Display record details
 ‘—-ENDWHILE

Similarly, you could define multiple conditions within the same CASE construct to test
for various conditions and the actions to take.

 .—CASE

 | -RCD.*SFLSEL is *SELECT
 | Display record details
 | -RCD.*SFLSEL is *Delete
 | Delete record details
 | -*OTHERWISE
 | Update record details
 ‘—ENDCASE

Understanding Conditions

536 Building Applications

Condition Types

Condition types allow you to define a particular type of processing based on some form
of conditional criteria that you specify in the logic of your action diagram. CA 2E
specifies four different condition types that can be used within an action diagram.

Values (VAL) Conditions Type

The Value Conditions (VAL) type is used for conditions that specify a value that a field
can receive. You only use the VAL condition type with status (STS) fields.

You specify two related values for a value condition: an internal value that is held in the
database file and against which the condition is checked; and an external value that the
user enters on the external function application panel. CA 2E generates the necessary
code to interpret the values. The internal and external values can have different lengths;
you can use the value mapping facility to facilitate translation between the disparate
values.

To use value mapping you must specify Y for the Translate field on the Edit Field panel.

For more information:

■ On the conditions file and the Convert Condition Value command (YCVTCNDVAL)
used to convert the file, see the CA 2E Command Reference Guide.

■ On VAL, see Defining a Data Model, Using Conditions section in the chapter
"Understanding Your Data Model."

Values List (LST) Condition Type

The Values List (LST) Condition type is used for conditions that specify a list of values
that a status field can receive. Each condition list consists of one or more value (VAL)
conditions.

You can only use the LST condition type for fields of type status (STS). For fields of type
STS, CA 2E creates a special list condition *ALL VALUES whenever you define field
conditions.

If you specify a value for the Check Conditions prompt on the Edit Field Details panel or
the Edit Entry Details panel, CA 2E generates code to ensure that any value that you
enter is one of the allowed values.

CA 2E generates, by default, the code necessary to display a list of values for fields of
type status (STS) whenever you type ? in the field or press F4 with the cursor positioned
on the field. However, CA 2E only generates the code for the list display if the field is of
type STS and if you have defined a check condition for the field.

For more information on LST, see the Using Conditions topic in Defining a Data Model in
the chapter "Understanding Your Data Model.".

Understanding Conditions

Chapter 10: Modifying Action Diagrams 537

Compare (CMP) Condition Type

The CA 2E Compare (CMP) condition type is used for conditions that specify a scope of
values that a field can receive. The scope of values is defined in terms of a fixed value
and an operator. The fixed value is a CA 2E field; the operator is a symbol expressing
some form of Boolean logic.

The following is a valid list of operators:

Value Description

*EQ equal to

*NE not equal to

*GT greater than

*LT less than

*GE greater than or equal to

*LE less than or equal to

*IS for comparison to PGM *Cursor field

Note: You can use the CMP condition type for field types other than STS

Examples

■ Order quantity is GT 10

■ Credit limit is LT 1,000.00

For more information on CMP, see Defining a Data Model in the chapter "Understanding
Your Data Model," Using Conditions topic.

Range (RNG) Condition Type

The Range (RNG) condition type is used for conditions that specify a range of values that
a field can receive. The range of values is defined in terms of two fixed values between
which the value must lie including starting and end points. You can use the RNG
condition type for field types other than STS.

Example

■ Order quantity is between 10 and 100

■ Transaction value is GT 25 and LE 250

For more information on RNG, see Defining a Data Model in the chapter "Understanding
Your Data Model," Using Conditions topic.

Understanding Conditions

538 Building Applications

Compound Conditions

CA 2E compound conditions provide you with the ability to use complex condition
expressions in any context where a simple action diagram condition is used.

Use Boolean logic operations as AND or OR in condition tests. There are three aspects of
compound condition expressions:

1. The ability to AND together or OR together condition tests.

For example: (a AND b AND c), (a OR b OR c)

2. The ability to parenthesize and mix logical operators.

For example: (a AND b) OR (c AND d)

3. The ability to test negation.

For example: (a AND b) OR NOT c

CA 2E provides the following default logical operators for use with compound
conditions:

Value Description

& AND operator

| OR operator

(left parenthesis

) right parenthesis

! NOT operator

These operators can be modified by changing the YACTCND model value using the
YCHGMDLVAL command.

Understanding Conditions

Chapter 10: Modifying Action Diagrams 539

Defining Compound Conditions

1. Zoom into the user points. At the Edit Action Diagram panel, press F5 to view the
user points for the function.

The Edit User Exit Points window appears.

2. Zoom into a selected user point. Type Z next to the selected user point and press
Enter.

The next level of the action diagram appears.

3. Insert a CASE condition. Type v at the selected point and press Enter.

The new case appears.

4. Zoom into the condition. Type FF next to the new condition and press Enter.

The Edit Action - Condition Window appears.

5. Define the compound condition. Press F7.

The Edit Action - Compound Condition panel appears.

6. Enter the compound condition using the logical operators mentioned previously.

Note: On the Edit Action - Compound Condition panel you have an input-capable,
240-character field.

7. Enter the condition variables on the input-capable line.

CA 2E creates the undetermined condition statements on the lower portion of the
panel. At this point, you can enter F against the condition to display the Edit Action -
Condition panel at which point you can specify the condition.

Note: Once you define a compound condition in the action diagram, type F next to the
condition. CA 2E displays the Edit Action - Compound Condition panel.

Understanding Shared Subroutines

540 Building Applications

Understanding Shared Subroutines

The main objective of shared subroutines is to optimize the generation of internal
functions that are implemented as subroutines. The first instance of generated source
for the function is reused for all subsequent calls to the function within an action
diagram instead of being repeatedly regenerated. These changes apply to CHGOBJ,
CRTOBJ, DLTOBJ, RTVOBJ, and EXCINTFUN function types.

Some advantages of shared subroutines are:

■ The volume of source code is reduced and therefore programs generate faster.

■ Fewer subroutines result in smaller and therefore faster executing programs.

■ Moving the interface outside shared subroutines facilitates changes required for ILE
(Integrated Language Environment) generation.

Understanding Shared Subroutines

Chapter 10: Modifying Action Diagrams 541

Externalizing the Function Interface

When the interface to a subroutine is inside the subroutine, each time it is called a new
version of the subroutine is required. To externalize the function interface, a unique
internal work field is assigned for each parameter field and the interface is generated as
Move statements before and after the subroutine call. The names of the internal work
context fields are generated in a similar fashion to that of Neither parameters. This
provides up to 10,000 unique field names in a given program.

When an internal function is called:

1. The function’s Input and Both parameters are moved to the new internal work
context prior to the call.

2. Within the called function, this internal work context is used instead of the original
PAR context.

3. Output and Both parameters are moved back to the return context after the
subroutine call.

Note: The Moves required before and after calling a subroutine increase overhead
somewhat. If a function has more parameters than executable statements, then reusing
the subroutine increases the number of source lines generated.

You control the sharing of subroutines using the Share Subroutine (YSHRSBR) model
value and its associated function option. The table shows the valid values; function
option values are shown in parentheses. The default is *NO.

Value Description

*YES (Y) Share generated source for subroutines.
Generate source code the first time an
internal function is called and reuse the
source for all subsequent calls to the
function. The interface for the subroutine
is externalized.

*NO (N) Generate source code each time an
internal function is called. The interface
for the subroutine is internal.

The YSHRSBR model value and function option are available on the CHGOBJ, CRTOBJ,
DLTOBJ, RTVOBJ, and EXCINTFUN function types.

In addition, the Generate as subroutine? function option is provided for the EXCINTFUN
function type to indicate whether to implement the function in-line or as a subroutine.
The default is not to generate as a subroutine.

Understanding the Action Diagram Editor

542 Building Applications

Using Shared Subroutines with EDTFIL, EDTTRN, EDTRCD

By default, the EDTFIL, EDTTRN, and EDTRCD(n) functions contain a call to the CHGOBJ
and DLTOBJ functions of the owning file. When they are generated as subroutines, they
include a section of code that checks whether the record about to be deleted or
changed has been changed by another user since being displayed to the screen.
However, if the same CHGOBJ or DLTOBJ functions are inserted elsewhere in the action
diagram of an EDTxxx function, this code is not generated. Consequently, if the CHGOBJ
or DLTOBJ functions are marked for sharing, any EDTxxx function that contains both the
default instance and more than one further instance of that internal function generates
two separate subroutines—one used only at the default user point containing the
previous code and one for use at all other points that does not contain this code.

Understanding the Action Diagram Editor

The action diagram editor lets you modify the default processing logic that is
automatically supplied for a function. It also provides the ability to add, change, or
delete actions at appropriate points in the structure of a function. These points are
called user points.

Selecting Context

To select a context use the steps in the previous topic, Defining Compound Conditions,
and the following steps.

1. From the Edit Action - Condition panel enter the context you want to select or a
question mark ? in the Context field and press Enter.

The Display Field Contexts panel appears.

2. Depending on the type of function you are editing and the point in the action
diagram, select the context.

Entering and Editing Field Conditions

With the action diagram editor you can add, modify, and delete conditions.

Understanding the Action Diagram Editor

Chapter 10: Modifying Action Diagrams 543

Adding Conditions

To add conditions use the following steps:

1. From the Edit Action - Condition panel type ? in the Condition field and press Enter.

Or do the following:

From the Edit Database Relations panel type Z2 next to the file to field relation for
which you want to define conditions.

The Edit Field Details panel appears.

2. From this panel, change any of the field attributes and add any narrative text.

3. Press F9 to view the field conditions.

The Edit Field Conditions panel appears.

4. Enter a new condition. Type the name of the condition in the Enter Condition field
and the condition type, VAL or LST for status fields or CMP and RNG for non-status
fields and type Enter.

The Edit Field Condition Details appears.

5. If your field is of type status, type the internal file value associated with the
condition name. For instance, P for the field condition Paid.

6. If your field is of any type other than status and the condition type is range (RNG),
type the From and To range.

7. If your condition type is Compare (CMP), type the comparison operator (EQ, GT)
and the comparison value.

Deleting Conditions

To delete conditions, use the following steps:

1. From the Edit Field Conditions panel, type D next to the condition that you want to
delete and press Enter.

Note: If the field condition is used in the function logic processing of any function,
you are not able to delete it until you resolve the function references.

2. Press U to view a list of references for your field condition.

Line Commands

The line commands available for use with the action diagram editor appear above the
panel subfile and are listed and described next and on the following pages. You can
prompt for the complete list of line commands by typing ? in the line command
positioner field. The F as a suffix on the command prefills any fields with question marks
for prompting.

Understanding the Action Diagram Editor

544 Building Applications

I (Insert)

There are several insert line (I) commands that you can use in the action diagram editor
to insert constructs. You can use the insert line command to insert constructs in action
diagram shells or even within other constructs.

■ IA (IAF)—Inserts an action within a construct or in an action diagram shell.

■ IC (ICF)—Inserts a condition within a CASE construct.

■ IE(IEF)—Inserts a *EXIT PROGRAM built-in function.

■ II (IIF)—Inserts an iterative construct within a REPEAT WHILE construct.

■ IS (ISF)—Inserts a blank sequential construct.

■ I* (I*F)—Inserts a comment at any point within the user point.

■ IM (IMF)—Calls a message function at a particular point within the action diagram.
When you enter IM in the action diagram user point, the Edit Message Functions
panel appears.

■ IO—Inserts an otherwise clause.

■ IQ(IQF)—Inserts a *QUIT built-in function.

■ IX (IXF)—Inserts a new condition within the CASE construct.

■ I+ (I+F)—Calls the *ADD (add) built-in function. This takes you to the Edit Action -
Function Details panel.

■ (I-F)—Calls the *SUB (subtract) built-in function. This takes you to the Edit Action -
Function Details panel.

■ I= (I=F)—Calls the *MOVE (move) built-in function. This takes you to the Edit Action
- Function Details panel.

■ I=A—Calls the *MOVE ALL (move all) built-in function. This takes you to the Edit
Action - Function Details panel. You can also use I = = .

■ I=M—Calls the *MOVE ARRAY (move array subfield) built-in function. This takes you
to the Edit Action - Function Details panel.

M or MM (Move) (A or B)

The move (M) line command allows you to move a construct to a point that you
designate within the action diagram shell, either A (after) or B (before).

The move block (MM) line command allows you to move a block of constructs to a point
that you designate within the action diagram shell, either A (after) or B (before). The
MM line command must be paired with another MM line command at the same
construct level.

This command does not edit the field context for the new user point.

Understanding the Action Diagram Editor

Chapter 10: Modifying Action Diagrams 545

C or CC (Copy) (A or B)

The copy (C) line command allows you to copy a construct to a point that you designate
within the action diagram shell, either A (after) or B (before).

The copy block (CC) line command allows you to copy a block of constructs to a point
that you designate within the action diagram shell, either A (after) or B (before). The CC
line command must be paired with another CC line command at the same construct
level.

This command does not edit the field context for the new user point.

D or DD (Delete)

The delete (D) line command allows you to delete a construct.

The delete block (DD) line command allows you to delete a block of constructs. The DD
line command must be paired with another DD line command at the same construct
level.

N (Narrative)

The narrative (N) line command lets you edit the object narrative for the selected
function or message.

PR (Protect)

The protect action diagram block (PR) line command lets you protect a selected action
diagram block. Requires *DSNR with locks authority.

For more information on protecting action diagram blocks, see this chapter, Protecting
Action Diagram Blocks.

R (References)

The references (R) line command displays references for the function or message
referenced by the selected action diagram entry. For functions, references are expanded
to the first external function; for messages, references are expanded to the next level.
Note that changes to the action diagram are not reflected in the references until the
function is updated.

U (Usages)

The usages (U) line command displays usages for the function or message referenced by
the selected action diagram entry. Note that changes to the action diagram are not
reflected in the usages until the function is updated.

Understanding the Action Diagram Editor

546 Building Applications

V (View Summary)

The view summary (V) line command displays a summary of selected block.

S (Show)

The show (S) line command allows you to reverse the effect of hiding a construct.

H (Hide)

The hide (H) line command allows you to hide a construct. The construct executes in the
normal fashion. However, instead of displaying all lines in the construct, only one line
displays indicating that the construct has been hidden.

Z (Zoom)

The zoom (Z) line command allows you to focus in on a particular construct and display
all ancillary parts of the construct. This command also allows you to navigate your way
through embedded constructs or into an action diagram of an embedded function.

Adding an Action —IA Command

The following example shows the effect of adding a new action (IA):

Understanding the Action Diagram Editor

Chapter 10: Modifying Action Diagrams 547

Deleting Constructs—D Line Commands

Non-protected constructs can be deleted by placing a D against the line.

Moving a Construct—M and A Line Commands

Non-protected constructs can be moved from one position in the action diagram to
another. To move a construct, place an M against the construct that is to be moved, and
an A against the line of the action diagram after which the construct is to be moved.

Function Keys

The following is a list of function keys that are used within the Action Diagram Editor.

Function Description

F3 Returns the cursor to the position of the
previous zoom. If no previous zoom, exits
the action diagram.

F5 Display user points

F6 Cancel pending move operations

F7 Scan backward

Using NOTEPAD

548 Building Applications

F8 Creates a bookmark for the current cursor
location in the action diagram and adds it
to the list of bookmarks. See F20.

F9 Edit Function Parameters

F12 Enzyme, one block at a time.

F13 Exit the action diagram

F14 Display CA 2E Map

F15 Open Function Panel

F16 Toggle change date

F17 Display Action Diagram Services panel to
search for function, field, change date or
any syntax error found in the action
diagram.

F18 Access or leave Notepad

F19 Edit device design

F20 Display bookmarks. Select a bookmark to
quickly position to that point in the action
diagram.

F21 Toggle implementation names and
function types.

F23 View more line commands

F24 View more command keys.

ENTER Execute line commands

HELP Display help text

ROLLUP Show next page of work area

ROLLDOWN Show previous page of work area

Using NOTEPAD

The notepad utility allows you to copy constructs from one action diagram to another.
When using Open Functions, this utility lets you save the contents of a diagram to a
work area and copy those contents elsewhere.

NOTEPAD Line Commands

The Notepad line commands are described next.

Using NOTEPAD

Chapter 10: Modifying Action Diagrams 549

NI (NOTEPAD Insert)

The notepad insert (NI) allows you to insert the contents of a notepad at a point after
the line on which the cursor is positioned.

NA or NAA (NOTEPAD Append)

The notepad append (NA) line command allows you to copy the contents of a construct
to a notepad and to append them to the existing contents of the notepad.

The notepad block append (NAA) line command allows you to copy the contents of a
block of constructs to a notepad and to append them to the existing contents of the
notepad. The NAA line command must be paired with another NAA line command at the
same construct level.

NR or NRR (NOTEPAD Replace)

The notepad replace (NR) line command allows you to first clear the contents of the
notepad, and then to replace the existing contents of the notepad with a new construct.

The notepad block replace (NRR) line command allows you to first clear the contents of
the notepad, and then to replace the existing contents of the notepad with a new block
of constructs. The NRR line command must be paired with another NRR line command
at the same construct level.

You can toggle between the notepad action diagram from the action diagram you are
editing by pressing F18.

Using NOTEPAD

550 Building Applications

User-Defined *Notepad Function

You can specify the file and name of a user-defined *Notepad function in the model
profile. This function can be either an EXCINTFUN or EXCEXTFUN function type. A
user-defined *Notepad function can serve as a repository of standardized action
diagram constructs that you can easily copy into the action diagrams of other functions.

Use the Edit Model Profile (YEDTMDLPRF) command or the Edit Model Profile option on
the Display Services Menu to specify a user-defined *Notepad function.

If you do not specify a user-defined *Notepad function, the shipped non-permanent
*Notepad function is used by default. The shipped *Notepad function is also used if the
function specified in the model profile does not exist or if you select it as the primary
function to be edited.

Multiple developers may use the same user-defined *Notepad function. The first
developer to access the function has an update lock on it and can update it on exit.

*, ** (Activate/Deactivate)

Chapter 10: Modifying Action Diagrams 551

*, ** (Activate/Deactivate)

The activate/deactivate line command (*,**) allows you to deactivate or activate a
construct or block of constructs. The * line command is used to toggle the
active/deactive flag for a construct. Deactivated constructs do not generate any
associated code, nor does any otherwise active construct that is nested. Deactivating a
construct is similar to wrapping an always false CASE structure around the construct.
The action of the * line command depends on the status of the construct.

If the construct is currently active, * deactivates that construct. This then displays using
the attributes of COLOR(WHT), DSPATR(HI). In addition, deactivated constructs have a
*** symbol displayed to the right of the action diagram line.

If the construct is currently deactivated, * reactivates that construct. The method of
display is now dependent on the activation status of its parent constructs. If any of its
parent constructs (within which it is nested) are currently deactivated, the construct still
displays as if it were deactivated but the symbol on the right will be a *. This indicates
that the construct has inherited the deactivation status of its parent construct.

Note: The display of the * symbol for inherited deactivation is preserved for zooms into
hidden structures within the same action diagram. However, it is not preserved for
zooms into other action diagrams. These are deactivated only for use within the parent
function. They are not generated within that function, but because they are not
inherently deactivated, the deactivation is not indicated while editing them.

If a nested construct is currently deactivated when its parent construct becomes
deactivated, its own deactivation status is not changed and it remains deactivated. If it
is currently active, it inherits the deactivation status of its parent.

Protecting Action Diagram Blocks

552 Building Applications

If a nested construct is currently deactivated when its parent construct becomes
reactivated, its own deactivation status is not changed and it remains deactivated. If it is
currently active, it no longer inherits the deactivation status of its parent and it is
reactivated.

If a pair of **s is used, these must be defined at the same construct level. Each
construct at the same level as the ** has its associated active/deactive flag toggled. This
can lead to some constructs being deactivated and some being reactivated. Constructs
nested within these constructs are not updated but still inherit the deactivation of their
parent constructs.

Protecting Action Diagram Blocks

This feature lets a *DSNR with locks capability (*ALL authority to YMDLLIBRFA) prevent
all developers from editing, copying, moving, deleting, or inserting statements within
the protected action diagram block. You can protect a single action, a case block, an
iteration block, a sequence block, or a comment.

An important use for this capability is to protect standardized areas in the action
diagrams of your function templates.

For more information on function templates, see this module, Chapter 8, "Copying
Functions," Template Functions.

Protecting Action Diagram Blocks

Chapter 10: Modifying Action Diagrams 553

Protecting a Block

In the action diagram, type PR against the block you want protected. The Edit Block
Protection panel appears for the selected construct or block.

Note that the type of the block or construct appears; in this example, it is CAS for
case block. The type can be ACT, CAS, ITR, SEQ, or TXT.

1. If you specify a Block title, it displays in the action diagram for case, iteration, and
sequence blocks. You can specify up to 74 characters. The Block title does not
display for actions and comments; however, you can search for Block title text for
all protected blocks using the Action Diagram Services panel.

2. Specify the type of protection you want the block to have:

Protection Type Description Valid Blocks

Hide If Y, the protected block is hidden. Case

Iteration

Sequence

Allow Copy, Move or
Delete

If N, developers are prevented from
copying, moving, or deleting the
block.

All

Allow Edit If N, developers are prevented from
editing or inserting a block.

All

Allow Insert If N, developers are prevented from
inserting blocks within the protected
block.

Note: To insert a block, both Allow
Insert and Allow Edit must be set to Y.

Case

Iteration

Sequence

Using Bookmarks

554 Building Applications

3. Press Enter and then F3 to exit.

Note: Only the specified block is protected, not blocks embedded within.

Protected blocks appear as if they were part of the action diagram prototype.

Using Bookmarks

A bookmark is a record of a location in the action diagram that you can use later to
quickly return to the marked location. You can create any number of bookmarks in an
action diagram.

To create a bookmark, place the cursor on the line in the action diagram where you
want the bookmark and press F8.

Using Bookmarks

Chapter 10: Modifying Action Diagrams 555

Each bookmark you create is added to a list of bookmarks. Press F20 to display a list of
the existing bookmarks for the action diagram.

Type X against a
bookmark to select it and return to the marked location in the action diagram; type D against a bookmark to delete

it. Press Enter.

By default, a bookmark is identified on the bookmark list by its text from the action
diagram. This can result in similar or identical entries in the bookmark list. For example,

Submitting Jobs Within an Action Diagram

556 Building Applications

To distinguish such entries, edit the text by typing over the existing bookmark text. For
example,

If you delete the action
diagram entry associated with a bookmark, the bookmark is deleted. Otherwise, changes to the action diagram are

not reflected in the bookmark list.

You can maintain a separate list of bookmarks for each open function.

You can choose to save bookmarks when you exit a function. To do this, ensure that the
option on the EXIT FUNCTION DEFINITION panel called Save bookmarks is set to ‘Y AND
the Change/Create Function flag is set to Y. If you don’t set these flags to Y on exit, then
the Bookmark list disappears when you exit the function

Submitting Jobs Within an Action Diagram

This feature lets you specify within the action diagram that a function is to be submitted
for execution in batch using the Submit Job (SBMJOB) command. You can override the
SBMJOB command parameter defaults at the model, function, or action diagram level or
dynamically at run time. In addition, references to the submitted functions are visible
using CA 2E‘s impact analysis facilities.

Notes:

■ Only EXCEXTFUN, EXCUSRPGM, and PRTFIL functions can be submitted for batch
execution using this method.

■ This feature does not support function calls that contain multiple-instance array
parameters.

Submitting Jobs Within an Action Diagram

Chapter 10: Modifying Action Diagrams 557

Inserting a SBMJOB in an Action Diagram

1. Go to the location in the action diagram of the function where the SBMJOB is to be
inserted and type IAF. Press Enter to display the Edit Action - Function Name
window.

Type the file and name of the function to be submitted for batch execution and
press Enter. If the function you specified is an EXCEXTFUN, EXCUSRPGM, or PRTFIL
function, the Submit job option appears. Type Y to indicate that the function is to
be submitted for batch execution.

Press Enter to display the Overrides option.

The Overrides option specifies the source of the SBMJOB parameter overrides to
use for this call.

Value Description

* Model level

F Function level

L Action diagram (local) level

Submitting Jobs Within an Action Diagram

558 Building Applications

Type the appropriate value.

2. If you specified L for Overrides, press F7 to specify local SBMJOB command
parameter overrides for this function. When finished, press Enter.

3. Specify parameters for the referenced function. Each parameter is formatted and
added to a command string that is ultimately invoked as the CMD parameter of the
Submit Job (SBMJOB) command.

Note: Performance degrades if you specify many individual parameters on the call.
As a result, it is recommended that you use RCD or KEY parameters only, rather
than FLD specifications.

Press Enter.

The action diagram displays with the completed action.

Note: The SBMJOB: prefix indicates that the referenced function will be submitted
for batch execution.

4. Complete your work on the action diagram and save the function.

Defining SBMJOB Parameter Overrides

You can override the parameters of the Submit Job (SBMJOB) command at three levels
at source generation time and dynamically at run time. You can override any parameter
except CMD.

Submitting Jobs Within an Action Diagram

Chapter 10: Modifying Action Diagrams 559

Source Generation Overrides

■ Model level—The model level override is stored in a system supplied message
called *Sbmjob default override attached to the *Messages file. Edit this message
to define model level overrides. Function and local overrides default to the model
level.

■ Function Level—The F7 function key on the Edit Function Options panel lets you
edit parameters for the SBMJOB command at either the model or the function
level.

The Overrides if submitted job function option specifies the source of the SBMJOB
parameter overrides and which level of overrides you are editing when you press
F7. The values are:

Value Description

* Model level. Use the default overrides defined by the *Sbmjob
default override message attached to the *Messages file in
Y2USRMSG. Press F7 to edit the model level overrides.

F Function level. Use the override defined for this function. You
define or edit the function level default using F7 on the Edit
Function Options panel. If not specified, it defaults to the model
level override

Submitting Jobs Within an Action Diagram

560 Building Applications

To specify a function level override, set the function option to F and press F7 to edit
the SBMJOB command parameters.

Note: You also need to specify F for the Overrides option on the Edit Action - Function
name window in the action diagram for the function level overrides to take affect. You
can also edit the function level overrides at that point.

■ Action Diagram (Local) Level—The Edit Action - Function name window provides
two additional options for EXCEXTFUN, EXCUSRPGM, and PRTFIL functions:

■ Submit job indicates whether the referenced function is to be submitted for
batch execution:

Value Description

Y Submit the function to batch

N Process the function interactively

■ Overrides specifies both the source of SBMJOB command parameter overrides
and which override level you are editing when you press F7. Note that this
parameter displays only if Submit job is set to Y.

Value Description

* Model level override. Use the model level override string stored in
the *Sbmjob default override message. Press F7 to edit the model
level overrides.

F Function level override. Use the override specified by the
Overrides if submitted job function option for the referenced
function. You can edit the function option overrides by pressing
F7.

L Action diagram level override. Use the override that has been
defined for this call. Press F7 to enter or edit local overrides.

To specify an action diagram level override set the Overrides option to L and press
F7 to edit the SBMJOB command parameters.

Note: Local overrides do not update the action diagram until you save the function on
exit. Function and model level overrides are updated immediately. If later you change
the function that is to be submitted to batch, any local SBMJOB parameter overrides
you previously specified are retained.

Submitting Jobs Within an Action Diagram

Chapter 10: Modifying Action Diagrams 561

Dynamic Overrides

To provide a dynamic override to SBMJOB command parameters at run time, move the
keywords and parameter values into the new PGM context field *Sbmjob override
string. If this field is not blank at run time its contents are merged into the *Sbmjob
default override message, overriding any existing values.

The *Sbmjob job name, *Sbmjob job user, and *Sbmjob job number PGM context fields
facilitate additional processing for the submitted job; for example, handling spool files,
follow-on updates, lock manipulation, and any other processing that requires submitted
job information.

Special SBMJOB Considerations

Advantage of SBMJOB Over Execute Message

Some advantages of using the SBMJOB feature over Execute Message to submit
commands or programs for batch execution are:

■ Numeric parameters can be passed.

■ The complexities of constructing the submit job command string are hidden.

■ References to submitted functions are visible by CA 2E impact analysis facilities.

Viewing a Summary of a Selected Block

562 Building Applications

Viewing a Summary of a Selected Block

Type V against an action diagram block to view a summary of its contents. The Action
Diagram Summary window appears:

Using Action Diagram Services

Chapter 10: Modifying Action Diagrams 563

Note: You can also access the Action Diagram Summary window using the V option on
the User Exit Points window.

The summary lets you quickly select a portion of a large or complicated action diagram
for editing. Within the summary, you can easily zoom to a lower level (Z) and select a
block for editing (X).

The action diagram is summarized by hiding combinations of blocks. The last line of the
summary construct shows the type and number of blocks contained within that portion
of the action diagram; for example, the following indicates that the Case block contains
three (ACT=3) actions:

_ . .-CASE
_ . |-RCD.*SFLSEL is *Zoom#1
_ . ‘-ENDCASE * Contains hidden blocks . . . : ACT= 3
_ ‘--

Use the following function keys to hide or show selected types of blocks

Function Key Description

F2 Hide and show actions

F4 Hide and show Case blocks

F6 Hide and show Iteration blocks

F8 Hide and show Sequence blocks

F10 Hide and show Comments

Using Action Diagram Services

Action Diagram Services lets you perform searches on functions, files, or fields in the
Action Diagram Editor. This utility also allows you to search according to date and for
any constructs that contain errors. You can specify the direction of the scan, the location
where the scan is to start, and the amount of detail to display for a successful scan.

In addition, you can use this panel to toggle full screen mode in the action diagram and
call functions from within an action diagram.

Using Action Diagram Services

564 Building Applications

Scanning for Specified Criteria or Errors

Access Action Diagram Services by pressing F17 from the Edit Action Diagram panel.
The Action Diagram Services panel appears.

 Action Diagram Services SYNMDL

 Type choices, press ENTER.

 Find option : 1 1=Criteria, 2=Error

 Occurrences to process . . : 1 1=Next, 2=All, 3=Previous

 Display find in context . : 2 1=Exact, 2=Block, 3=User point

 Find function file name . : Name, *ALL

 Find function name: Name, *ALL

 Find field name : Name, *ALL

 Contex. . . : Usage . .: (I/O/B/U)

 Search for date : : 5/06/13 CYYMMDD

 Compare : 1=Less than, 2=Less than or equal to,

 3=Equal to, 4=Greater than or equal to,

 5=Greater than

 Scan in titles and comments .: Ignore case . : Y

 Scan for implementation name :

 Reset change dates : (Y/N) Share find criteria . . : N

 Full screen mode : N (Y/N) Auto-scan functions . . : N

 Call function :

 F3=Exit F7=Find F9=Command line F11=Conditions F12=Cancel F16=Y2CALL

1. To perform a search for specified find criteria, type option 1 in the Find Option field.

To specify the criteria of the search:

a. In the Find Function File Name field, type the name of the file, *ALL if you want
to search all files, or ? if you are uncertain of the file name.

Using Action Diagram Services

Chapter 10: Modifying Action Diagrams 565

b. Type the name of the field in the Find Field Name field. To perform a search on
the field and/or context or usage, enter the field name and the context type.
You can enter the field name without entering the context; however, you
cannot enter the context or usage without specifying a field name.

c. Enter the date in YYMMDD format in the Search for Date field.

d. For a specific date comparison, select one of the options for the following
criteria:

■ Less than (for a date prior to the date).

■ Less than or equal to (for a date prior or equal to the search date)

■ Equal to (for a date equal to the search date)

■ Greater than or equal to (for a date after or equal to the search date)

■ Greater than (for a date after the search date)

a. To scan only in block titles and comments, type the text to scan for in the Scan
in titles and comments option. The wildcard character ? indicates a generic
scan; a leading ? is not valid.

b. To search functions and messages for a specified source member name or
message identifier respectively, type the implementation name for the Scan for
implementation name option. To make the resulting action diagram display
clearer, press the F21 key when the search is successful.

1. To perform a search for syntax errors in the action diagram, from the Action
Diagram Services panel, type 2 for the Find option.

2. To search for matches to the specified criteria or errors in the action diagram, press
F7 to scan forward. To scan backwards, type 3 for the Occurrences to process
option.

3. Share find criteria is a Y or N option specifying whether the find criteria entered
on this screen are shared between open functions. If set to N, each open function
uses its own find criteria, which are initialized when the function is first opened and
are retained while the function remains open.

 If set to Y, all open functions share a single set of find criteria. Changes made to
the find criteria (using this screen) when accessed from one open function are
retained and used for all other open functions.

 N Open functions each use their own set of find criteria.

Y Open functions share a single set of find criteria.

Note: If this screen is accessed from a function and this value is set to Y, and
another function is subsequently opened, you can use F7 (Scan) immediately in that
function without the need to re-access this screen.

Using Action Diagram Services

566 Building Applications

4. Auto-scan functions: This flag is only valid if Share find criteria is set to Y. This flag
determines whether the specified scan should be performed on a function as soon
as the function is edited. This flag is automatically set to Y if the F7 key is pressed to
exit this program and this program was called from the OPEN FUNCTIONS panel.
The autoscan functionality applies to any open functions, including the function
being edited when this program was called (if any) as well as to any functions that
are subsequently zoomed into.

N The specified scan will not be performed automatically on return from this
program—the user must press F7 when editing the action diagram of the function
to start the scan.

Y The specified scan is automatically performed on return from this program.

Note: Error checking is also available outside Action Diagram Services using the Check
Function Action Diagram (YCHKFUNACT) command or option 38 on the YEDTMDLLST
panel. If any errors are found, the action diagram is loaded and positioned to the first
error.

Calling Functions Within an Action Diagram

The Call function option lets you call an external function from within an action diagram.

Calling an External Function

1. Type the name of the function to be invoked on the first line of the Call function
option. This defaults to the function you are editing.

2. Type the name of the file the function is attached to on the second line. Press Enter.

3. Press F16 to invoke the Call a Program (Y2CALL) command. Adjust any parameters
and press Enter to invoke the call.

Using Action Diagram Services

Chapter 10: Modifying Action Diagrams 567

Calling an Internal Function

Since an internal function cannot be called directly, you need to select an external
function that calls it.

Type ? for the Call function option and press Enter. The Select External Function
panel displays showing usages for the function you are editing. External functions
are highlighted.

 Action Diagram Services SYNMDL

 Type choices, press ENTER.

 Find option : 1 1=Criteria, 2=Error

 Occurrences to process : 1 1=Next, 2=All, 3=Previous

 Display find in context . . . : 2 1=Exact, 2=Block, 3=User point

 Find function file name . . . : Name, *ALL

 Find function name : Name, *ALL

 Find field name : Name, *ALL

 Context . . . : Usage . . . : (I/O/B/U)

 Search for date : 5/06/13 CYYMMDD

 Compare : 1=Less than, 2=Less than or equal to,

 3=Equal to, 4=Greater than or equal to,

 5=Greater than

 Scan in titles and comments . : Ignore case . : Y

 Scan for implementation name :

 Reset change dates : (Y/N) Share find criteria . . : N

 Full screen mode : N (Y/N) Auto-scan functions . . : N

 Call function : Edit Horse

 Horse

 F3=Exit F7=Find F9=Command line F11=Conditions F12=Cancel F16=Y2CALL

Additional Action Diagram Editor Facilities

568 Building Applications

1. If the display of usages is extensive, use the function keys to position the display to
the appropriate function.

For more information on use of the function keys for this panel, see the online help.

2. Use the selection options to select a function from one of the three displayed
columns, which are numbered from left to right. Press Enter.

The Action Diagram Services panel redisplays with the selected function’s name and
file displayed for the Call function option.

3. Press F16 to prompt the Call a Program (Y2CALL) command. Adjust any parameters
and press Enter to invoke the call.

Additional Action Diagram Editor Facilities

CA 2E makes the following additional facilities available to you while you are in the
action diagram.

Editing the Parameters

To modify your current action diagram parameters, press F9 from the Edit Action
Diagram panel. CA 2E displays the Edit Function Parameters panel. To return to the
action diagram press F3.

For more information on modifying parameters, see Chapter 5, "Modifying Function
Parameters."

Additional Action Diagram Editor Facilities

Chapter 10: Modifying Action Diagrams 569

Toggling to Device Designs

To toggle to the device design associated with the current action diagram, press F19. To
return to the action diagram, press F3 and then F5.

Full Screen Mode

In full screen mode, no subfile option or function keys display on the Edit Action
Diagram panel and the subfile page is expanded to fill the space. The Action diagram full
screen option in the model profile sets the default mode. You can override this value for
any function using the Full screen mode option on the Action Diagram Services panel.
Use this option to return to normal mode.

Following is an example of the action diagram in full screen mode:

Additional Action Diagram Editor Facilities

570 Building Applications

Toggling Display for Functions and Messages

The F21 function key lets you toggle the information displayed for functions and
messages. For functions, the implementation name and function type display; for
messages, the message id and message type display.

For example, the following is the default display for a function.

You have the ability to open, edit, and maintain several functions simultaneously.

Starting Edits for Multiple Functions

To open multiple functions for a file simultaneously, use either of the following panels.

■ Edit Functions panel—Enter O for each of the functions you want loaded.

Note: If you enter O for a function on the Edit Functions panel, any subsequent F or
S subfile select option you enter is interpreted as O.

■ Edit Model Object Lists panel—Enter 30 for each of the functions you want loaded.

When all the functions you selected are loaded, the Open Functions panel appears and
you can begin editing. You do not need to wait while the next function you want to edit
is loaded.

Additional Action Diagram Editor Facilities

Chapter 10: Modifying Action Diagrams 571

Starting an Edit for Another Function

To edit other functions while in the action diagram of a particular function, execute the
following steps:

1. Go to Open Functions. At the Edit Action Diagram panel of the function that you are
currently editing, press F15.

The Open Functions panel appears. From the Open Functions panel you have the
ability to perform any edit functions on open functions, including changing
parameters, accessing diagrams, editing source, displaying usages and references,
editing narrative, and changing the device design.

Additional Action Diagram Editor Facilities

572 Building Applications

2. At the Open Functions panel, type the file name and the function name in the File
and Function fields. If you are uncertain of the names type ? in the field prompts.
Enter * in the File field to default to the first file in the list. Additionally, you can use
function implementation names(GEN names) if that is more convenient. To open a
function using the implementation name, enter the characters * and then i or I (*I
or *i) in the File field and then enter the implementation name in the Function field.
Implementation names are not case sensitive.

If the function is not already on the open function list, CA 2E loads the action
diagram of the open function and you can perform any necessary editing.

If it is already on the list, you are returned to the function. You can press F15 at any
time during the edit to view the open functions on the Open Function panel.

Note: Pressing F15 to display the Open Functions panel disrupts the zoom sequence
of any open function. Each zoomed function appears as a separate open function
and you do not automatically return to the calling function on exit. You instead,
return to the Open Function panel from which you must explicitly reselect the
calling function.

3. Once you perform any editing changes, press F3 to exit, and save the function. You
return to the Open Functions panel.

The function whose action diagram you modified and saved no longer appear on
the Open Functions panel, as it is no longer open.

Only those functions you opened and have not exited remain open and appear on
the Open Functions panel.

Copying from One Function’s Action Diagram to Another Using NOTEPAD

To copy the contents of one action to another, execute the following steps:

1. At the Edit Action Diagram panel, specify the construct or block of constructs that
you wish to append to the Notepad by entering the appropriate Notepad line
command; NA, NAA, NR, or NRR.

2. Press F15 to access the Open Functions panel and type F against the function to
which you want to copy.

3. Access the appropriate user point in the selected function and press NI to insert the
contents of the Notepad.

Modifying Function Parameters

From the Edit Action Diagram panel press F15 to access the Open Functions panel and
type P against the function whose parameters you wish to modify.

The Edit Function Parameter panel appears.

Exiting Options

Chapter 10: Modifying Action Diagrams 573

Switching from Action Diagram Directly to Function Device Design

From the Edit Action Diagram panel, press F15 to access the Open Functions panel and
type S against the function whose device design you want to access.

The device design for the function appears.

Exiting Options

There are several options for exiting a function in an action diagram. They are as
follows:

Exiting a Single Function

At the Edit Action Diagram panel, press F3 to exit a single function. Alternatively, at the
Open Functions panel, type X against an open function.

The Exit Function Definition panel appears.

The default value for the Change/Create Function option depends on the setting of the
Default Action Diagram Exit Update (YACTUPD) model value; it does not depend on
whether you changed the function unless YACTUPD is set to *CALC. As a result, if you
want to save your changes, be sure this value is Y before you press Enter.

If YACTUPD is set to *CALC, the Change/create function option is set to Y only when a
change to the function’s action diagram or panel design has been detected.

Exiting Options

574 Building Applications

Exiting All Open Functions

At the Open Functions panel, press F3 to exit all open functions.

The Exit Function Definition panel displays for each function on the open function list.
This allows you to process each exit individually.

Exiting a Locked Function

If you are working in Open Functions with a function that is locked or open to another
user of type *PGMR, you can still make changes to the function. However, when you
exit the function to save the definitions you can only apply changes to the locked
function once it is released.

Interactive Generation or Batch Submission

To generate a function use the following instructions:

1. Submit a function to batch generation. At the Exit Function Definition panel, specify
Y on the Submit generation field.

Alternately, at the Edit Functions panel or at the Display All Functions panel, place a
J against the function, or use option 14 from the Edit Model Object List panel.

2. Generate a function interactively. At the Edit Functions panel or the Display All
Functions panel, place a G against the function.

For more information on generation and batch submission, see this module, Chapter 10,
"Generating and Compiling."

Understanding Action Diagram User Points

Chapter 10: Modifying Action Diagrams 575

Understanding Action Diagram User Points

Each function type that includes an Action Diagram contains protected control logic and
a set of user points unique to the function. CA 2E restricts modification of the function’s
logic to these user points. It is essential that the user know the consequences of any
logic that is specified in the user points since it has a direct bearing on the performance
and functionality of the function.

The following information includes examples of the types of logic appropriate for
various user points.

Many of the user points are self-explanatory and the user will know intuitively what
type of processing should be specified. The following information is intended for
illustrative purposes only. This information is meant to serve as a guide to aid the user in
deciding where to insert function logic as well as what type of logic to insert to affect a
certain type of functionality.

For more information and a flowchart for each CA 2E function showing its basic
processing and its user points, see this module, Appendix A, "Function Structure Charts."

Change Object (CHGOBJ)

USER: Processing Before Data Read

USER: Processing if Data Record Not Found

By default, the program context return code field (PGM.*Return code) is set to *DBF
record does not exist. If necessary, insert a move at this point to set return code to
*Normal.

For processing that requires the creation of a DBF record, if the record based on the
input key parameters is not found, you can insert a CRTOBJ function here and use the
input values of the fields passed into this function (from the PAR context) as input
parameters. This is the preferred method for doing this since it involves considerably
fewer I/O resources than using a RTVOBJ to read a record and the executing a CRTOBJ or
CHGOBJ based on the result of the read.

USER: Processing After Data Read

At this user point, data has been read from the file but not overlaid by data from
incoming parameters. You can use this user point to compare for differences in the
before and after images of records. You can then use this comparison to effect updates
to the file.

Understanding Action Diagram User Points

576 Building Applications

USER: Processing Before Data Update

At this user point, data has been moved from the incoming parameters to the file fields.
This is often used to set a date/time stamp in the record.

USER: Processing After Data Update

You can use this user point to perform updates to related files. For example, to
increment totals based on the differences computed in the USER: Processing After Data
Read user point.

Create Object (CRTOBJ)

USER: Processing Before Data Read

USER: Processing Before Data Update

Insert logic here to increment key values of records that you want to add. For example,
to add records to a file with a sequential key: Retrieve the last written key value (for
example, order line number) and increment it by one to obtain the key value of the next
record to be written.

USER: Processing if Data Record Already Exists

By default, the program context field return code (PGM.*Return code) is set to *DBF
record already exists. If necessary, insert a move at this point to set the field value to
*Normal.

USER: Processing if Data Update Error

By default the program context field return code (PGM.*Return code) is set to *DBF
update error. Insert a move at this point to set the field value to *Normal if necessary.

USER: Processing after Data Update

You can use this user point to update any associated file with cumulative totals, or to
automatically create extension records.

Understanding Action Diagram User Points

Chapter 10: Modifying Action Diagrams 577

Delete Object (DLTOBJ)

USER: Processing Before Data Update

CA 2E performs referential integrity checking on the data input of an application. If you
want to delete data, you must perform your own checking in the action diagram. If you
want to prevent the deletion of a record with references to it, insert a call here to a
RTVOBJ function based on the file to be checked, (that is, any file that refers to this file).
Build the RTVOBJ function over a RSQ access path that is keyed by the foreign key fields.
If a record is found, set the return code to *User QUIT requested; if a record is not
found, set the return code to *Normal. Check the return code; if the return code is
*Normal, quit the function and send an error message if necessary.

To perform a cascading deletion of subordinate file records, insert an EXCEXTFUN
function containing separate RTVOBJ function calls for each file that potentially contains
records to be deleted. For each RTVOBJ, define restrictor parameters based on the
higher key order of the super ordinate file. This retrieves all possible records to delete.
Insert a DLTOBJ function to delete each record in the USER: Process DBF Record user
point of the RTVOBJ function.

USER: Processing Before Data Read

Display File (DSPFIL)

USER: Initialize Program

Initialize work fields from passed parameters or from other database file reads with this
user point. Implement security checking and specify an *EXIT PROGRAM action if the
user is not authorized.

The program context scan limit field, PGM.*Scan limit, is set to 500 by default. If you
want to change this value, do so here.

USER: Initialize Subfile Control

Initialize subfile control fields from passed parameters that are not mapped or from
other database file reads.

Understanding Action Diagram User Points

578 Building Applications

USER: Initialize Subfile Record from DBF Record

Insert logic to execute further record selection processing. Set the program context field
record selected to no, PGM.*Record selected = *NO for records that do not meet the
criteria. This procedural level processing is useful when the majority of the records are
to be selected but you do not want to build, or cannot build, the select/omit criteria into
the access path. If you want all subfile records to be reprocessed after validation, insert
the program context reload subfile field here (PGM.*Reload subfile = Yes).

Note: An action to insert a *QUIT function in this user point inhibits the subfile load but
does not properly condition the roll indicator.

Check for hidden fields in the subfile control as well as the operators on the subfile
fields (particularly CT (contains) for alphanumeric fields) to ensure that proper records
display.

Function fields of type CNT, MAX, MIN, and SUM are not allowed for this function type;
however, you may want to keep running totals of subfile fields. To do this, you can add a
function field to the subfile control of type USR and calculate it at subfile load time. This
function type only loads a single page at a time; therefore, any calculations should be
performed at the single record level or using the cumulative totals of the subfile record.

CALC: Subfile Control Function Fields

Calculations associated with a derived function field are inserted in this user point.

USER: Process Subfile Control (Pre-Confirm)

Insert references to function keys (using the CTL.*CMD key) here if you want to execute
the function key without regard to the validity of detail screen format. You should
implement these calls before confirmation of panel processing. If you want subfile data
records to be processed and validated prior to executing function keys, you should place
the processing in the USER: Process Command Keys user point.

Based on the results of these calls (such as adding a record), you may want to set the
program context reload subfile to yes, (PGM.*Reload subfile = *YES), to refresh the
panel with any changed data.

Implement checks of key processing F13 or other function keys that cause the action
*EXIT PROGRAM to be executed.

CALC: Subfile Record Function Fields

Calculations associated with a derived function field are inserted by CA 2E in this user
point. You can add any other actions at this user point. This user point is executed when
subfile record is loaded or initialized and when it is processed as a changed record. This
means that this user point is useful for activities that need to be performed at both of
these times.

Understanding Action Diagram User Points

Chapter 10: Modifying Action Diagrams 579

USER: Process Subfile Record (Pre-Confirm)

Insert subfile selections (using the RCD.*SFLSEL key) here if you want to execute the
subfile selections without regard to the validity of subfile records. You should
implement these calls before confirmation of panel processing. If you want subfile data
records to be processed and validated prior to executing subfile selections, you should
place the processing in the USER: Process Command Keys user point.

Any validation for other fields on the subfile record should go here.

Same considerations as for the previous USER: Process Subfile Control (Pre-confirm).

USER: Process Subfile Record (Post-Confirm)

This user point is present only if you specify the function option for a post confirm pass.
You can use this user point to implement any processing on the subfile record after
editing and confirmation steps.

USER: Process Subfile Record (Post-Confirm Pass)

Insert logic here to implement processing for each subfile record that has been modified
or flagged for additional processing.

USER: Process Command Keys

This user point executes after all other processing and confirmation steps have
completed. You can insert function key processing at this point or perform any
operations that are related to the panel as a whole.

USER: Exit Program Processing

Insert function key processing with a user-specific return code to execute an *EXIT
PROGRAM (F3 in *CUAENTRY; an action in *CUATEXT). The *EXIT PROGRAM logic is
executed here whenever the F3=Exit function key is pressed or an Exit action is
executed.

Display Record (DSPRCD)

Processing for the DSPRCD2 and DSPRCD3 function types is similar to DSPRCD; they
differ only in the number of panels processed.

USER: Initialize Program

Initialize work fields from passed parameters or from other database file reads.
Implement security checking and specify an *EXIT PROGRAM action if the user is not
authorized.

Understanding Action Diagram User Points

580 Building Applications

USER: Load Detail Screen from DBF Record

Initialize detail fields from passed parameter fields that are not mapped or from other
database file reads.

USER: Process Key Screen Request

Returns processing to key panel.

CALC: Detail Screen Function Fields

Calculations associated with derived function fields in the detail format appear here.

USER: Validate Detail Screen

Insert references to function keys, using the CTL.*CMD key, here if you want to execute
the function key. You should implement these calls before confirmation of panel
processing. If you want the data record to be processed and validated prior to executing
function keys, you should place the processing in the USER: Process Command Keys user
point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of key processing F15 or other function keys that cause the action
*EXIT PROGRAM to be executed.

USER: Perform Confirmed Action

Insert any processing you want to occur after you press Enter.

USER: Process Command Keys

This user point is always executed unless exit processing is requested (F3 in *CUAENTRY;
an action in *CUATEXT). You can insert an *EXIT PROGRAM action at this point if you
want to exit after DBF updates.

USER: Exit Program Processing

Insert function key processing with a user-specific return code to execute an *EXIT
PROGRAM action (F3 in *CUAENTRY; an action in *CUATEXT). The *EXIT PROGRAM logic
is executed here whenever the F3=Exit function key is pressed or an Exit action is
executed.

Understanding Action Diagram User Points

Chapter 10: Modifying Action Diagrams 581

Display Transaction (DSPTRN)

USER: Initialize Program

Initialize work fields from passed parameters or from other database file reads.
Implement security checking, and specify an *EXIT PROGRAM action if the user is not
authorized.

USER: Initialize Subfile Record

Initialize fields in the subfile record format, if necessary.

USER: Validate Header Non-key Fields

Insert references to function keys, using the CTL.*CMD key, here if you want to execute
the function key without regard to the validity of subfile records. You should implement
these calls before confirmation of panel processing. If you want subfile data records to
be processed and validated prior to executing function keys, you should place the
processing in the USER: Process Command Keys user point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of key processing; F15 or other function keys that cause the action
*EXIT PROGRAM to be executed.

USER: Validate Header Non-key Relations

Implement subfile control field-to-field validation or other processing dependent upon
prior logic.

USER: Validate Subfile Record Fields

Insert references to subfile selections, using the RCD.*SFLSEL key or equivalent CUA
action here if you want to execute the subfile selections without regard to the validity of
subfile records. You should implement these calls before confirmation of panel
processing. If you want subfile data records to be processed and validated prior to
executing subfile selections, you should place the processing in the USER: Process
Command Keys user point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of key processing F15 or other function keys that cause the action
*EXIT PROGRAM to execute.

Understanding Action Diagram User Points

582 Building Applications

USER: Validate Subfile Record Relations

Implement subfile record field-to-field validation or other processing dependent upon
prior logic.

CALC: Subfile Record Function Fields

Calculations associated with derived and subfile function fields (SUM, MIN, MAX, and
CNT) in the subfile record appear here. You can add any actions at this user point. This
user point is executed when the subfile record is loaded or initialized and when it is
processed as a change record. This means that this user point is useful for activities that
need to be performed at both of these times.

Note: Although subfile function fields operate on subfile record fields, you must place
them in the subfile control format of the device panel.

CALC: Header Function Fields

Calculations associated with derived function fields in the subfile control appear here.

USER: Validate Totals

DSPTRN, like EDTTRN, gives you an extra user point before you press Enter. This allows
you to perform useful validations; in particular, relational checks between a DBF field
and a function field. An example is, a comparison between a customer’s credit limit and
his outstanding balance plus an order total in an Order Entry function. You can then set
the program context defer confirm field to not confirm, PGM.*Defer confirm = *Do not
confirm, if the validation fails and you do not want DBF updates to occur.

USER: Header Update Processing

If you want to perform your own header record DBF updates, you should insert your
own DBF function objects here.

USER: Subfile Record Update Processing

If you want to perform your own detail record DBF updates, you should insert your own
DBF function objects here.

USER: Process Command Keys

This user point is always executed unless exit processing is requested (F3 in *CUAENTRY;
an action in *CUATEXT). You can insert an *EXIT PROGRAM action at this point if you
want to exit after DBF updates.

Understanding Action Diagram User Points

Chapter 10: Modifying Action Diagrams 583

USER: Exit Program Processing

Insert function key processing with a user-specific return code to execute an *EXIT
PROGRAM action (F3 in *CUAENTRY; an action in *CUATEXT). The *EXIT PROGRAM logic
is executed here whenever the F3=Exit function key is pressed or an Exit action is
executed. To reload the subfile and remain in the function, you can set the program
context continue transaction field to no, PGM.*Continue transaction = *NO, and insert a
QUIT statement here.

Edit File (EDTFIL)

USER: Initialize Program

Initialize work fields from passed parameters or from other database file reads.
Implement security checking and specify an EXIT PROGRAM action if the user is not
authorized.

You can set the program context program mode field (PGM.*Program mode) to *ADD or
*CHANGE. You can test this value at any time in order to perform conditional
processing. If you want to change the mode in the action diagram after the panel
displays, you must also set the program context reload subfile field to yes (PGM.*Reload
subfile = *YES).

USER: Initialize Subfile Header

Initialize subfile control fields from passed parameters fields that are not mapped or
from other database file reads.

USER: Initialize Subfile Record (New Record)

This user point is executed if records do not exist (PGM.*Program mode = *ADD).

Understanding Action Diagram User Points

584 Building Applications

USER: Initialize Subfile Record (Existing Record)

This user point is executed if records exist (PGM.*Program mode = *CHANGE).

Insert logic to perform further record selection processing. Set the program context field
record selected to no (PGM.*Record selected = *NO) for records that do not meet the
criteria. This procedural level processing is useful when the majority of the records are
to be selected but you do not want to build or cannot build the select/omit criteria into
the access path.

Note: An action to insert a QUIT function in this user point may produce unpredictable
results.

Check for hidden fields in the subfile control as well as the operators on the subfile
fields (particularly CT [contains] for alphanumeric fields) to ensure that proper records
display.

Function fields of type CNT, MAX, MIN, and SUM are not allowed for this function type;
however, you may want to keep running totals of subfile fields. To do this, you can add a
function field to the subfile control of type USR and calculate it at subfile load time. This
function type only loads a single page at a time; therefore, any calculations should be
performed at the single record level or by using the cumulative totals of the subfile
record.

CALC: Subfile Control Function Fields

Calculations associated with derived function fields are inserted in this user point.

USER: Validate Subfile Control

Insert references to function keys (using the CTL.*CMD key) here if you want to execute
the function key without regard to the validity of subfile records. You should implement
these calls before confirmation of panel processing. If you want subfile data records to
be processed and validated prior to executing function keys, you should place the
processing in the USER: Process Command Keys user point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Based on the results of these calls (adding a record, for instance), you may want to set
the program context reload subfile to yes (PGM.*Reload subfile = *YES) to refresh the
panel with any changed data.

Implement checks of key processing (F15 or other function keys that cause the action
*EXIT PROGRAM to be executed).

Understanding Action Diagram User Points

Chapter 10: Modifying Action Diagrams 585

USER: Validate Subfile Record Fields

Insert subfile selection calls to other functions using function keys that are specified in
the record context subfile select field (RCD.*SFLSEL) and not in the USER: Process
Command Keys user point described following.

Based upon the results of these calls (for example, zooming to change a record in a
subordinate file), you may want to set the program context reload subfile field to yes,
PGM.*Reload subfile = *YES, to reflect changes in the subfile records.

CALC: Subfile Record Function Fields

Calculations associated with derived function fields in the subfile record appear here.
You can add any other actions at this user point. This user point is executed when the
subfile record is loaded or initialized and when it is processed as a change record. This
means that this user point is useful for activities that need to be performed at both of
these times. You may see use User: Validate Subfile Record Relations user point instead
since it has a similar pattern of execution.

USER: Validate Subfile Record Relations

Implement field-to-field validation or other processing that is dependent upon prior
logic in this user point. This user point is executed at both the initial subfile load and at
changed record processing. If you have no need of repeating changed record processing,
include the logic in the Initialize Subfile Record user point instead.

If, for the purposes of validation, you do not want to execute the Update Database user
points, you must set on the program context defer confirm field (PGM.*Defer confirm =
*DEFER CONFIRM). Processing returns to the top of the loop that processes the panel.

USER: Create Object

CA 2E inserts object creation logic at this point if the function option for object creation
is set to yes (Y).

USER: Delete Object

CA 2E inserts object deletion logic at this point if the function option for object deletion
is set to yes (Y).

USER: Change Object

CA 2E inserts object modification logic at this point if the function option for object
modification is set to yes (Y).

Understanding Action Diagram User Points

586 Building Applications

USER: Extra Processing After DBF Update

Place additional action diagram logic is this user point if you have additional files that
need to be updated. For instance, if you are adding a record, you may want to include
additional Create Object functions for files that are not automatically linked to this file.

USER: Process Command Keys

This user point is always executed unless exit processing is requested (F3 in *CUAENTRY;
an action in *CUATEXT). You can insert an *EXIT PROGRAM action at this point if you
want to exit after DBF updates.

USER: Exit Program Processing

Insert function key processing with a user-specific return code to execute an *EXIT
PROGRAM action (F3 in *CUAENTRY; an action in *CUATEXT). The *EXIT PROGRAM logic
is executed here whenever the F3=Exit function key is pressed, or an Exit action is
executed.

Edit Record (EDTRCD)

Processing for the EDTRCD2 and EDTRCD3 function types is similar to EDTRCD. They
differ only in the number of panels processed.

USER: Initialize Program

Initialize work fields from passed parameters or from other database file reads.
Implement security checking, and specify an *EXIT PROGRAM action if the user is not
authorized.

USER: Initialize Detail Screen (New Record)

This user point is executed if the record does not exist, PGM.*Program mode = *ADD.

USER: Initialize Detail Screen (Existing Record)

This user point is executed if record to maintain exists, PGM.*Program mode =
*CHANGE. Initializes detail fields from passed parameter fields that are not mapped, or
from other database file reads.

USER: Process Key Screen Request

Returns processing to the key panel.

Understanding Action Diagram User Points

Chapter 10: Modifying Action Diagrams 587

USER: Delete Object

CA 2E inserts object deletion logic at this point if the function option for object deletion
is set to yes (Y).

USER: Validate Detail Screen Fields

Insert references to function keys here using the CTL.*CMD key if you want to execute
the function key without regard to the validity of subfile records. You should implement
these calls before confirmation of panel processing. If you want the data record to be
processed and validated prior to executing function keys, place the processing in the
USER: Process Command Keys user point.

If you are using some sort of preemptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of key processing (F15 or other function keys that cause the action
*EXIT PROGRAM to be executed).

You should avoid calling another function from a panel that updates the record you are
maintaining since you are likely to receive the error message, Record Has Been Updated
by Another User, when this function attempts a database update. This is because the
record image on the database has changed since it was last saved.

CALC: Detail Screen Function Fields

Calculations associated with derived function fields in the detail format appear here.

USER: Validate Detail Screen Relations

Implement field-to-field validation or other processing that is dependent upon prior
logic in this user point.

If, for the purposes of validation, you do not want to execute the update database user
points, you must set on the program context defer confirm field, PGM.*Defer confirm =
*DEFER CONFIRM. Processing returns to the top of the loop, which processes the panel.

USER: Create Object

CA 2E inserts object creation logic at this point if the function option for object creation
is set to yes (Y).

USER: Change Object

CA 2E inserts object modification logic at this point if the function option for object
modification is set to yes (Y).

Understanding Action Diagram User Points

588 Building Applications

USER: Process Command Keys

This user point is always executed unless exit processing is requested (F3 in *CUAENTRY;
an action in *CUATEXT). You can insert an *EXIT PROGRAM action at this point if you
want to exit after DBF updates.

USER: Exit Program Processing

Insert function key processing with a user-specific return code to execute an *EXIT
PROGRAM action (F3 in *CUAENTRY; an action in *CUATEXT). The *EXIT PROGRAM logic
is executed here whenever the F3=Exit function key is pressed, or an Exit action is
executed.

Edit Transaction (EDTTRN)

USER: Initialize Program

Initialize work fields from passed parameters or from other database file reads.
Implement security checking, and specify an *EXIT PROGRAM action if the user is not
authorized.

USER: Initialize Screen for New Transaction

This user point is executed if the header record does not exist, PGM.*Program mode =
*ADD. Initialize fields in the control format, if necessary.

USER: Initialize Screen for Old Transaction

This user point is executed if the header record exists PGM.*Program mode = *CHANGE.
Initialize fields in the control format, if necessary.

USER: Validate Header Key Fields

Executed if the program context field program mode field is Add, PGM.*Program mode
= *ADD.

USER: Validate Header Key Relations

Executed if the program context program mode field is Change, PGM.*Program mode =
*CHANGE.

USER: Load Existing Header

The existing header record format is loaded into the subfile control format.

Understanding Action Diagram User Points

Chapter 10: Modifying Action Diagrams 589

USER: Initialize Subfile Record (Old Record)

Initialize fields in the subfile record format, if necessary. This user point is executed if
the program context program field is Change PGM.*Program mode = *CHANGE.

USER: Initialize Subfile Record (New Record)

Initialize fields in the subfile record format, if necessary. This user point is executed if
the program context program mode field is Add, PGM.*Program mode = *ADD.

USER: Validate Header Non-key Fields

Insert references to function keys (using the CTL.*CMD key) here if you want to execute
the function key without regard to the validity of subfile records. You should implement
these calls before confirmation of panel processing. If you want subfile data records to
be processed and validated prior to executing function keys, you should place the
processing in the USER: Process command keys user point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of key processing (F15 or other function keys that cause the action
*EXIT PROGRAM to be executed).

USER: Validate Header Non-key Relations

Implement subfile control field-to-field validation or other processing dependent upon
prior processing logic.

USER: Validate Subfile Record Fields

Insert references to subfile selections here (using the RCD.*SFLSEL key or equivalent
CUA action) if you want to execute the subfile selections without regard to the validity
of subfile records. You should implement these calls before confirmation of panel
processing. If you want subfile data records to be processed and validated prior to
executing subfile selections, you should place the processing in the USER: Process
command keys user point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of key processing (F15 or other function keys that cause the action
*EXIT PROGRAM to be executed).

Understanding Action Diagram User Points

590 Building Applications

USER: Validate Subfile Record Relations

Implement subfile record field-to-field validation or other processing dependent upon
prior logic.

CALC: Subfile Record Function Fields

Calculations associated with derived and subfile function fields (SUM, MIN, MAX, and
CNT) in (or which operate on) the subfile record appear here. You can add any other
actions at this user point. This user point is executed when the subfile record is loaded
or initialized and when it is processed as a new change record. This means that this user
point is useful for activities that need to be performed at both of these times.

Note: Although subfile function fields operate on subfile record fields, you must place
them in the subfile control format of the device panel.

CALC: Header Function Fields

Calculations associated with derived function fields in the subfile control appear here.

USER: Validate Totals

EDTTRN provides you with an extra user point before the DBF update user points. This
user point allows you to perform useful validations, in particular, relational checks
between a DBF field and a function field. For example, a comparison between a
customer’s credit limit and his outstanding balance plus an order total in an Order Entry
function. You can then set the program context defer confirm field to do not confirm
(PGM.*Defer confirm = *Do not confirm) if the validation fails and you do not want DBF
updates to occur.

USER: Create Header DBF Record

CA 2E inserts default object creation logic if the transaction creation function option is
set to yes (Y).

USER: Change Header DBF Record

CA 2E inserts default object modification logic if the change transaction function option
is set to yes (Y). You may substitute for this, which would be useful in the event where
the header format is output only (determined by you) and you want to suppress the
header record. Replace the Change object function at this point with a dummy internal
function that performs no essential function.

USER: Delete Header DBF Record

CA 2E inserts default object deletion logic if the transaction deletion option is set to yes
(Y).

Understanding Action Diagram User Points

Chapter 10: Modifying Action Diagrams 591

USER: Create Detail DBF Record

CA 2E inserts default object creation logic if the detail line creation function option is set
to yes (Y).

USER: Change Detail DBF Record

CA 2E inserts default object modification logic if the change transaction function option
is set to yes (Y).

Note: EDTTRN updates all records in the subfile, whether you have changed them or
not.

USER: Delete Detail DBF Record

CA 2E inserts default object deletion logic if the detail line object deletion function
option is set to yes (Y).

USER: Process Detail Record

If you have substituted dummy functions for any of the DBF updates, you want to insert
your own DBF objects at this point.

USER: Process Command Keys

This user point is always executed unless exit processing is requested (F3 in *CUAENTRY;
an action in *CUATEXT). You can insert an *EXIT PROGRAM action at this point if you
want to exit after DBF updates.

USER: Exit Program Processing

Insert function key processing with a user-specific return code to execute an *EXIT
PROGRAM action (F3 in *CUAENTRY; an action in *CUATEXT). The *EXIT PROGRAM logic
will be executed here whenever the F3=Exit function key is pressed, or an Exit action is
executed. To reload the subfile and remain in the function, you can set the program
context continue transaction field to no (PGM.*Continue transaction = *NO) and insert a
QUIT statement here.

Print File (PRTFIL) – Print Object (PRTOBJ)

USER: Initialize Program

Initialize work fields from passed parameter fields, constants or other database file
reads.

Understanding Action Diagram User Points

592 Building Applications

USER: Record Selection Processing

Implement further logic to restrict records that are to be printed. Set the program
context record selected field to no (PGM.*Record selected = *NO) to prohibit records
from being printed. This should not be done as the primary means of record selection
(use select/omit criteria on the access path instead) but rather to filter out based on
some functional criteria, a small percentage of the records that you want to exclude
from the access path.

USER: Process Top of Page

This format is only available for PRTFIL.

USER: Null Report Processing

This user point is executed if no records exist to print on the report.

USER: On Print of File nnn Key xxx Format

For each field in the key of the access path over which the function is built there is a
format to print the required level headings for the key field (control break). Each format
has user points to total and format fields before, during, or after the format print.

Note: Print object calls are placed immediately before or after the On Print user point.

USER: On Print of Detail Format

CA 2E formats fields from the DB1 file context into the Current (CUR) context of the
format.

USER: On Print of End of Report Format

This format is only available for PRTFIL.

Prompt and Validate Record (PMTRCD)

USER: Initialize Program

Initialize work fields from passed parameters or from other database file reads.
Implement security checking and specify an *EXIT PROGRAM action if the user is not
authorized.

USER: Load Screen

Format the detail panel from parameters, shipped file (PGM or JOB) values, or reads to
other database files.

Understanding Action Diagram User Points

Chapter 10: Modifying Action Diagrams 593

USER: Process Command Keys

Insert calls to other functions using the functions keys that are specified in the control
context function key field (CTL.*CMD key).

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of pre-emptive key processing in a user point (F15 or other function
keys in *CUAENTRY; an action in *CUATEXT) that execute an *EXIT PROGRAM action.

USER: Validate Fields

If you use PMTRCD as a sub-menu, you normally have a function field of type USR on the
panel that allows you to enter valid options. You may also have other USR type fields to
process information that is validated against the database. Implement any validation,
including existence checking, on these fields in this user point.

CALC: Screen Function Fields

Calculations associated with a derived function field are inserted in the subfile record at
this point.

USER: Validate Relations

Check for field dependencies: the value of one field is conditioned on the value of
another field(s); for example, a range where the first number must be less than or equal
to the second.

USER: User Defined Action

If your PMTRCD is a sub-menu, insert calls to appropriate functions based on
user-entered data at this point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

USER: Exit Program Processing

Place pre-emptive key processing requiring exit processing (F3 in *CUAENTRY; an action
in *CUATEXT) to execute an *EXIT PROGRAM action with a user-specific return code
since this user point is always executed when exit is requested.

Understanding Action Diagram User Points

594 Building Applications

Retrieve Object (RTVOBJ)

USER: Initialize Routine

Unless reading a single record for existence checking or retrieving values, much of your
processing is specified from within the calling function itself. In this user point, you
should initialize work fields, counters, and calculation fields.

USER: Processing if Data Record Not Found

The program context return code field is set to *Record Does Not Exist. In many
instances this is the default processing; however, you should set the return code field to
*Normal. Do this with a move statement.

It is good practice to insert a *MOVE ALL built-in function specifying (CON.*BLANKS) if
any data is retrieved by the RTVOBJ function.

Note: If user logic exists in this user point and the record is not found, then user logic in
USER: Exit processing is ignored.

USER: Process Data Record

When reading for a single record with a partially restricted key, you must insert a *QUIT
statement in this user point when you have found the requested record. If you are
performing an existence check, you should insert a *QUIT statement once you have
found the record since you do not want to read the entire file. DB1 fields must be
moved to the PAR context to return field values to the calling function. If your fields
match, you can use the *MOVE All statement to execute this. You must explicitly format
other fields with a *MOVE statement. The parameters for which you want to return field
values must be specified as O (Output) or B (Both) parameters.

When reading with a fully restricted key, if the record is found and there is no user logic
in this user point, processing stops. You must have user logic in this user point if you
want to read more than one record.

RTVOBJ is often used to direct a batch process. Insert any functions in this user point
that are required to implement your processing: EXCEXTFUN, EXCINTFUN, CHGOBJ,
CRTOBJ, and other RTVOBJ.

USER: Exit Processing

You may have defined work fields that store data values while the next record is being
processed. This user point is executed when processing has completed. Use the DB1
context carefully in this user point since you have not read another record and
unpredictable results may occur.

Note: User logic in this user point is not executed if user logic exists in user point USER:
Processing if Data Record Not Found and no record is found.

Understanding Action Diagram User Points

Chapter 10: Modifying Action Diagrams 595

Select Record (SELRCD)

USER: Initialize Program

Initialize work fields from passed parameters or from other database file reads.
Implement security checking and specify an *EXIT PROGRAM action if the user is not
authorized.

The program context field *Scan Limit (PGM.*Scan Limit), which is used for establishing
the number of records to read, is set to 500 by default. If you want to change this value,
do so here.

USER: Load Subfile Record from DBF Record

You can insert function field processing at this point, such as field and file descriptions
that are accessed using a RTVOBJ to another file.

USER: Process Subfile Control

Insert references to function keys (using the CTL.*CMD key) here if you want to execute
the function key without regard to the validity of subfile records. You should implement
these calls before confirmation of panel processing. If you want subfile data records to
be processed and validated prior to executing function keys, you should place the
processing in the USER: Process command keys user point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check the relevant return codes facilitating this processing upon return from any
called functions.

Based on the results of these calls (adding a record, for instance), you may want to set
the program context reload subfile field to yes (PGM.*Reload subfile = *YES) to refresh
the panel with any changed data.

Implement checks of key processing (F15 or other function keys that cause the *EXIT
PROGRAM action to be executed).

USER: Process Selected Line

The function exits at this point if you have selected a subfile record.

Understanding Function Structure Charts

596 Building Applications

USER: Process Changed Subfile Record

If relevant, insert subfile selections (using the RCD.*SFLSEL key) here if you want to
execute the subfile selections without regard to the validity of subfile records. You
should implement these calls before confirmation of panel processing. If you want
subfile data records to be processed and validated prior to executing subfile selections,
you should place the processing in the USER: Process Command Keys user point.

Similar considerations as for DSPFIL.

CALC: Screen Function Fields

Calculations associated with a derived function field are inserted in this user point.

USER: Process Command Keys

This user point is always executed unless the function key or action associated with the
*Exit field is requested.

USER: Exit Program Processing

Place pre-emptive key processing requiring exit processing (F3 in *CUAENTRY; an action
in *CUATEXT) to execute an *EXIT PROGRAM action with a user-specific return code
here since this user point is always executed whenever exit processing is requested.

Understanding Function Structure Charts

The CA 2E function structure charts provide you with a visual orientation of the user
points with respect to other processes, and will help you learn the processing offered by
each function type. The function charts appear in Appendix A at the end of this module.

Work your way through each chart as necessary. Evaluate each user point with respect
to the rest of the function until you locate the correct point at which you want to
introduce your processing logic.

For more information and a diagram of each function structure chart, see this module,
in the appendix, "Function Structure Charts."

Chapter 11: Copying Functions 597

Chapter 11: Copying Functions

This chapter explains how to copy existing functions to create new ones. In general, CA
2E allows you to copy a function to another function of the same type. In addition, a
copy with a change of function type is permitted between certain combinations of
function types. This is called cross-type copying. You can also create new functions by
copying customized template functions.

As an alternative to the process discussed in this chapter, you can create versions of
functions and messages. Some benefits of using versions are:

■ You can test changes on a version of a function or message without interfering with
the functionality of the existing model.

■ When you finish testing a new version of a function or message and make it active
in the model, the original model object remains unchanged and can easily be made
active again if needed.

■ Only the currently active version of a function or message displays on CA 2E editing
panels. As a result, the panels are not cluttered with inactive versions.

For more information about versions, see Working with Versions of Functions and
Messages, in Generating and Implementing Applications, in the chapter, "Managing
Model Objects."

This section contains the following topics:

Creating a New Function from One That Exists (see page 597)
Cross-Type Copying (see page 599)
Function Templates (see page 601)

Creating a New Function from One That Exists

You can create a new function from an existing one in the following ways:

■ From the Edit Function panel

■ From a template function

■ From the Exit panel of the Action Diagram Editor

Creating a New Function from One That Exists

598 Building Applications

From the Edit Functions Panel

To copy a function from the Edit Functions panel:

1. Type C next to the function you want to copy and press Enter. The Copy Function
panel appears.

2. Specify the new function by typing the function, file, and access path names of your
new function. If you want to change the function type, use F8.

3. Press Enter to copy the function.

Note: Because copying between files and access paths is not exact, you should revisit
the action diagram and device design of the copied function.

From a Template Function

A template function is a customized function that you can copy to create a new
function. All internally-referenced functions are automatically mapped to the target file
if they are based on the internal *Template file. In other words, the copy facility creates
new referenced functions based on the target file if they do not already exist, selecting
or creating needed access paths. The result is a set of functions that are as close as
possible to a completed version of the functions as if they had been hand-coded.

For more information on template functions, see Function Templates later in this.

Cross-Type Copying

Chapter 11: Copying Functions 599

From the Exit Panel

To copy a function from the Exit panel of the action diagram editor:

1. Exit the Edit Action Diagram panel of the function you want to copy. The Exit
Function Definition panel appears.

2. Specify the function you want to create. Type Y in the Change/Create field. You can
change any underlined field, including Function Name, Access Path Name, and File
Name.

3. Press Enter. This creates your new function.

Cross-Type Copying

For certain function types, you can copy a function of one type to another type of the
same style. To change to another type, press F8 at the Copy Functions panel. When you
press F8, CA 2E automatically changes the function type in the To Type field.

The functions available for crosstype copying include

From/To To/From

DSPRCD1 DSPRCD2

DSPRCD2 DSPRCD3

EXCEXTFUN EXCINTFUN

EDTFIL DSPFIL

EDTTRN DSPTRN

Cross-Type Copying

600 Building Applications

From/To To/From

EDTRCD DSPRCD

EDTRCD2 DSPRCD2

EDTRCD3 DSPRCD3

EDTRCD1 EDTRCD2

EDTRCD2 EDTRCD3

PMTRCD DSPRCD1

PMTRCD EDTRCD1

PRTFIL PRTOBJ

PRTFIL RTVOBJ

What Copying Preserves

In copying functions, CA 2E preserves the

■ Action diagram (where the user points match)

■ Function options

Note: When you copy EXCUSRSRC and EXCUSRPGM functions, only the CA 2E model
information is copied. The user portion of code is not copied and the HLL type defaults
to the current setting of the HLL to Generate (YHLLGEN) model value.

Output/Input Fields

When you cross-type copy the display/edit functions listed previously, CA 2E changes
the output or input capability of fields as follows:

■ Edit to display type function all fields are output capable, except key and positioner
fields

■ Display to edit type function all fields are input capable, except the key field

What to Revisit

Cross-type function copying results in a message to tell you that device design and
action diagram changes may be required. Review function options, particularly when
copying from display to edit type functions.

Function Templates

Chapter 11: Copying Functions 601

Device Design

For device functions, the copy process defaults to the device design for the function
type. You can edit the default device design for the newly created function, as
appropriate to your requirements. For example, you may want to make specific function
keys available to the function.

To change the function keys from the device design:

1. Place your cursor on the function key and press Enter. The Edit Command Text
panel appears.

2. Press F5 (Refresh). CA 2E refreshes the function text data with the correct default
function key data from the action diagram.

Note: Depending on the type of copy, the device design may not be preserved.

Action Diagram User Points

The action diagram for the new function may refer to fields that do not exist in the file
to which the function was copied or there may be invalid context references. You can
use the Find Error option from the Action Diagram Services panel to locate such errors.
You can then correct the errors in the action diagram.

Note: You can use the Notepad facility of the Action Diagram Editor to copy sections of
action diagrams between functions.

After revisiting the action diagram and the device design, generate the function.

Function Templates

A function template usually contains customized actions that you want new functions in
your model to contain. Two suggestions for using function templates are:

■ Create a work wit’ suite of functions for maintaining reference (REF) files in your
model

■ Establish and enforce standards for your organization or department that can
automatically be applied when a new function is created

Function Templates

602 Building Applications

Understanding Function Templates

Any standard function based on the *Template file is known as a template function. A
template function can be a primary function or a function internally referenced by a
primary function.

When you copy a template function, CA 2E uses the source function as a template to
create a new function based on a target file you specify. Function names and access
paths are automatically adjusted for the target file.

There is no limit to the complexity of the suite of functions copied. The primary function
must be based on the *Template file, but internally-referenced functions can be based
on the *Template file or they can be based on normal user-defined files.

Run-time messages list new objects created and indicate where user intervention may
be required in the second level text.

Two action diagram features aid the creation of template functions:

■ The PR (protected structure) selection option lets you protect blocks that comprise
standard areas of the action diagram you do not want developers to remove or
change

■ You can specify *T for Function file on the Edit Action - Function Name window to
select from among existing template functions.

Note: Function templates facilitate the process of creating new functions or suites of
functions. There is no inheritance; as a result, changing the template has no effect on
functions that were previously created from the template.

Function Templates

Chapter 11: Copying Functions 603

Creating a Template Function

This process applies both to the primary template function and to any functions the
primary function references that also to serve as template functions.

1. There are two ways to create a template function:

■ Go to the Edit Functions panel for the *Template file and create a new
function.

■ Go to the Edit Functions panel for a model file and copy an existing function to
the *Template file. This is best if you already have customized functions that
can serve as templates.

2. Adjust or create the function as you would any other function:

a. Name the function. When naming a template function you can place *Template
in the name where you want the target file name to appear; for example, Work
with *Template data translates to Work with Customer data for the Customer
file.

b. If the function requires an access path, specify an appropriate one based on the
*Template file.

c. Add standardized actions to the action diagram.

d. Specify parameters for internally-referenced template functions using the
following two fields defined for the *Template file:

■ *Template key defn—If this field is a parameter on a referenced function, it is
replaced by the target file’s key fields.

■ *Template record defn—If this field is a parameter on a referenced function, it is
replaced by the target file’s non-key fields.

 Note: In both cases all fields are used.

1. Save the template function.

Special Considerations for EDTTRN/DSPTRN Template Functions

1. Create a span (SPN) access path over the *Template file without formats.

2. Create the EDTTRN or DSPTRN function over the *Template file and specify the
span access path you just created.

3. When you copy the EDTTRN/DSPTRN template function to a target file to create a
new function, the copy process selects an existing span access path. If a span access
path does not exist over the target file, a new span access path is created without
formats. You need to add the formats manually.

Function Templates

604 Building Applications

Using a Template Function to Create a New Function

The following is an outline of one way to create new functions based on a template
function.

1. Go to the Edit Functions panel for the file on which the new functions are to be
based.

2. Press F21 (Copy a *Template function). The Edit Functions panel displays all
functions based on the *Template file.

3. Type X to select the function to be used as the template and press Enter.

4. The Copy Function panel appears.

Another way to create a new function from a template function is to go to the Edit
Functions panel for the *Template file and type C next to the template function you
want to use.

Note: For the primary function, the validation performed by the Copy Function panel for
copies from the *Template file is identical to that performed for an ordinary file.
Specifically, the access path must exist and the new function must not exist.

You are responsible for verifying and completing the definition of the newly-created
target functions.

Copying Internally-Referenced Template Functions

This section describes how the enhanced copy facility processes functions that are
called from within the primary (top-level) function. For each called function, the copy
process automatically names new functions, selects or creates access paths, and
defaults key and non-key parameters.

This table summarizes the process of copying internally-referenced functions.

Source Function
based on:

Target Function
based on:

Result

*Template file Model file If a matching function based on the target
file exists, it is used. Otherwise, a new
function based on the target file is created.
For each new function, the copy process
names the function, selects or creates an
access path over the target file, and defaults
key and non-key parameters.

*Template file *Template file Normal copy. Use this to update your
template functions.

Function Templates

Chapter 11: Copying Functions 605

Source Function
based on:

Target Function
based on:

Result

Model file *Template file Normal copy. This is a way to set up your
first template functions if you already have
functions containing customized actions.

Model file Model file Normal copy. Any parameter requirements
of these functions are accommodated by the
copy process, by the parameter defaulting
mechanism, or require developer
intervention.

Creating and Naming Referenced Functions

The copy process first searches the target file for a function with a name matching that
of the template function. Note that if the source function name contains *Template, it is
replaced with the name of the target file before the search for matching names; for
example, ‘Change *Template’ translates to ‘Change Customer’ for the Customer file.

Note: If the DBF functions (CHGOBJ, CRTOBJ and DLTOBJ) attached to the *Template file
contain user-defined processing, you need to change their default names; otherwise,
the default functions on the target file are used. This is true even if the default DBF
functions are not yet been created for the target file.

■ If a matching function is found, it is used if its function type is compatible based on
the following table and if the function is current and not archived.

Template Function
Type

Compatible with These Target Function Types

EXCINTFUN

EXCEXTFUN

EXCUSRPGM

All except PRTOBJ

CHGOBJ

CRTOBJ

DLTOBJ

EXCINTFUN / EXCEXTFUN / EXCUSRPGM DSPRCDn /
EDTRCDn / PMTRCD

RTVOBJ EXCINTFUN / EXCEXTFUN / EXCUSRPGM

Function Templates

606 Building Applications

Template Function
Type

Compatible with These Target Function Types

DSPRCDn

EDTRCDn

PMTRCD

EXCINTFUN / EXCEXTFUN / EXCUSRPGM

DSPRCDn / EDTRCDn / PMTRCD

CHGOBJ / CRTOBJ / DLTOBJ

PRTFIL EXCINTFUN / EXCEXTFUN / EXCUSRPGM

PRTOBJ Not compatible with any other type

Notes:

1. EXCINTFUN, EXCEXTFUN, and EXCUSRPGM are compatible with all other types
(except PRTOBJ, which is incompatible with all other types.

2. The internal functions (except RTVOBJ and PRTOBJ) are compatible with the
single record display functions.

3. The subfile function types are fully compatible with each other.

If the type is not compatible, a new function of the same type as the template
function is created over the target file.

■ A new function is created if the target function:

■ Does not exist

■ Is not current

■ Is an archived object

■ Is an incompatible function type

The copy process automatically assigns names to new functions. If necessary the
surrogate number of the new object is attached to the function name to make it
unique.

Note: It is important to set the names of *Template functions and avoid changing
them because subsequent copies to the same target file create new functions if the
original functions cannot be found by name.

Function Templates

Chapter 11: Copying Functions 607

Assigning Access Paths for Referenced Functions

When the copy process is unable to match an existing function based on the target file,
it creates a new function. During this process it often needs to select an appropriate
access path also based on the target file. It does this as follows:

1. It tries to find and use an access path of the same name and type (RTV, RSQ, UPD,
and so on).

2. If there is no match by name, it selects the default access path of the same type.

3. If a default access path of the same type does not exist, it selects the first access
path of the same type alphabetically by name.

4. If unable to find an access path of the same type, it creates a new one. A message
displays when a new access path is created.

Note: Since new access paths default to the primary key, you may need to edit new
access paths prior to source generation.

If a new span (SPN) access path is created, it is created without formats.

For more information about:

■ EDTTRN/DSPTRN functions, see Special Considerations for EDTTRN/DSPTRN
Template Functions

■ Adding formats to a span access path, see Building Access Paths, in the chapter,
"Adding Access Paths."

Defaulting Parameters for Referenced Functions

The copy process defaults parameters for internally-referenced functions that are based
on the *Template file using the two fields defined for the *Template file:

■ *Template key defn—If this field is a parameter on the referenced function, it is
replaced with the target file’s key fields.

■ *Template record defn—If this field is a parameter on the referenced function, it is
replaced with the target file’s non-key fields.

Note: In both cases all fields are used. As a result, for the *Template key defn field, if
this is used as a RST parameter for a template function, the new function is a fully
restricted function based on the target file with each key field specified as a restrictor.

Device Designs

You need to edit all device design functions to complete the design.

Chapter 12: Deleting Functions 609

Chapter 12: Deleting Functions

This chapter explains how to delete a function, which includes removing references to it
from other objects in the design model.

This section contains the following topics:

Deleting a Function (see page 610)

Deleting a Function

610 Building Applications

Deleting a Function

This topic includes the steps for finding where a function is used and removing all
references to it. If the function you want to delete is not referenced by another
function, go directly to the last step.

To delete a function

1. Find where the function is used. To make the inquiry, starting from the Edit
Database Relations panel:

a. Go to the function for the file. From the Edit Database Relations panel, type F
(next) to the specific file, and press Enter.

The Edit Functions panel displays, listing the functions for that file.

b. Select the function for which you want to find references. Type U (next) to the
specific function and press Enter.

The Display Function References panel appears, listing all the functions that call
the function.

Note: You can also reach the Display Function References panel from the
Display Access Path Functions panel and the Display All Functions panel. You
can also determine which model objects reference the function using the Edit
Model Object List panel or the Display Model Usages (YDSPMDLUSG)
command.

2. Remove the references from the action diagrams. Go into the action diagrams of
the functions that call the function you want to delete and remove the logic that
calls the function.

3. Delete the function. From the Edit Functions panel, type D next to the function you
want to delete and press Enter.

If the function has associated source, a confirm prompt gives you the option of
deleting it along with the function once you press Enter.

Deleting a Function

Chapter 12: Deleting Functions 611

4. Press Enter again at the confirm prompt. The function and associated source, if any,
is deleted.

For more information on editing functions, see Editing and Maintaining Several
Functions Simultaneously in the chapter "Modifying Action Diagrams."

Chapter 13: Generating and Compiling 613

Chapter 13: Generating and Compiling

This chapter tells you how to submit a request to generate and compile a function from
any one of various CA 2E panels. Complete details on the generation process are
contained in Generating and Implementing Applications.

This section contains the following topics:

Requesting Generation and Compilation (see page 613)
Compile Preprocessor (see page 616)

Requesting Generation and Compilation

This topic takes you step by step through requesting generation/compilation from
various CA 2E panels. Once you initiate the request, you can submit it from the Display
Services Menu.

You can request generation/compilation of functions from one of four panels. They are:

■ Display Services Menu (one or more functions)

■ Edit Functions panel (one or more functions)

■ Exit Function Definition panel (one function at a time)

■ Edit Model Object List panel (one or more functions)

Requesting Generation and Compilation

614 Building Applications

The Display Services Menu

To request function generation from the Display Services Menu:

1. Select the Display all functions option. The Display All Functions panel appears.

2. Select the functions you want to generate. Type J next to each function you want to
generate, and press Enter.

3. Exit. Press F3. The Display Services Menu appears.

4. Submit generations and compilations of all the source members you selected. On
the Display Services Menu either:

■ Select the Submit model create request (YSBMMDLCRT) option. Press Enter to
display the source members you selected or press F4 to change parameter
defaults before displaying the list.

■ Select the Job list menu option to display the Job List Commands Menu. Select
the YSBMMDLCRT option.

A job list of the source members you requested for generation and compilation
appears on Submit Model Generations and Creates panel.

5. Review the list before confirming. Press Enter. If the list includes functions you do
not want, you can drop (D) or hold (H) them.

6. After you press Enter, the panel redisplays with the confirm prompt set to Y for Yes.
Press Enter to confirm the list. CA 2E then submits the generation and compilation
jobs.

7. As CA 2E processes the jobs, progress messages appear at the bottom of the panel.
Press F5 to refresh the panel for the most current status. Or you can press F3 to exit
to the Display Services Menu.

The Edit Functions Panel

The Edit Functions Panel displays when you enter F next to a file on the Edit Database
Relations panel. To request function generation from the Edit Functions panel:

1. Request generation. Type J next to the specific functions and press Enter.

2. Go to the Display Services Menu. Press F17, which takes you to the Display Services
Menu.

3. Submit the generation request as detailed earlier in the From the Display Services
Menu topic, steps 4-5.

Requesting Generation and Compilation

Chapter 13: Generating and Compiling 615

The Exit Function Definition Panel

The Exit Function Definition panel displays when you exit the Edit Action Diagram panel.
To request generation from the Exit Function Definition panel:

1. Initiate a generation request. In the Submit Generation field, type Y (Yes).

Y in this field is equivalent to entering J next to the function from the Edit Functions
panel.

2. Press Enter.

The Edit Functions panel appears, with the message, "Source generation request for
(name of object) accepted." The object name is a name such as UUAEEFR.

3. Go to the Display Services Menu. Press F17. This takes you to the Display Services
Menu.

4. Submit the generation request as previously described in the From the Display
Services Menu topic, Steps 4-5.

The Edit Model Object List Panel

You access the Edit Model Object List panel by entering YEDTMDLLST at a command
line.

1. Select the model object list containing the functions you want to generate. For
example, enter the model object list name for the List option, or enter ? or *S to
display a list of all model object lists in your model. You can press F17 to display the
Subset Model Objects panel and request that only functions display.

2. Request generation. Enter selection option 14 for each model object you want
generated. This invokes the Create Job List Entry (YCRTJOBLE) command to add the
select model objects to the job list. You can specify parameters on the command
line. Press Enter.

3. Press F19 to display a menu of job-list-related commands. Enter 1 to invoke the
Submit Model Create (YSBMMDLCRT) command. See the previous From the Display
Services Menu description, Steps 4-5.

For more information about:

■ The Model Object List panel, see Edit Model Objects, in the chapter "Managing
Model Objects" in the Generating and Implementing Applications guide.

■ Working with submitted jobs, see Working from the Display Services Menu, in the
chapter "Generating and Compiling Your Applications" in the Generating and
Implementing Applications guide.

Compile Preprocessor

616 Building Applications

Compile Preprocessor

The compile preprocessor is a program that can be automatically invoked to run as a
preliminary step on batch compiles.

Chapter 14: Documenting Functions 617

Chapter 14: Documenting Functions

This chapter explains how to document a function. The Document Model Functions
(YDOCMDLFUN) command allows you to print a detailed list of the functions within a
model. You can invoke the command from the Display Services Menu or call it from the i
OS command line. How you set YDOCMDLFUN parameters determines the level of detail
on your listing, including whether narrative text is included.

This section contains the following topics:

Printing a Listing of Your Functions (see page 617)

Printing a Listing of Your Functions

To print a listing of your functions starting from the Display Services Menu:

1. Access the Display Services Menu. At the Edit Database Relations panel, press F17.
The Display Services Menu appears.

Note: You can also access the Display Services Menu by entering the following at a
command line.

YEDTMDL ENTRY(*SERVICES)

1. Go to the Display Documentation Menu. Select the option, Display documentation
menu. The Display Documentation Menu appears.

2. Select functions. Type 5, Document model functions, and press Enter. The
Document Model Functions (YDOCMDLFUN) command panel appears.

3. Set the specific criteria, and press Enter. On this panel you can specify the types of
functions and whether you want to list details as function options, parameters, and
device designs. CA 2E creates a print file containing the listing.

For more information on using the YDOCMDLFUN command, see the Command
Reference Guide.

Printing a Listing of Your Functions

618 Building Applications

Including Narrative Text

Use the parameter PRTTEXT on the YDOCMDLFUN command to include functional or
operational text. Up to ten pages of narrative text can be associated with each CA 2E
object. The narrative text can include:

■ Functional text, to explain the purpose of the design object

■ Operational text, to explain the function of an object for the end user

Note: In generating help panels, CA 2E uses operational text. If no operational text
exists, CA 2E uses the functional text.

Comparing Two Functions

The Compare Model Objects (YCMPMDLOBJ) command compares the action diagrams
of two functions. This lets you identify any changes made to one version of a function
for retrofitting to another version. You can request a printed report of any mismatches
encountered. You can also use this command to compare two message functions or two
files.

For more information on the Compare Model Objects (YCMPMDLOBJ) command, see
Command Reference Guide.

Chapter 15: Tailoring for Performance 619

Chapter 15: Tailoring for Performance

This chapter provides guidelines for improving the iSeries performance of applications
that CA 2E generates. Two major aspects covered here are program size and links
between programs.

You can also use the separate CA 2E Performance Expert (PE) option to help you predict
how an application will perform. PE is a CA 2E-generated application intended for CA 2E
development managers and developers.

For more information on PE, see the Performance Expert User Guide.

This section contains the following topics:

Building an Application (see page 620)
Determining Program Size (see page 621)
Fine Tuning (see page 623)
Selecting the Function Type (see page 623)
Specifying the Right Level of Relations Checking (see page 624)
Construct Resolution in Code (see page 624)

Building an Application

620 Building Applications

Building an Application

There are two approaches to the structure in building an application:

■ Vertical, in which each program calls another at a lower invocation level. Avoid
using this structure, as it is inefficient.

■ Horizontal, in which a driver program calls whichever program is needed. This
structure affords more control of the programs.

The following example compares both structures.

Determining Program Size

Chapter 15: Tailoring for Performance 621

Using Display File, not Menu Options

On systems where end users are likely to work with the same objects for long periods,
consider using a Display File (DSPFIL) function as the driver program. This program
displays existing objects and prompts the end user for action through subfile selection
(except add which is F9). Using menu options, the application has to open and close files
frequently, which slows performance. A DSPFIL provides a better performing solution.

Note: You can also use an Execute External Function (EXCEXTFUN), Execute User
Program (EXCUSRPGM), or Prompt Record (PMTRCD); whichever is appropriate, as the
driver program.

For more information on functions, see Function Types, Message Types, and Function
Fields, in the chapter "Defining Functions."

Determining Program Size

Determining the right size for programs is relative to your business needs. Some
applications benefit from large, complex programs to simplify navigation for the user.
However, keeping programs small has several advantages including:

■ Reusable components (code dedicated to the data it processes)

■ Easier maintenance

■ Simpler debugging

■ Quicker generation and compilation

■ Less code duplication

■ More flexibility for grouping processes

Large programs are prone to dead code, used only once or not at all. Breaking processes
into smaller programs allows you to identify such areas of code. You can selectively
invoke them or remove them following completion.

Your panel design requirements should determine how you create the main function.
However, within a given transaction from this program, several functions can be
executed. You can make some of these functions the function type, EXCEXTFUN, to
encapsulate functions or to isolate seldom executed functions.

Determining Program Size

622 Building Applications

Optimizing Program Objects

Optimizing program objects can significantly improve performance. Use the i OS
commands, Create COBOL or RPG Program (CRTCBLPGM or CRTRPGPGM) and Change
Program (CHGPGM), as follows:

CRTxxxPGM PGM(library-name/program-name) +

 SRCFILE (library-name/source-file-name) +

 GENOPT(*OPTIMIZE)

Note: This is done by altering the parameters on the command in the *Messages file.

CHGPGM PGM(library-name/program-name) +

 OPTIMIZE(*YES)

For more information on the create commands and optimization parameters, see
Application System/400 Programming: Control Language Reference.

Fine Tuning

Chapter 15: Tailoring for Performance 623

Fine Tuning

In tuning the performance of your application, consider these recommendations:

■ Restrict the use of subfile control selectors to essential fields, especially on large
files. Drop those that are not required. This applies to SELRCD, DSPFIL, and EDTFIL
functions.

■ Minimize the use of virtual fields. That is, use access paths with the least virtuals
possible, since using them involves more processing. Where possible, direct
processing to read one file instead of join logicals over multiple files. If appropriate,
use the Retrieve Object (RTVOBJ) function instead.

■ Consider the amount of Refers to referential checking:

■ Drop unused relations using the Edit Format Relations panel in the device
design editor

■ Set relations to user checking where a field is required but referential checking
is not

■ Drop fields from panel formats if the application does not need them, rather than
hiding the fields.

■ If you need to validate many files, consider the use of Share Open Data Path when
an access path is used frequently by several successive programs with fully
restricted key access.

■ Create native objects; that is, model value YCRTENV is set to QCMD (iSeries creation
environment).

There are also closely related aspects to tailoring access paths.

For more information on tailoring access paths, see Building Access Paths in the chapter
"Tailoring for Performance."

Selecting the Function Type

Edit Transaction (EDTTRN) and Display Transaction (DSPTRN) function types load the
entire subfile within the limits of any restrictor parameters, if any. On the other hand,
Edit File (EDTFIL) and Display File (DSPFIL) function types load one page at a time. If the
relationships between detail and header records do not require the EDTTRN or DSPTRN
function types, use an EDTFIL or a DSPFIL function type instead.

The PMTRCD function type has less in-built functionality than the Edit Record (EDTRCD)
or Display Record (DSPRCD). If you do not require this functionality, PMTRCD is a better
choice.

Specifying the Right Level of Relations Checking

624 Building Applications

Specifying the Right Level of Relations Checking

CA 2E ensures that all device design relations are satisfied. As a rule of thumb, use no
more referential integrity checking than necessary, this includes dropping a relation if it
is not being used. You can drop relations either at the access path, field, or function
level.

For more information on the types of format relations, see Editing Device Designs in the
chapter "Modifying Device Designs."

Action Diagram Editing

For a specific function, you can further adjust relation checking:

■ If you specify Optional as the level of relation checking, the relation is enforced if
end users enter a value in the field. This means that you do not need to add your
own validation to the action diagram. Doing so creates unnecessary processing.

■ If you specify No Error as the level of relation checking, CA 2E always checks the
relation but issues no error if the relation fails the check.

Note: The No Error option is useful for distributed applications.

■ If you specify User as the level of relation checking, you must add your own
validation for the relation in the action diagram.

Construct Resolution in Code

CA 2E-generated code is typically more consistent than custom-created code. However,
you can achieve similar functional results with differing action diagram constructs. The
constructs result in different source code and object programs, which may have
different performance characteristics. This is potentially true of the way CA 2E generates
internal functions.

CA 2E implements each reference to an internal function as a different set of code,
often inline code. This approach can improve performance. Parameters passed to
internal functions are embedded directly in the code at the point of reference, making
each instance of the internal function unique.

Construct Resolution in Code

Chapter 15: Tailoring for Performance 625

Using Single Compound Conditions

It is common to repeat a function in a multiple condition CASE structure. For example:

 .—CASE
 |—CTL.Order Header Status is *Open
 | internal-function
 |—DTL.Order Detail Status is *Unprocessed
 | internal-function
 |—CTL.Order Value is *LT CTL.Credit Limit
 | internal-function

Because each internal function is implemented as separate inline code, the code will be
repeated, creating a large source module.

However, instead of repeating the function reference, you can use a single compound
condition. This eliminates the need to repeat the function references and reduces the
number of source lines generated. For example:

 .—CASE
 |— (c1 OR c2 OR c3)
 | |— c1 CTL.Order Header Status is *Open
 | |— c2 RCD.Order Detail Status is *Unprocessed
 | |— c3 CTL.Order Value *LT CTL.Credit Limit
 | internal-function
 '— ENDCASE

Construct Resolution in Code

626 Building Applications

Selecting the Proper User Points

When you need to add functionality to an action diagram, study the appropriate
function structure chart and information on user points and select the user point to
execute at the correct time for your needs.

Using the incorrect user point in an action diagram can make the repetition of code at
another user point unnecessary.

Assume the following:

■ An EDTFIL is required to maintain Customers

■ Customers who have a negative balance need to be highlighted when the EDTFIL
presents Customer records to the user

■ The WRK context field HIghlight Customer is used to indicate that the Customer
record should be highlighted

In order for the appropriate Customer records to be highlighted when the records are
initially loaded, the following processing could be placed in the USER: Initialize subfile
record (existing record) user point:

 . > USER: Initialize subfile record (existing record)
 . .—
 . . WRK.Highlight Customer = CND.No
 . . .-CASE
 . . | -RCD.Customer balance is LT 0
 . . | WRK.Highlight Customer = CND.Yes
 . . '-ENDCASE
 . '—

To further ensure that the records continue to be highlighted after the records are
loaded, the same processing would also need to be inserted in the USER: Validate
subfile record fields user point.

The duplication of logic in both these user points can be avoided by placing the
processing in the USER: Validate subfile record relations user point. This user point is
executed both at function load and later when the records are revalidated.

The selection of this user point reduces the amount of code generated thereby
improving the efficiency of the resulting program.

Chapter 16: Creating Wrappers to Reuse Business Logic 627

Chapter 16: Creating Wrappers to Reuse
Business Logic

CA 2E lets you easily retrieve user-written business logic, such as validation routines,
and place them into separate functions by using wrappers. These functions can then be
accessed by other CA 2E functions or by external procedures such as CA Plex functions.

The process has two parts:

1. Select the action diagram statements that you want to place into other functions.

2. Select a function type and name. An automated process copies the statements and
places them in a new function with an automatically generated parameter
interface.

This section contains the following topics:

Selecting Action Diagram Statements (see page 628)
Selecting Function Name and Type (see page 630)
Automatic Parameter Interface Generation (see page 631)

Selecting Action Diagram Statements

628 Building Applications

Selecting Action Diagram Statements

You can select the action diagram statements from a User Point or from the Notepad.

 From a User Point

1. While editing the action diagram of a function, press F5 to view the User Exit Points.

2. Enter W next to the User Point that contains all the statements you want to place in
another function by using a wrapper.

3. Go to the section Selecting Function Name and Type.

From the Notepad

In some cases, it may not be
desirable or necessary to use a
wrapper on an entire User Point.
The User Point may contain
statements that you do not want in
the new function. Or perhaps the
final function needs additional
statements that are not required in
the original function.

Selecting Action Diagram Statements

Chapter 16: Creating Wrappers to Reuse Business Logic 629

You can edit User Point action diagram statements, place the whole User Point in a
wrapper, and then exit the function without saving to preserve the original User Point.
An easier and more flexible approach, however, is using the Action Diagram Editor
Notepad.

Note: Because EXCEXTFUN and EXCINTFUN have no User Points, use Notepad to place
statements from these types of functions in a wrapper.

Use the Notepad commands N, NA, NAA, NI, NR, and NRR to put the required
statements into the Notepad.

1. Press F18 to view the *Notepad.

2. Press F5 to select all the statements in the Notepad.

Selecting Function Name and Type

630 Building Applications

Selecting Function Name and Type

After selecting the action diagram statements for the wrapper, you must assign a
function name and type.

The default values that appear in the Create Wrappered Function panel depend on
whether you started the procedure from a User Point or from the Notepad:

From a User Point

The default Function File, which will own the new function, is the same file that
owns the function that contained the User Point. The default Function name is the
first 25 characters of the User Point name.

From the Notepad

The default Function File is ?, therefore you must choose the function name. The
default Function name is blank.

In either case, the default Function type is E for EXCEXTFUN, but you can change it
to I to create an EXCINTFUN.

The final step is to press Enter. An Execute External Function or Execute Internal
Function is created. The selected statements are copied from the Notepad or the User
Point into the newly created function.

Automatic Parameter Interface Generation

Chapter 16: Creating Wrappers to Reuse Business Logic 631

Automatic Parameter Interface Generation

The function placed in a wrapper creates parameters automatically based on the field
contexts used in the original action diagram statements. Some contexts do not require
conversion; these contexts are LCL, NLL, ARR, PGM, JOB, and CON.

All other contexts are converted and passed into the new function as duplicate
parameters. EXCEXTFUN and EXCINTFUN functions do not have associated screens or
database fields, so the action diagram cannot refer to contexts such as RCD, CTL, DB1,
and DB2.

For each field in an unavailable context, the wrapping process creates an entry on an
array. A new array is created for each function placed in a wrapper. This array is then
defined on the parameter listing for the function passed as RCD.

Each new unavailable context is associated with another parameter entry of the same
array. Each array is passed as a duplicate parameter context, from PR1 to PR9. The first
unavailable context on the action diagram statements is assigned to PR1. The next
context not already assigned to the array is passed as the PR2 parameter context, and
so on. LCL, NLL, PGM, JOB, and CON are never substituted.

The parameter usage for each field on each parameter listing is calculated from how the
CTX field is used in the action diagram statements of the function.

The following illustrations show how the field contexts are converted to the PR1 to PR9
contexts.

Automatic Parameter Interface Generation

632 Building Applications

Original Contexts

Edit Customer is a function of the type EDTFIL.

In this example, the code in USER: Validate subfile record fields is placed in a wrapper.
This example shows parameter substitution, not application design.

This code populates CTL.Customer Code with RCD.Customer Code, sets RCD.Customer
Code to CON.A, and checks whether CTL.Billing Location is equal to WRK.Delivery
Location. If it is, WRK.Customer Check Flag is set to Y and PGM.*Sbmjob receives the
override string CON.*BLANK.

1. Press F5 to select User Points, and enter W for the relevant one.

2. Choose the function name Update Override String.

The function and the parameter interface are created and contexts are substituted for
any contexts unavailable to the EXCEXTFUN. CTL is the first unavailable context, so an
array is created for this function. The array name consists of the first 22 characters of
the function name plus PAR at the end.

Automatic Parameter Interface Generation

Chapter 16: Creating Wrappers to Reuse Business Logic 633

The Newly Created Function

Automatic Parameter Interface Generation

634 Building Applications

The Newly Created Array

A new array "USER: Validate subfile PAR" is created. It contains an entry for each field in
the original function in a context that is not available in the newly created EXCEXTFUN.

Automatic Parameter Interface Generation

Chapter 16: Creating Wrappers to Reuse Business Logic 635

The Parameter Definitions

The array then establishes parameters on the created function. It is passed once for
each context that is being substituted. The Pgm Ctx and Par Ctx columns show the
original and substituted contexts.

Automatic Parameter Interface Generation

636 Building Applications

The Control Context

Two fields were used in the CTL context in the original action diagram: Customer Code
and Billing Location ID. Thus both fields are specified as parameters for the first array
entry.

Notice how the usage matches the usage of the fields in the original action diagram. If
the field was used as a target of an operation, the usage defaults to Output. If the field
was used as input to an operation, the usage defaults to Input.

After conversion, the former CTL context is now the PR1 context.

Automatic Parameter Interface Generation

Chapter 16: Creating Wrappers to Reuse Business Logic 637

The Record Context

For the RCD context entry, only one field is specified as a parameter. The usage B (Both)
matches the usage of the field in the original action diagram. The field Customer Code
was used as both input and as the target of a *Move statement.

After conversion, the former RCD context is now the PR2 context.

Automatic Parameter Interface Generation

638 Building Applications

The WRK Context

The WRK context entry matches the usage of the field in the original action diagram
statements.

After conversion, the former WRK context is now the PR3 context.

Automatic Parameter Interface Generation

Chapter 16: Creating Wrappers to Reuse Business Logic 639

The New Action Diagram

The new action diagram looks like the old one except for the substituted contexts.

If a reference to an RCD context had appeared first, instead of the CTL context, then the
order of substitution would be different. PR1 would have been RCD.

The newly created function can now be used and called in the usual manner.

Appendix A: Function Structure Charts 641

Appendix A: Function Structure Charts

This appendix contains examples of the CA 2E function structure charts. The structure
charts provide you with a visual orientation of the user points with respect to other
processes. They will help you learn the processing offered by each function type. Work
your way through each chart as necessary. Evaluate each user point with respect to the
rest of the function until you locate the correct point at which you want to introduce
your processing logic.

Each structure chart is designed to be read from top to bottom and from left to right.
The user points are shown in boxes outlined in bold. A box with a bold outline in its
lower right corner indicates that the chart continues on the next page.

For more information on user points, see Understanding Action Diagram User Points in
the chapter “Modifying Action Diagrams.”

The structure charts are shown on the following pages in alphabetical order by function
type.

Change Object

Create Object

642 Building Applications

Create Object

Delete Object

Display File (Chart 1 of 5)

Appendix A: Function Structure Charts 643

Display File (Chart 1 of 5)

Display File (Chart 2 of 5)

644 Building Applications

Display File (Chart 2 of 5)

Display File (Chart 3 of 5)

Appendix A: Function Structure Charts 645

Display File (Chart 3 of 5)

Display File (Chart 4 of 5)

Display File (Chart 5 of 5)

646 Building Applications

Display File (Chart 5 of 5)

Display Record (Chart 1 of 5)

Appendix A: Function Structure Charts 647

Display Record (Chart 1 of 5)

Display Record (Chart 2 of 5)

648 Building Applications

Display Record (Chart 2 of 5)

Display Record (Chart 3 of 5)

Display Record (Chart 4 of 5)

Appendix A: Function Structure Charts 649

Display Record (Chart 4 of 5)

Display Record (Chart 5 of 5)

650 Building Applications

Display Record (Chart 5 of 5)

Display Record– 2 Panels (Chart 1 of 7)

Appendix A: Function Structure Charts 651

Display Record– 2 Panels (Chart 1 of 7)

Display Record – 2 Panels (Chart 2 of 7)

652 Building Applications

Display Record – 2 Panels (Chart 2 of 7)

Display Record – 2 Panels (Chart 3 of 7)

Appendix A: Function Structure Charts 653

Display Record – 2 Panels (Chart 3 of 7)

Display Record – 2 Panels (Chart 4 of 7)

654 Building Applications

Display Record – 2 Panels (Chart 4 of 7)

Display Record – 2 Panels (Chart 5 of 7)

Appendix A: Function Structure Charts 655

Display Record – 2 Panels (Chart 5 of 7)

Display Record – 2 Panels (Chart 6 of 7)

656 Building Applications

Display Record – 2 Panels (Chart 6 of 7)

Display Record – 2 Panels (Chart 7 of 7)

Display Record – 3 Panels (Chart 1 of 8)

Appendix A: Function Structure Charts 657

Display Record – 3 Panels (Chart 1 of 8)

Display Record – 3 Panels (Chart 2 of 8)

658 Building Applications

Display Record – 3 Panels (Chart 2 of 8)

Display Record – 3 Panels (Chart 3 of 8)

Appendix A: Function Structure Charts 659

Display Record – 3 Panels (Chart 3 of 8)

Display Record – 3 Panels (Chart 4 of 8)

660 Building Applications

Display Record – 3 Panels (Chart 4 of 8)

Display Record – 3 Panels (Chart 5 of 8)

Appendix A: Function Structure Charts 661

Display Record – 3 Panels (Chart 5 of 8)

Display Record – 3 Panels (Chart 6 of 8)

662 Building Applications

Display Record – 3 Panels (Chart 6 of 8)

Display Record – 3 Panels (Chart 7 of 8)

Appendix A: Function Structure Charts 663

Display Record – 3 Panels (Chart 7 of 8)

Display Record – 3 Panels (Chart 8 of 8)

664 Building Applications

Display Record – 3 Panels (Chart 8 of 8)

Display Transaction (Chart 1 of 6)

Appendix A: Function Structure Charts 665

Display Transaction (Chart 1 of 6)

Display Transaction (Chart 2 of 6)

666 Building Applications

Display Transaction (Chart 2 of 6)

Display Transaction (Chart 3 of 6)

Appendix A: Function Structure Charts 667

Display Transaction (Chart 3 of 6)

Display Transaction (Chart 4 of 6)

668 Building Applications

Display Transaction (Chart 4 of 6)

Display Transaction (Chart 5 of 6)

Appendix A: Function Structure Charts 669

Display Transaction (Chart 5 of 6)

Display Transaction (Chart 6 of 6)

670 Building Applications

Display Transaction (Chart 6 of 6)

Edit File (Chart 1 of 7)

Appendix A: Function Structure Charts 671

Edit File (Chart 1 of 7)

Edit File (Chart 2 of 7)

672 Building Applications

Edit File (Chart 2 of 7)

Edit File (Chart 3 of 7)

Appendix A: Function Structure Charts 673

Edit File (Chart 3 of 7)

Edit File (Chart 4 of 7)

674 Building Applications

Edit File (Chart 4 of 7)

Edit File (Chart 5 of 7)

Appendix A: Function Structure Charts 675

Edit File (Chart 5 of 7)

Edit File (Chart 6 of 7)

676 Building Applications

Edit File (Chart 6 of 7)

Edit File (Chart 7 of 7)

Appendix A: Function Structure Charts 677

Edit File (Chart 7 of 7)

Edit Record (Chart 1 of 5)

678 Building Applications

Edit Record (Chart 1 of 5)

Edit Record (Chart 2 of 5)

Appendix A: Function Structure Charts 679

Edit Record (Chart 2 of 5)

Edit Record (Chart 3 of 5)

680 Building Applications

Edit Record (Chart 3 of 5)

Edit Record (Chart 4 of 5)

Appendix A: Function Structure Charts 681

Edit Record (Chart 4 of 5)

Edit Record (Chart 5 of 5)

682 Building Applications

Edit Record (Chart 5 of 5)

Edit Record – 2 Panels (Chart 1 of 9)

Appendix A: Function Structure Charts 683

Edit Record – 2 Panels (Chart 1 of 9)

Edit Record – 2 Panels (Chart 2 of 9)

684 Building Applications

Edit Record – 2 Panels (Chart 2 of 9)

Edit Record – 2 Panels (Chart 3 of 9)

Appendix A: Function Structure Charts 685

Edit Record – 2 Panels (Chart 3 of 9)

Edit Record – 2 Panels (Chart 4 of 9)

686 Building Applications

Edit Record – 2 Panels (Chart 4 of 9)

Edit Record – 2 Panels (Chart 5 of 9)

Appendix A: Function Structure Charts 687

Edit Record – 2 Panels (Chart 5 of 9)

Edit Record – 2 Panels (Chart 6 of 9)

688 Building Applications

Edit Record – 2 Panels (Chart 6 of 9)

Edit Record – 2 Panels (Chart 7 of 9)

Appendix A: Function Structure Charts 689

Edit Record – 2 Panels (Chart 7 of 9)

Edit Record – 2 Panels (Chart 8 of 9)

690 Building Applications

Edit Record – 2 Panels (Chart 8 of 9)

Edit Record – 2 Panels (Chart 9 of 9)

Appendix A: Function Structure Charts 691

Edit Record – 2 Panels (Chart 9 of 9)

Edit Record – 3 Panels (Chart 1 of 10)

692 Building Applications

Edit Record – 3 Panels (Chart 1 of 10)

Edit Record – 3 Panels (Chart 2 of 10)

Appendix A: Function Structure Charts 693

Edit Record – 3 Panels (Chart 2 of 10)

Edit Record – 3 Panels (Chart 3 of 10)

694 Building Applications

Edit Record – 3 Panels (Chart 3 of 10)

Edit Record – 3 Panels (Chart 4 of 10)

Appendix A: Function Structure Charts 695

Edit Record – 3 Panels (Chart 4 of 10)

Edit Record – 3 Panels (Chart 5 of 10)

696 Building Applications

Edit Record – 3 Panels (Chart 5 of 10)

Edit Record – 3 Panels (Chart 6 of 10)

Appendix A: Function Structure Charts 697

Edit Record – 3 Panels (Chart 6 of 10)

Edit Record – 3 Panels (Chart 7 of 10)

698 Building Applications

Edit Record – 3 Panels (Chart 7 of 10)

Edit Record – 3 Panels (Chart 8 of 10)

Appendix A: Function Structure Charts 699

Edit Record – 3 Panels (Chart 8 of 10)

Edit Record – 3 Panels (Chart 9 of 10)

700 Building Applications

Edit Record – 3 Panels (Chart 9 of 10)

Edit Record – 3 Panels (Chart 10 of 10)

Appendix A: Function Structure Charts 701

Edit Record – 3 Panels (Chart 10 of 10)

Edit Transaction (Chart 1 of 8)

702 Building Applications

Edit Transaction (Chart 1 of 8)

Edit Transaction (Chart 2 of 8)

Appendix A: Function Structure Charts 703

Edit Transaction (Chart 2 of 8)

Edit Transaction (Chart 3 of 8)

704 Building Applications

Edit Transaction (Chart 3 of 8)

Edit Transaction (Chart 4 of 8)

Appendix A: Function Structure Charts 705

Edit Transaction (Chart 4 of 8)

Edit Transaction (Chart 5 of 8)

706 Building Applications

Edit Transaction (Chart 5 of 8)

Edit Transaction (Chart 6 of 8)

Appendix A: Function Structure Charts 707

Edit Transaction (Chart 6 of 8)

Edit Transaction (Chart 7 of 8)

708 Building Applications

Edit Transaction (Chart 7 of 8)

Edit Transaction (Chart 8 of 8)

Appendix A: Function Structure Charts 709

Edit Transaction (Chart 8 of 8)

Prompt and Validate Record (Chart 1 of 2)

710 Building Applications

Prompt and Validate Record (Chart 1 of 2)

Prompt and Validate Record (Chart 2 of 2)

Appendix A: Function Structure Charts 711

Prompt and Validate Record (Chart 2 of 2)

Print File (Chart 1 of 5)

712 Building Applications

Print File (Chart 1 of 5)

Print File (Chart 2 of 5)

Appendix A: Function Structure Charts 713

Print File (Chart 2 of 5)

Print File (Chart 3 of 5)

714 Building Applications

Print File (Chart 3 of 5)

Print File (Chart 4 of 5)

Appendix A: Function Structure Charts 715

Print File (Chart 4 of 5)

Print File (Chart 5 of 5)

716 Building Applications

Print File (Chart 5 of 5)

Print Object (Chart 1 of 5)

Appendix A: Function Structure Charts 717

Print Object (Chart 1 of 5)

Print Object (Chart 2 of 5)

718 Building Applications

Print Object (Chart 2 of 5)

Print Object (Chart 3 of 5)

Appendix A: Function Structure Charts 719

Print Object (Chart 3 of 5)

Print Object (Chart 4 of 5)

720 Building Applications

Print Object (Chart 4 of 5)

Print Object (Chart 5 of 5)

Appendix A: Function Structure Charts 721

Print Object (Chart 5 of 5)

Retrieve Object

722 Building Applications

Retrieve Object

Select Record (Chart 1 of 4)

Appendix A: Function Structure Charts 723

Select Record (Chart 1 of 4)

Select Record (Chart 2 of 4)

724 Building Applications

Select Record (Chart 2 of 4)

Select Record (Chart 3 of 4)

Appendix A: Function Structure Charts 725

Select Record (Chart 3 of 4)

Select Record (Chart 4 of 4)

726 Building Applications

Select Record (Chart 4 of 4)

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 727

Appendix B: How to Create a Deployable
Web Service Using a Multiple-instance
Array

This process explains how an experienced CA 2E Application Developer can use CA 2E
web service support with enhanced array support to make an invocation and retrieve an
order. This process includes the order header and multiple order detail lines.

Important! The coding examples are designed to illustrate enhanced array support and
are not production-ready. For example, the examples do not contain any user-added
error handling.

As an experienced CA 2E Application Developer, you want your result to be a deployable
2E Web Service that uses Enhanced Array Support to return multiple-instances of data
in a single invocation. In this scenario, we use an Order Header and Order Detail file, and
the order has a single order header and multiple detail lines.

Select Record (Chart 4 of 4)

728 Building Applications

The following illustration shows how you complete the process:

Define the Files

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 729

Follow these steps:

1. Define the Files (see page 729)

2. Define the Order Details Array (see page 731)

3. Create an Execute External Function (see page 732)

4. Retrieve the Order Header and Order Details (see page 732)

5. Set the EXCEXTFUN function to a module (see page 745)

6. Generate and compile the module (see page 746)

7. Create a Service Program (see page 746)

8. Add the module to the Service Program (see page 747)

9. Generate and compile the Service Program (see page 747)

10. Create a web service function (see page 748)

11. Deploy the Web Service instance (see page 749)

Note: This procedure uses individual *MOVE ARRAY statements. As you become familiar
with the process, the *MOVE ARRAY, *ALL (see page 750) function helps make your
work more efficient.

Define the Files

We assume the following basic file definitions for the process:

Note: The field types are not critical to this scenario, so you can define field type as you
see fit.

Order Header Files

If your screen shows the Order Header File as:

Order header Known by Order Number

Order header Has Customer Name

Order header Has Order Date

Then the Order Header Records look like this example:

Order Number Customer Name Order Date

10001 John Doe 123111

10002 Jane Doe 022811

Define the Files

730 Building Applications

Order Detail File

If your screen shows the Order Detail File as:

Order detail Owned by FIL Order Header

Order detail Known By FLD Line Number

Order detail Refers to FIL Product

Order detail Has FLD Quantity

Then the Order Detail Records look like this example:

Order
Number

Line
Number

Product
Code

Quantity

10001 1 BH 101

10001 3 IP5 103

10002 1 BH 201

10002 3 LH 203

Note: Product code refers to the product file. For example, LH refers to Little Hammer
and BH refers to Big Hammer.

Product File

FIL Product Known by FLD Product code

FIL Product Has FLD Product description

FIL Product Has FLD Product price date

FIL Product Has FLD Product price

Product code Product
description

Product Date Product Price

BH Big Hammer 20010101 23.45

LH Little Hammer 20101010 18.97

IP5 Ice Pick 20020202 299.00

Define the Order Details Array

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 731

Define the Order Details Array

We assume the following array definition for the process.

Note: The Element number field should be of type NBR.

Follow these steps:

1. Create an array named Order Details over the *Arrays file.

2. Take option Z to open the EDIT ARRAY DETAILS screen.

3. Define the Order details array with the retrieval index structure of the order detail
file and additionally an Element number field (Type NBR), as follows:

4. Press F7 to access the EDIT ARRAY KEY ENTRIES panel and define Element number
as the key to the array.

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

732 Building Applications

Create an EXCEXTFUN to Retrieve the Order Header and Order
Details

The function EEF RTV ORDER, EXCEXTFUN type, based over the Order Detail file takes an
input parameter of an order number and returns order information as output
parameters as follows:

■ The order header is represented by a single-instance output parameter.

■ The order detail lines are represented by a multiple-instance output parameter.

This section describes how to define the EXCEXTFUN to include parameter interface and
action diagram business logic, including calls to other functions. After you complete the
steps in this section, your Action Diagram should match these example screens:

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 733

Important! As a CA 2E developer, you need to understand the architectural distinction
between the two mechanisms to manipulate array data, despite the ability to use a
common structural definition:

■ Data can exist and be modified in an array by using database functions (Create
Object – CRTOBJ, Delete Object –DLTOBJ, Change Object – CHGOBJ, and Retrieve
Object – RTVOBJ) based over the *Arrays file. However, this array data cannot be
accessed by the *MOVE ARRAY function.

■ Data can also exist and be modified in a multiple-instance array parameter (in the
PAR context) and in the ARR context by using the *MOVE ARRAY function. However,
that array data cannot be accessed by database functions (Create Object – CRTOBJ,
Delete Object –DLTOBJ, Change Object – CHGOBJ, and Retrieve Object – RTVOBJ)
based over the *Arrays file.

Note: The function EEF RTV ORDER (Order Detail) relies on four other internal functions,
as listed in the following table.

Function Name Function Type Based over file

RTV ORDER HEADER RTVOBJ Order header

RTV ORDER DETAIL RTVOBJ *Arrays

CRT ORDER DETAIL CRTOBJ *Arrays

LOAD ORDER DETAIL ARRAY RTVOBJ Order detail

EEF RTV Order EXCEXTFUN Order detail

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

734 Building Applications

You need to build the required internal functions and the external function EEF RTV
ORDER (Order detail):

Note: The file the functions is based over is shown in parentheses.

Follow these steps:

1. RTV Order Header (Order Header) (see page 734)

2. RTV Order Detail (*Arrays) (see page 735)

3. CRT Order Detail (*Arrays) (see page 736)

4. Load Order Detail Array (Order detail) (see page 737)

5. EEF RTV Order (Order detail) (see page 740)

Retrieve the Order Header

This section explains how you retrieve information about an order header record, given
an order number.

Follow these steps:

1. Define the RTV ORDER HEADER: Parameter interface as follows:

2. Define the function parameter details as follows:

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 735

3. Configure an action diagram: RTV ORDER HEADER as follows:

This example shows User Points that are not empty.

4. Save and exit the function.

RTV Order Detail (*Arrays)

This section describes how you retrieve the data for a single element in the Order
Details array. You need to configure the RTV ORDER DETAIL to retrieve the data for a
single element in the Order Details array.

Follow these steps:

1. Configure the RTV ORDER DETAIL: Parameter interface as follows:

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

736 Building Applications

2. Define the parameter details as follows:

3. Configure the RTV ORDER DETAIL: Action Diagram as follows:

4. Save and exit the function.

CRT Order Detail (*Arrays)

This section describes how you configure the CRT ORDER DETAIL to populate the data
for a single element in the Order Details array.

Follow these steps:

1. Configure the CRT ORDER DETAIL: Parameter interface as follows:

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 737

2. Define the parameter details as follows:

Note: The CRT ORDER DETAIL contains no user-added processing in the action
diagram.

3. Save and exit the function.

Load Order Detail Array (Order detail)

This section explains how to define a function to populate the Order Detail array. The
processing runs through the database to find all order detail lines for a given order
number. Each detail line is added as a single element in the Order Details array.

Follow these steps:

1. Create a function called LOAD ORDER DETAIL ARRAY, and configure the parameter
interface as follows:

Note: Define the field Total elements as type NBR.

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

738 Building Applications

2. Define the parameter details as follows:

3. Configure a LOAD ORDER DETAIL ARRAY: Action Diagram as follows:

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 739

4. Call to the CRT ORDER DETAIL as follows:

5. Save and exit the function.

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

740 Building Applications

EEF RTV Order (Order detail)

This section describes how you define the external function EEF RTV Order (Order detail)
including the parameter interface and action diagram business logic. The EEF RTV Order
(Order detail) retrieves information about an order. Given an input of an order number,
the function retrieves information about the order header, and all of the order detail
lines. The order detail lines are represented using a multiple-instance array parameter.

The key concept is to populate the multiple-instance array parameter (PR3) with order
detail lines from the database. Typically, you can obtain database information using a
function of type RTVOBJ. However, the RTVOBJ cannot directly access the (PR3)
parameters of the EEF. With CA 2E Release 8.6.00, a multiple-instance array parameter
can only be defined on functions of Execute External Function and Execute User
Program.

A RTVOBJ call might be placed in a loop to retrieve one order detail line at a time into
the, LCL context for example, and then the information could be moved from the LCL
context to an element of the multiple-instance array (PR3) on the EEF. However,
multiple calls to a RTVOBJ based over a database access path is undesirable from a
performance point of view. Moreover, if the order detail lines do not exist with some
contiguous key or positioned, additional code will have to ensure that each order detail
line is retrieved.

We address this issue as follows:

From the AD of the EEF call a RTVOBJ, named LOAD ORDER DETAIL ARRAY, based over a
database access path (Order detail) one time, and for each order detail record, create an
element in an array.

Note: The array has the same structure as the order detail record, but has an additional
key field of Element number.

Once the Array is created, a loop in the EEF can step through the array and call a
RTVOBJ, named RTV ORDER DETAIL, based over the Order Detailsarray to recall one
element at a time to the LCL context.

The data in the LCL context that represents a single order detail record can then be
populated into multiple-instance array parameter (PR3) of the EEF that represents the
order detail lines. This move from the single-instance LCL context to a multiple-instance
context can be achieved with the *MOVE ARRAY function.

This approach has the benefit that the processing is faster than multiple RTVOBJ
(database) calls and the looping through the array in memory overcomes any gaps
between order detail line numbers.

The EXCEXTFUN function type can be deployed as a *MODULE, which allows it to be
bundled into Service Program and deployed as a web service. Thus a single invocation of
the web service can retrieve all the information regarding the order header and all order
detail lines.

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 741

Follow these steps:

1. Create a function called EEF RTV Order and define the parameter interface as
follows:

Notes:

■ EEF RTV Order has function option Duplicate parameters set to Yes.

■ PR3 is defined as a multiple-instance array parameter.

PR1

Indicates the input parameter for the Order number, passed as a field (FLD),
from which the Header and Detail are retrieved.

PR2

Indicates the output parameter for the Order Header, passed as a record
format (RCD), which is populated with the single-instance data for the Order
Header.

PR3

Indicates the output parameter for the Order details array.

Note: This parameter is marked as being a multiple-instance parameter, so
multiple order detail records can be contained within this one parameter. If the
A(Pass as Array) field is marked as Y, before usages have been specified on the
EDIT FUNCTION PARAMETER DETAILS panel for the fields of this parameter a
warning message will be sent: Y2V0717 A (Pass as Array) cannot be set to
'Y'.However, you may leave the field set to Y and zoom into the parameter to
specify usages.

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

742 Building Applications

2. Define the parameter details as follows:

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 743

3. Configure the EEF RTV ORDER : Action Diagram as follows:

Notes:

■ Function calls that are not self-evident are shown in the following examples.

■ The Count field should be defined as type NBR.

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

744 Building Applications

4. Initiate a call to the RTV ORDER HEADER as follows:

5. Initiate a call to LOAD ORDER DETAIL ARRAY as follows:

Set the EXCEXTFUN to a Module

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 745

6. Initiate a call to RTV ORDER DETAIL as follows:

7. Save and exit the function.

Set the EXCEXTFUN to a Module

CA 2E automatically creates the EXCEXTFUN function type as PGM (Program), so you
must change the type to MOD (Module).

Follow these steps:

1. From EDIT DATABASE RELATIONS take option F against the Order detail file to
access the EDIT FUNCTIONS screen.

2. Take option Z (Details) against EEF RTV ORDER for the EDIT FUNCTION DETAILS
screen.

3. Change the Target HLL to RP4 or CBI. Take option T (T-ILE Compilation Type) to
change the object type to MOD.

4. Press enter to save the changes and press F3 to return the EDIT FUNCTIONS screen.

The EXCEXTFUN has all the necessary configuration and details, so you must then
generate and compile before you can use it.

Generate and Compile the Module

746 Building Applications

Generate and Compile the Module

With the EXCEXTFUN fully configured, you must compile the module.

Note: Before generating the module, your model must be set up to include PCML in the
module. For more information, see the section “PCML in Module” in the Building
Applications guide for details

Follow these steps:

1. Take option J (Generate) on the new EEF RTV ORDER function.

2. Press F17 for the Services Menu, and take Option 1 (Submit Model Create Request).

3. Locate the EEF RTV ORDER function and press Enter.

Note: Depending on your processing speed, the compile can complete quickly or
take several minutes.

4. Verify that the compile completed correctly.

5. Press F3 until you return the EDIT FUNCTIONS screen.

This procedure completes your work on the EXCEXTFUN module. Next, you create a
Service Program for use with the module.

Create a Service Program

In the CA 2E model, you define a Service Program (*SRVPGM) function type, which you
will then use with the module. You can customize the source member name, which is
then used for the final *SRVPGM object name.

Follow these steps:

1. From EDIT DATABASE RELATIONS take option F against the Order detail file to
access the EDIT FUNCTIONS screen.

2. Create a Service Program and complete the fields as follows:

Function:

Order srvpgm

Function Type:

Service Program

Access path

*NONE

A Service Program does not contain parameters or an action diagram, so you must add
the module in the following procedure.

Add the Module to the Service Program

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 747

Add the Module to the Service Program

You now have your EEF RTV ORDER module and your Order srvpgm Service Program.
Combine the two by adding the module to the Service Program.

Follow these steps:

1. Take option F against the Order detail file from EDIT DATABASE RELATIONS to
access the EDIT FUNCTIONS screen.

2. Take option Z (Details) on the new service program Order srvpgm.

3. Take option M (Modules).

4. Press F6 (add) to add a module.

5. Take option X (Select) against the EEF RTV ORDER module.

6. Press F3 to access the SERVICE PROGRAM MODULE screen.

Verify that the module is listed.

7. Press F3 until you return the EDIT FUNCTIONS screen.

The combined Service Program and module are not usable until you generate and
compile them in the following procedure.

Generate and Compile the Service Program

The combined module and Service Program are not usable until you generate and
compile.

Follow these steps:

1. Take option F against the Order detail file from EDIT DATABASE RELATIONS to
access the EDIT FUNCTIONS screen.

2. Take option J (Generate) on the Order srvpgm Service Program.

3. Press F17 for the Services Menu, and take option 1 (Submit model create).

4. Press Enter to submit the job, which generates and compiles the source.

Note: Depending on your processing speed, the compile can complete quickly or
take several minutes.

5. Press F3 until you return to the EDIT FUNCTIONS screen.

This gives you a usable, compiled Service Program that includes the EEF RTV Order
module you created. Next, create a Web Service Function that includes the compiled
Service Program.

Create a Web Service Function

748 Building Applications

Create a Web Service Function

The CA 2E Web Service uses the Service Program you created in the previous
procedures to create a Web Service Function. This function contains one-to-multiple
operations, where each operation corresponds to a single procedure in a module in an
ILE Service Program.

Follow these steps:

1. Access the EDIT FUNCTIONS screen.

2. Add a new Web Service function type by competing the following fields:

Function

Order websrv

Function type

Web Service

Access Path

*NONE

3. Press Enter to save, and then take option Z (Details) for the EDIT FUNCTION DETAILS
screen.

4. Complete the details fields as follows:

Web service name

GetOrder

Service program file

Order Detail

Service Program Function

Order srvpgm

5. Press Enter to save, and then F3 until you return the EDIT FUNCTIONS screen.

The result is a modeled Web Service Function, but it is not available to invoke until you
complete the following procedure to deploy Web Service Function on your Web Server.

Deploy the Web Service Instance

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 749

Deploy the Web Service Instance

From the newly created Web Service Function, you can deploy a Web Service instance.
Use the YCRTWS (Create Web Service Instance) command to install the web service to
the IBM Web Services Server.

Notes:

■ Before you deploy the Web Service Instance, verify that the Runtime Library List
contains all of the libraries that are required to support the runtime business logic.

■ Here we use the EDIT FUNCTION DETAILS screen, but you can also invoke YCRTWS
from the command line and then configure the appropriate parameters.

Follow these steps:

1. Take option F against the Order detail file from EDIT DATABASE RELATIONS to
access the EDIT FUNCTIONS screen.

2. Take option Z against the web service Order websrv.

3. Press F10 (Create Web Service Instance) and complete the fields as follows:

Update Model

*ADD

Install to Server

*YES

Web Services Server

YourServerName (the actual name for you Web Server)

4. Press Enter to save and deploy.

The Web Service Function is now available for users to call from your Web Server. Test
the Web Service before notifying your users.

For detailed information on web service deployment see the Chapter Web Service
Creation (see page 185).

Note: Use the IBM Web Administration interface to start, stop, and test the deployed
Web Service.

*MOVE ARRAY (*ALL)

750 Building Applications

*MOVE ARRAY (*ALL)

Four individual *MOVE ARRAY statements are used in the example code for EEF RTV
Order (Order detail) (see page 740) to move data from a field in the LCL context to a
field in a multiple instance array parameter. This is a good illustration of how you can
use *MOVE ARRAY. However, you can use *MOVE ARRAY, *ALL support for a more
efficient approach.

You can replace the multiple *MOVE ARRAY statements with a single *MOVE ARRAY
statement, specifying *ALL for the *Result and *Factor fields. You do not have to change
the action diagram if you then add or remove fields from the array; a simple
regeneration and recompilation works.

The following EDIT ACTION DIAGRAM panel shows how you can use *MOVE ARRAY
(*ALL:)

*MOVE ARRAY (*ALL)

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 751

The following EDIT ACTION DIAGRAM – FUNCTION DETAILS panel shows more detail on
how you can use *MOVE ARRAY (*ALL:):

Index 753

Index

*

* re-read subfile record • 517
*ADD • 433
*COMPUTE • 435
*CONCAT • 438
*continue transaction • 515
*cursor field • 515
*cursor row and *cursor column • 516
*CVTVAR function • 491
*Date Lists • 446
*defer confirm • 514
*initial call • 519
*Messages • 129, 152, 157, 158, 160
*next RDB • 515
*print format • 514
*program mode • 509
*record data changed • 512
*Record Data Changed program field • 512
*record selected • 512
*Record selected program field • 147
*reload subfile • 511
*return code • 510
*Sbmjob override string context field • 520
*scan limit • 513
*SFLSEL • 302, 317
*Synon work field • 519
*Template file • 602, 603

1

132 column screen option • 243

2

2ND • 494
2ND context • 494

3

3RD • 495
3RD context • 495

A

abbreviations • 25
absolute • 357
absolute day • 443

access • 56
access path • 33, 256, 283
access path combinations • 256
access paths • 366, 373, 604, 607
acronyms • 24
action bar • 245, 293, 323, 324, 338
action bar header/footer • 324, 325
action bar standards • 324
action diagram • 32, 40, 88, 275, 422, 423, 569, 573,

596, 601, 624
Action Diagram Editor • 628
action diagram user points • 601
action diagrams, modifying • 421
activate or deactivate line command • 551
activate/deactivate • 551
adding • 321, 323, 433, 543
adding an action • 424
additional processing • 33
ADDPFTRG command • 212
admin tasks • 217
all • 574
allow right to left/top to bottom option • 244
allowed roles • 262
applications • 620
array • 65, 89, 276, 446, 491
array changes • 65
arrays • 276
as data structure • 491
as parameter • 276
attaching to device design • 385
attachment levels • 382
attributes • 308
audit stamp • 512
automatic (ALCVNM) • 41
automatic choice • 352, 353
automatic line numbering • 106

B

basic properties • 31, 77, 249, 280
batch processing • 125
batch submission • 574
benefits • 211
benefits of • 597
Bi-directional support • 50, 244
body fields • 286

754 Building Applications

border model values • 51
Both (I/O) parameter • 250
building block approach • 35
built-in function example • 445, 453
built-in functions • 29, 433, 434, 435, 438, 443, 451,

454, 455, 456, 457, 458, 459, 468, 470, 472, 473,
474, 476, 478, 480, 481, 489, 491

business logic, reusing • 627
bypass key screen option • 234

C

CA 2E implementation • 214
CA 2E model support • 216
CA 2E processing flow • 214
Call a Program (Y2CALL) • 252
calling function flag • 251
CDE field usage • 154
change object • 575
Change Object (CHGOBJ) • 79
Change Object (CHGOBJ) function • 79, 512, 575
changing • 52, 65, 308, 311, 357
changing function level • 51
changing model level • 52
changing name • 52
checking • 34
CHGOBJ • 79, 512, 575
CHGOBJ function • 79
choosing options • 230
closedown program • 235
Closedown Program • 235
CND • 503
CNT (count) function field • 81
CNT function field • 81
COBOL • 136, 138
COBOL indicators in user source • 136
COBOL specification order • 136
combinations • 256
command key defaults • 53
comments • 44
comments in source code (YGENCMT) • 44
commit • 434
commitment control • 236
compare (CMP) • 537
compare (CMP) condition • 537
Compare Model Objects (YCMPMDLOBJ) • 618
compared to • 338
comparing two functions • 618
comparison operator, IS • 515

components • 31
compound conditions • 538, 539, 542, 543, 625
compute • 435, 436
compute condition symbols (YACTCND) • 40
compute expression symbols (YACTFUN) • 40
CON • 505
CON context • 505
concatenation • 438
condition fields • 328
condition types • 536, 537
condition values • 42
conditions • 430, 535, 543
confirm option • 231
confirm prompt value (YCNFVAL) • 41
considerations • 132, 246
constants • 323
construct resolution • 624, 626
constructs • 429, 430, 431, 547
context • 489, 491, 493, 503, 506, 520, 542
control data structure • 217
conventions • 292
conventions and styles • 292
conversion • 466
convert model to run-time • 227
convert trigger data • 222
Convert Trigger Data command • 222
convert variable • 441, 491
Copy Back (YCPYMSG) • 41
copy back messages • 236
copy back messages function option • 236
copying • 597, 600
copying a function • 598, 599, 600, 601
copying from one function to another • 572
copying user points • 601
Count (CNT) function field • 81
create object • 576
Create Object (CRTOBJ) • 82
creating • 603
creating menu bars • 338
creating new function from existing one • 597
creating Trigger Functions • 217
cross-type copying • 599, 600, 601
CRTOBJ • 82
CRTOBJ function • 82
CTL • 496
CUA entry • 245, 307, 308
CUA prompt • 42
CUA prompt (YCUAPMT) • 42
CUA text • 245, 292, 293, 307, 324

Index 755

CUA text standard • 324
CUR • 499
cursor positioning • 476
cursor progression • 344
cursor-sensitive (YHLPCSR) • 45
cutoff (YCUTOFF) • 43

D

database • 211, 489
database changes • 230
database contexts • 489, 490
database function • 57, 65, 79, 82, 88, 153
database functions • 27
database implementation • 43
database triggers • 227
date • 43, 145, 162, 443, 445, 446, 451, 453, 455,

466
date details • 443
date details built-in function • 443
date increment • 451
date increment built-in function • 451
date list • 446
date lists array • 446
DB1 • 489
DB2 • 490
DDS • 338, 381
DDS menu bar • 338
DDS menu bars- • 338
DDS PUTOVR keyword (YPUTOVR) • 47
default • 32, 39, 44, 53, 56, 79, 147, 251, 282
default (YHLLGEN) • 45
Default Condition field • 82
default function • 154
default layout • 288, 289, 290
default logic • 151, 152
default RDB (YGENRDB) • 44
default report formats • 366
defaults • 53
Define Report Format (DFNRPTFMT) • 65, 86
Define Screen Format (DFNSCRFMT) • 65, 83
defined • 602
defining • 74, 78, 263, 359, 383, 539
defining parameters • 263, 275
defining print objects • 360
defining usage and role • 272
definitions • 316
Delete DBF record (DLTOBJ) • 88
delete function field • 322

delete object • 577
Delete Object (DLTOBJ) • 88
Delete Object (DLTOBJ) function • 88, 89
deleting • 322, 323, 543, 547, 609
Derived (DRV) • 89
Derived (DRV) function field • 89
description • 65, 250, 349, 381
design considerations • 78, 154, 291, 343
design elements • 285
design standard • 281
device • 493
device considerations • 147, 151
device contexts • 493, 494, 495, 496, 498, 499, 500
device design • 32, 42, 45, 46, 48, 67, 259, 260, 280,

281, 282, 283, 285, 292, 293, 297, 308, 309, 310,
316, 318, 337, 345, 381, 573, 601

device design formats • 318
device design function keys • 316
device designs • 309, 607
device designunderstanding • 280
device function • 65, 69, 83, 86, 90, 94, 97, 99, 107,

111, 114, 116, 145, 147, 154, 283, 381
device function processing • 32
device functions • 28
device prompt file (YPMTMSF) • 47
device user source • 381, 382, 383, 385, 387, 388,

393, 402
DFNRPTFMT • 65, 86
DFNSCRFMT • 65, 83
Display All Functions panel • 56
display attributes • 328
display features • 231
display file • 577
Display File (DSPFIL) • 90
Display File (DSPFIL) function • 65, 90
Display Function References panel • 610
display length • 317
display record • 579
Display Record (2 panels) (DSPRCD2) • 97
Display Record (3 panels) (DSPRCD3) • 99
Display Record (DSPRCD) • 94
Display Record (DSPRCD) function • 65, 94
Display Record (DSPRCD2) function • 65, 97
Display Record (DSPRCD3) function • 65, 99
Display Transaction (DSPTRN) function • 65, 102
displaying device design • 318
displaying device design formats • 318
displaying formats • 318
distributed file I/O control • 241

756 Building Applications

distributed file I/O control option • 241
divide • 454
divide with remainder • 454
DLTOBJ • 88
DLTOBJ attached to UPD • 88
DLTOBJ use • 89
Document Model Functions (YDOCMDLFUN) • 617
documentation • 617
documenting • 617
domain • 34, 131
DRDA • 44, 241
driver program • 621
drop down selection field • 340
dropped • 320
dropping • 356
dropping fields • 315
DRV function field • 89
DSPFIL • 90, 91, 621
DSPFIL for performance • 623
DSPFIL function • 91
DSPRCD • 94, 95
DSPRCD2 • 97
DSPRCD3 • 99
DSPTRN • 102
DTL • 494
duration • 455
duration built-in function • 455
dynamic mode option • 233

E

Edit Device Structure panel • 147
Edit Field Details panel • 82
Edit File (EDTFIL) • 107
Edit File (EDTFIL) function • 65, 107
Edit Function Options panel • 51, 229
Edit Function Parameters panel • 75, 275
edit mask • 346
Edit Message Functions panel • 74
Edit Model Object List panel • 615
edit record • 586
Edit Record (2 panels) (EDTRCD2) • 114
Edit Record (3 panels) (EDTRCD3) • 116
Edit Record (EDTRCD) • 111
Edit Record (EDTRCD) function • 65, 111
Edit Record (EDTRCD2) function • 65, 114
Edit Record (EDTRCD3) function • 65, 116
Edit Transaction (EDTTRN) function • 65, 106
editing • 309, 316, 318, 319, 542, 624

editing device design • 318
editing formats • 318
editing function key • 316
editing Trigger Functions • 219
EDTFIL • 107, 108
EDTFIL for performance • 623
EDTRCD • 111
EDTRCD2 • 114
EDTRCD3 • 116
EDTTRN/DSPTRN • 603
effect of parameters • 154
elapsed time • 456
elapsed time built-in function • 456
ELM (array element) • 491
ELM context • 491
ELM context field • 491
embedded print objects • 362
enable selection prompt text option • 244
end trigger server • 225
End Trigger Server command • 225
Enhanced User Interface (ENPTUI) • 337
ENPTUI • 337, 338, 340, 344, 345, 346
entering • 542
entry field attributes • 344
entry level • 387
environment • 240
environment (YEXCENV) • 44
error handling (*PSSR) • 44
error highlighting • 158
errors • 251
example • 131, 138, 365, 371, 402
examples • 246
exception routine (RPG) • 237
EXCEXTFUN • 123, 621
EXCINTFUN • 128
excluded dates • 446
EXCMSG • 129
EXCMSG substitution variables • 129
EXCUSRPGM • 131, 600
EXCUSRPGM does not allow • 131
EXCUSRPGM function • 131
EXCUSRPGM program • 131
EXCUSRSRC • 132, 600
EXCUSRSRC and calling function • 132
EXCUSRSRC does not allow • 132
EXCUSRSRC example • 138
EXCUSRSRC function • 138
Execute External Function (EXCEXTFUN) • 71, 123,

125

Index 757

Execute Internal Function (EXCINTFUN) • 71, 128
Execute Message (EXCMSG) • 129
Execute Message (EXCMSG) function • 73, 129, 130
Execute User Program (EXCUSRPGM) • 72, 131, 600
Execute User Source (EXCUSRSRC) • 72, 132, 138,

600
execution location • 239
exit after add option • 233
exit control • 235, 236
exit program • 457
exiting • 573, 574
explanations • 301
explanatory text • 303, 305, 306, 307, 330
explicitly assigned for EXCUSRPGM • 131
expression • 436
external MSGIDs (YPMTGEN) • 46

F

F4 prompt • 42, 154, 311
F4 prompting • 42
field • 34, 56, 79
field label text • 317
field level • 388
field text • 316
field usage • 287
field validation • 34
fields • 78, 283, 311
fields by format • 367
file • 324
find services • 563
finding where used • 610
flag error status • 251
form • 306
format (YDATFMT) • 43
format relations • 319, 320
formats • 283, 307, 318, 350, 355
formats on PRTFIL • 147
from Display All Functions • 423
from Display Services Menu • 614, 617
from Edit Database Relations • 422
from Edit Function panel • 598
from Edit Functions panel • 614
from Exit Function Definition panel • 615
from Exit panel • 598
from Open Functions • 422

function • 31, 33, 35, 52, 69, 78, 79, 82, 83, 86, 88,
90, 94, 97, 99, 102, 107, 111, 114, 116, 123, 128,
129, 131, 132, 145, 147, 151, 152, 153, 154, 157,
158, 160, 161, 311, 324, 381, 424, 520, 540, 574,
575, 597, 599, 600, 601, 609, 610, 613, 617, 618

function contexts • 520, 521, 522, 524
function details • 74
function device design • 573
function field • 30, 76, 77, 78, 89, 143, 144, 161, 162,

321, 322, 364
function fields • 321, 369, 379
function fields to action diagrams • 321
function key • 53, 300, 301, 302, 308, 316, 330
function keys • 53, 316, 547
function name • 52
function option • 31, 47, 79, 82, 88, 91, 95, 102, 108,

111, 123, 128, 131, 145, 148, 153, 154, 229, 230,
231, 232, 235, 236, 237, 238, 239, 240, 241, 242,
243, 245, 512

function option for NPT gen • 238
function parameter • 249, 251, 252, 253, 263, 272,

276, 284, 572
function parameters • 275
function structure charts • 596
function templates. See template function • 601
function types • 27, 28, 69, 78, 599
functions • 617, 627

G

general rules • 286
generate as a subroutine • 238
generate help • 238
generating functions • 615
generating/compiling • 613
generation • 614, 615
generation (YGENHLP) • 44
generation function option • 238
generation mode • 237
generation options • 237, 238, 239

H

header/footer • 243, 283
help • 325
help text • 50
Help text • 44, 45, 50, 238, 337
help text for NPT • 238
Help text for NPT • 238
hidden fields • 315

758 Building Applications

hiding • 350, 355
high level language (HLL) • 45, 131, 132
HLL • 45

I

I/O field changes • 600
I/O fields across types • 600
identifying • 252
identifying defaults • 251
ideographic text character (IGC) • 300
if action bar, what type? • 232
IGC support • 300
impact analysis • 610
implementing • 212
implicit return code • 252
in the action diagram • 275
included dates • 446
including narrative text • 618
indentation • 357, 358
indicators • 134, 136
indicators in user source • 134
Input only parameter • 250
input parameter • 81, 143, 144
Input parameter • 158
Input/Output parameter • 250
integrity checking • 34, 623
interactive generation • 574
internal function • 79, 82, 621
internally referenced • 604
IS • 515
IS comparison operator • 515
is this a window option • 245
is this an action bar option • 245
iterative • 431
iterative constructs • 431

J

JOB • 506

K

KEY • 493
key value prompt • 94, 97, 99, 102, 111, 114, 116

L

layout • 310
layout - subfile • 287
LCL • 521
leaders (YLSHFLL) • 45

length • 317
level break • 148
level breaks • 148
line command • 551
line commands • 543, 548
line numbering, automatic • 106
line selection values • 360
linking • 361
linking print functions • 361
literal • 503
literal contexts • 503, 505
locked function • 574
locks • 574
LST condition • 536

M

map • 253
map parameter • 253
MAX (maximum) function field • 143
MAX function field • 143
Maximum (MAX) • 143
Maximum (MAX) function field • 143
maximum PRTOBJs • 148
menu bars • 338
merger commands • 393
message • 41, 47, 49, 72, 74, 75, 129, 152, 158, 236,

276
message function • 30, 75, 129, 152, 157, 158, 160,

161
message types • 78
messages • 276
MIN (minimum) function field • 144
MIN function field • 144
Minimum (MIN) • 144
Minimum (MIN) function field • 144
model to run-time conversion • 227
model values • 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,

49, 50, 51, 52, 240, 242, 245, 246, 521
modified report layout • 370
modifying • 316, 317, 322, 323, 326, 328, 358, 359,

572
modulo • 458
move • 459
move all • 459, 468
move built-in function • 466
multi-line entry • 345
multiple-record default layout • 289
multiple-record panel design • 255, 289

Index 759

multiply • 470

N

name • 31
names • 31
naming • 41, 45, 46, 131
narrative text • 618
National Language Support • 291
national languages • 291
navigational aids • 55
Neither (CRTOBJ) • 82
Neither parameter • 82, 131, 132, 158, 250
new functions (YHLLVNM) • 45
NLL • 522
NLS • 291, 343
no-error relations • 320
non-restricted virtual fields • 256, 260
normalization • 35
notepad • 548, 572
NOTEPAD • 550
Notepad, placing functions in a wrapper • 628
NPT • 337
null update suppression • 46, 242, 512
number of function key text lines • 308
NXT • 500

O

omitting records • 147
on subfile • 256
on subfiles • 256
open functions • 574
optimizing • 622
optimizing programs • 622
optional • 319
options • 573
OS/400 Data Management • 212
Output only parameter • 250
output/input fields • 600
overrides if submitted job • 239
overview • 27, 29, 30, 32, 65, 70, 72, 76, 129, 147,

151, 152, 293, 536

P

panel • 285
panel context specific • 337
panel defaults • 297
panel design • 286, 287, 288, 289, 297, 303, 307,

308, 330

panel design elements • 285
panel layout • 286, 287
panel layout (YSAAFMT) • 48
PAR • 520
parameter considerations • 148
parameter fields in user functions • 131
parameters • 31, 75, 81, 82, 89, 131, 143, 148, 151,

161, 249, 251, 252, 253, 254, 255, 261, 262, 272,
275, 276, 284, 572, 607

parameters for standard functions • 251
parameters required • 212
parameters to PRTOBJ functions • 378
passing (PRTFIL) • 148
performance considerations • 619
PGM • 507
PGM fields • 507, 509, 510, 511, 512, 513, 514, 515,

516, 517, 519
PGM Fields • 514
PMTRCD • 145
PMTRCD field validation • 145
PMTRCD for performance • 623
positioner • 261
positioner parameter • 91, 108, 148, 154, 261
post-confirm pass option • 94, 234
prefix (YOBJPFX) • 46
presentation convention • 281
Print File (PRTFIL) • 147
Print File (PRTFIL) function • 65, 147, 148, 349
Print Object (PRTOBJ) function • 65, 147, 151, 349,

361, 362
print objects • 360, 362
print on overflow • 357
printing a list • 617
printing list of functions • 617, 618
processing techniques • 68
Program mode • 69
program modes • 69
program objects • 622
program size • 621
Prompt Record (PMTRCD) • 145
Prompt Record (PMTRCD) function • 65, 145
prompt text • 330
prompting (F4) • 42
properties of functions • 31
PRTFIL • 147, 148, 349
PRTFIL processing • 147
PRTOBJ • 151, 349, 362
PRTOBJ embedding • 147
PRTOBJ formats • 147

760 Building Applications

PRTOBJ functions • 374
PRTTEXT parameter • 618
purpose • 57, 253, 261

Q

QRY (query) access path • 91, 147, 151, 153, 154
query (QRY) access path • 91, 147, 151, 153, 154
quit • 489

R

range (RNG) • 537
RCD • 498
reclaim resources • 235
reclaim resources option • 235
record function • 285
Recursion • 35
referential • 34
referential integrity • 34
relation • 624
relationship to function • 33
relative • 358
reload subfile, display file • 94
reload trigger references • 226
Reload Trigger References command • 226
repeat prompt option • 233
report • 348
report design • 348, 350, 360, 364, 365, 366, 367,

369, 370, 371, 373, 374, 378, 379
report fields • 353
report format • 350, 352, 356
report structure • 359, 360
required • 319
restricted virtual fields • 256, 259
restrictor • 253
restrictor parameter • 91, 108, 111, 148, 154, 253,

254, 255, 256, 259
result parameter • 81, 143, 144, 161
retrieve condition • 42, 472
retrieve field information • 474
Retrieve Message (RTVMSG) • 152
Retrieve Message (RTVMSG) function • 73, 152
Retrieve Object (RTVOBJ) • 153
Retrieve Object (RTVOBJ) function • 153
return code • 131, 252
reusable subroutines • 540
reusing • 621
right-hand side text • 42, 297
right-hand text (YCUAEXT) • 42

role • 253
rollback • 473
RPG • 44, 134, 138
RPG parameters • 134
RTVMSG • 152
RTVOBJ • 153
run-time support • 227

S

screen text constants • 239
second-level • 75
second-level message text • 75, 129
SELCRD • 154
select option • 302, 317
Select Record (SELRCD) • 154
Select Record (SELRCD) function • 65, 154
selecting primary • 542
selecting statements • 628
selector • 325
selector parameter • 91, 154
selector role • 332
SELRCD • 154
send all messages option • 234
Send Completion Message (SNDCMPMSG) • 157
Send Completion Message (SNDCMPMSG) function •

73, 157
Send Error Message (SNDERRMSG) • 158
Send Error Message (SNDERRMSG) function • 73,

158
Send Information Message (SNDINFMSG) • 160
Send Information Message (SNDINFMSG) function •

73, 160
Send Status Message (SNDSTSMSG) • 161
Send Status Message (SNDSTSMSG) function • 73,

161
sequence • 430
set cursor • 476
setting • 512
share subroutines • 239
shared subroutines • 540
shipped field • 56
shipped files • 56, 129, 152
shipped files access • 56
single • 625
single and multiple record • 290
single compound condition • 625
single function • 573
single-record default layout • 288

Index 761

single-record panel design • 254, 288
SNDCMPMSG • 157
SNDERRMSG • 158
SNDERRMSG function • 158
SNDERRMSG substitution variables • 158
SNDINFMSG • 160
SNDSTSMSG • 161
source considerations • 134, 136
space between formats • 356
spacing between formats • 356
specifying • 75, 152, 229, 276, 302
specifying an action • 423
specifying an action • 424
specifying panel design • 307
specifying with type EXC • 130
standard • 243
standard features • 67
standard features • 68
standard function defaults • 251
standard function overview • 27
standard functions • 27
standard header function • 283
standard header/footer • 243, 244, 245, 246, 283,

309, 348
start trigger server • 224
Start Trigger Server command • 224
structure • 620
structure symbols (YACTSYM) • 40
styles • 292
subfile • 102, 107, 302, 317
subfile function • 285
subfile select options • 232
subfile selector text • 331
subfile selector value • 305
subfile selector values • 302, 305
substring • 478
subtract • 478
Sum (SUM) • 161
Sum (SUM) function field • 161
SUM (sum) function field • 161
SUM function field • 161
support • 300
suppress • 355
suppressing formats • 355, 356
supressing in source code • 44
switching to action diagram • 573
switching to device design • 573
system • 506
system context • 507

system contexts • 506, 507

T

tailoring for performance • 619
template function • 598, 601, 602, 603, 604, 607
text • 330
text lines • 308
time • 456, 466, 480, 481
time details • 480
time details built-in function • 480
time increment • 481
time increment built-in function • 481
timestamp • 512
toggling to device design • 569
top-down applications • 36
transaction processing • 621
trigger commands • 221, 222, 224, 225, 226
Trigger References file • 214
Trigger Router • 214, 227
Trigger Server • 214, 228
triggers • 211, 212, 213, 214, 216, 217, 219, 221, 227
TS# field type • 512
tuning performance • 623
typical implmentation • 213
typical processing flow • 213

U

UIM • 50
UIM generation (YNPTHLP) • 45
UIM model values • 50
understanding • 422
update (CHGOBJ) • 79
update suppression • 46
usage type • 249
usages • 77
use as default for functions option • 245
user • 320
User (USR) • 162
User (USR) function field • 162
user COBOL source • 136
user function • 70, 123, 128, 132
user functions • 28
user interface • 68
User Interface Manager (UIM) • 50, 338
User Point, placing functions in a wrapper • 628
user points • 88, 108, 428, 575, 576, 577, 579, 586,

626
user RPG source code • 134

762 Building Applications

user source • 132, 134, 136
user-defined function • 550
user-program (EXCUSRPGM) • 131
using • 604
using arrays • 276
using function fields • 364
using trigger commands • 221

V

validation • 34
validation (YDATGEN) • 43
validation for USR fields • 162
values (VAL) • 536
values list • 536
values list (LST) • 536
vary • 261
vary parameter • 261
versions • 597
vertical structure • 620
viewing and editing • 319
viewing format relations • 319
virtual fields • 256
virtual restrictor usage • 259

W

when to send (YSNDMSG) • 49
where used • 610
windows • 51, 245, 292, 293, 326
with Edit Function Parameter • 263
with open commands TYPE(*PERM) • 129
with remainder • 454
within report structure • 360
work with date list function • 446
work with trigger references • 226
Work with Trigger References command • 226
workstation implementation • 240
wrappers • 627
WRK • 524

Y

Y2CALL (Call a Program) • 252
YABRNPT • 40, 338
YACTCND • 40
YACTFUN • 40
YACTSYM • 40
YACTUPD • 41
YALCVNM • 41
YBNDDIR • 41

YCMPMDLOBJ (Compare Model Objects) • 618
YCNFVAL • 41
YCPYMSG • 41
YCRTENV • 42
YCUAEXT • 42
YCUAEXT model value • 42
YCUAPMT • 42
YCUAPMT model value • 42
YCUTOFF • 43
YCVTTRGDTA • 222
YDATFMT • 43
YDATGEN • 43
YDBFGEN • 43
YDFTCTX • 43, 521
YDOCMDLFUN command • 617
YENDTRGSVR • 225
YERRRTN • 44
YEXCENV • 44
YGENCMT • 44
YGENCMT model value • 44
YGENHLP • 44
YGENRDB • 44
YHLLGEN • 45
YHLLVNM • 45
YHLPCSR • 45
YLSHFLL • 45
YNLLUPD • 46, 242
YNPTHLP • 45
YOBJPFX • 46
YPMTGEN • 46
YPMTMSF • 47
YPUTOVR • 47
YRLDTRGREF • 226
YRP4HS2 • 47
YRP4HSP • 47
YRP4SGN • 48
YSAAFMT • 48, 245, 246
YSAAFMT model value • 48
YSFLEND • 48
YSHRSBR • 49
YSNDMSG • 49
YSTRTTRGSVR • 224
YUIMBID • 50
YUIMFMT • 50
YUIMIDX • 50
YWBDATR • 51
YWBDCHR • 51
YWBDCLR • 51
YWRKTRGREF • 226

Index 763

YWSNGEN • 240, 245, 246

Z

zooming into • 362

	CA 2E Building Applications
	Contents
	1: An Introduction to Functions
	Organization
	Terms Used in This Module
	Acronyms
	Values
	Abbreviations

	Understanding Functions
	Function Types
	Standard Functions
	Database Functions
	Device Functions
	User Functions
	Built-In Functions

	Function Fields
	Message Functions

	Basic Properties of Functions
	Function Names
	Function Components
	Function Options
	Parameters
	Device Designs
	Action Diagrams
	Default Device Function Processing

	Functions and Access Paths
	Additional Processing
	Integrity Checking
	Domain Integrity Checking
	Referential Integrity Checking
	Field Validation
	Linking Functions

	Building Block Approach, an Overview
	Top-Down Application Building

	2: Setting Default Options for Your Functions
	Model Values Used in Building Functions
	User Interface Manager (UIM)
	Window Borders

	Changing Model Values
	Function Level
	Model Level

	Changing a Function Name
	Function Key Defaults

	3: Defining Functions
	Navigational Techniques and Aids
	Display All Functions
	Getting to Shipped Files and Fields

	Database Functions
	Understanding Database Functions
	Internal Database Functions and PHY Access Paths
	*Relative record number Field
	Internal Database Functions

	Array Processing

	Device Functions
	Understanding Device Functions
	Defining Device Functions
	Device Functions’Standard Features
	Standard Features--User Interface
	Standard Features--Processing Techniques
	Device Function Program Modes
	Classification of Standard Functions by Type

	User Functions
	Understanding User Functions
	Defining Free-Form Functions
	Defining User-Coded Functions

	Messages
	Understanding Messages
	Basic Properties of Messages
	Defining Message Functions
	Specifying Message Functions Details
	Specifying Parameters for Messages
	Specifying Second-Level Message Text

	Function Fields
	Understanding Function Fields
	Basic Properties of Function Fields
	Design Considerations
	Defining Function Fields

	Function Types, Message Types, and Function Fields
	Database Function
	Null Update Suppression Logic

	CNT Function Field
	CRTOBJ Database Function
	DFNSCRFMT Device Function
	DFNRPTFMT Device Function
	DLTOBJ Database Function
	Array DLTOBJ

	DRV Function Field
	Example of a Derived Function Field
	Example of a Compound Condition with Derived Fields

	DSPFIL Device Function
	Effects of Parameters
	*Reload Subfile
	Post-Confirm Pass Function Option

	DSPRCD Device Function
	Design Considerations

	DSPRCD2 Device Function
	DSPRCD3 Device Function
	DSPTRN Device Function
	Post-Confirm Pass Function Option
	Automatic Line Numbering

	EDTFIL Device Function
	Effects of Parameters

	EDTRCD Device Function
	EDTRCD2 Device Function
	EDTRCD3 Device Function
	EDTTRN Device Function
	EXCEXTFUN User Function
	Using Batch Processing

	EXCINTFUN User Function
	Example

	EXCMSG Message Function
	Advantage of SBMJOB over Execute Message
	Specifying EXCMSG

	EXCUSRPGM User Function
	Example

	EXCUSRSRC User Function
	Overall User Source Considerations
	Substitution Variables
	RPG Source Considerations
	COBOL Source Considerations
	EXCUSRSRC Function Example

	MAX Function Field
	Examples

	Function Field
	Example

	MTRCD Device Function
	PRTFIL Device Function
	Default Processing
	Device Considerations
	Parameter Considerations

	PRTOBJ Device Function
	RTVMSG Message Function
	Specifying RTVMSG

	RTVOBJ Database Function
	Effects of Restrictor Parameters
	Effects of Positioner Parameters
	Effects of No Parameters

	SELRCD Device Function
	SNDCMPMSG Message Function
	Example

	SNDERRMSG Message Function
	SNDINFMSG Message Function
	SNDSTSMSG Message Function
	Example

	SUM Function Field
	USR Function Field
	Default Prototype Functions

	4: ILE Programming
	Choosing RPGIV as the Default Language
	ILE Features That Affect CA
	Program Creation
	Program Calling

	Generating RPGIV Source
	Control (H) Specifications

	Compiling RPGIV Source
	Option O
	Option T

	RPGIV User Source
	Model Value YRP4SGN
	RPGIV Generator Notes
	Service Program Design and Generation
	Service Program Overview
	Service Program Functions
	Edit Function Details Panel
	Adding Modules and Procedures

	The YBNDDIR Model Value
	Specifying *NONE
	Specifying a Value Other Than *NONE

	5: Web Service Creation
	Approach
	Installation Requirements
	Required IBM PTFs
	PCML in Module

	Architecture
	Web Services Limitations
	Sample Flow
	Commands
	YCRTWS (Create Web Service Instance)
	YUNSWS (Uninstall Web Service)

	Web Service Remote Deployment
	References

	6: IBM i Database Trigger Support
	Implementing Triggers
	Typical Trigger Implementation
	CA 2E Trigger Implementation

	CA 2E Model Support
	Performing Administrative Tasks
	Creating Trigger Functions
	Editing Trigger Functions
	Editing Trigger Parameters
	Using Trigger Commands
	Convert Trigger Data (YCVTTRGDTA)
	Start Trigger Server (YSTRTTRGSVR)
	End Trigger Server (YENDTRGSVR)
	Work with Trigger References (YWRKTRGREF)
	Reload Trigger References (YRLDTRGREF)

	Model to Run-Time Conversion
	Run-Time Support
	Trigger Router
	Trigger Server
	Trigger Runtime Externalization

	7: Modifying Function Options
	Understanding Function Options
	Specifying Function Options
	Choosing Your Options

	Identifying Standard Function Options
	Database Changes
	Create
	Change
	Delete
	Display Features
	Confirm
	Initial Confirm Value
	Standard Header/Footer Selection
	If Action Bar, What Type?
	Subfile Select
	Subfile End Implementation
	Dynamic Program Mode
	Exit After Add
	Repeat Prompt
	Bypass Key Screen
	Post Confirm Pass
	Send All Messages Option
	Exit Control
	Reclaim Resources
	Closedown Program
	Copy Back Messages
	Commitment Control
	Using Commitment Control
	Exception Routine
	Generate Exception Routine
	Generation Options
	Generation Mode
	Generate Help
	Help Type for NPT
	Generate as a Subroutine
	Share Subroutine
	Screen Text Constants
	Execution Location
	Overrides if Submitted Job
	Environment
	Workstation Implementation
	Distributed File I/O Control
	Null Update Suppression

	Identifying Standard Header/Footer Function Options
	Standard Header/Footer Function Options
	132 Column Screen
	Enable Selection Prompt Text
	Allow Right to Left/Top to Bottom
	Function Options for Setting Header/Footer Defaults
	Use As Default for Functions
	Is This an Action Bar
	Is This a Window
	Design and Usage Considerations
	Examples
	Example 1
	Example 2
	Example 3

	8: Modifying Function Parameters
	Understanding Function Parameters
	Identifying the Basic Properties
	Name
	Usage Type
	Input Only
	Output Only
	Both (Input/Output)
	Neither

	Flag Error Status
	Identifying Default Parameters
	Identifying the Return Code

	Understanding the Role of the Parameter
	Map Parameter
	Restrictor Parameter
	Using Restrictor Parameters
	Single-Record Panel Design Without a Restrictor
	Single-Record Panel Design with a Restrictor
	Multiple-Record Panel Design without a Restrictor
	Multiple-Record Panel Design with a Restrictor
	Virtual Fields and Restrictors on Subfiles
	A1 to B1
	A1 to B2
	Example of Virtual Restrictor Usage

	Device Design with Restricted Virtual Fields
	Device Design Without Restricted Virtual Fields

	Positioner Parameter
	Vary Parameter
	Allowed Parameter Roles

	Defining Function Parameters
	Defining Parameters with the Edit Function Parameters Panel
	Non-unique Sequence Numbers
	Identifying Functions with a Non-unique Parameter Sequence
	Resolving Function with a Non-unique Parameter Sequence Number

	Invalid Duplicate Parameter fields
	Identifying Functions with Invalid Duplicate Parameter Fields
	Rectifying Functions with Invalid Duplicate Parameter Fields

	Defining the Parameter’s Usage and Role
	Parameter Usage Restrictions
	Parameter Usage Matrix

	Defining Parameters While in the Action Diagram
	Specifying Parameters for Messages
	Using Arrays as Parameters
	Multiple-Instance Restrictions

	9: Modifying Device Designs
	Understanding Device Designs
	Basic Properties of Device Designs
	Design Standard
	Presentation Convention for CA 2E Device Designs
	Default Device Design
	Device Design Formats
	Device Design Fields
	Header/Footer Associated with a Device Function
	Access Path to Which the Function Attaches

	Function Parameters

	Panel Design Elements
	Panel Body Fields
	General Rules for Panel Layout
	Panel Layout Subfiles
	Panel Layout Field Usage
	Default Layout of a Single-Record Panel Design
	Default Layout of a Multiple-Record Panel Design
	Default Layout of a Single-and Multiple-Record Panel Design

	National Language Design Considerations
	Device Design Conventions and Styles
	CUA Text
	Windows
	CUA Text Window
	Action Bar
	CUA Text Action Bar
	CUA Entry
	CUA

	System 38
	CUA Device Design Extensions
	Rightmost Text
	Panel Defaults for Rightmost Text

	Standard Headers/Footers
	Function Keys
	IGC Support Function Key
	Function Key Explanations
	Specifying Function Keys
	Subfile Selector Values
	Panel Design Explanatory Text
	Positioning of the Explanatory Text
	Function Key Explanatory Text
	Subfile Selector Value Explanatory Text
	Form of the Explanatory Text
	CUA Entry Format
	CUA Text Format
	Specifying Panel Design Explanatory Text

	Changing the Number of Function Key Text Lines
	Table of Panel Design Attributes

	Editing Device Designs
	Editing the Device Design Layout
	From the Edit Database Relations Panel
	From the Open Functions Panel
	From the Edit Function Details Panel
	From the Edit Model Object List Panel
	Changing Fields
	Hiding/Dropping Fields
	Setting the Subfile End Indicator
	Editing Device Design Function Keys
	Modifying Field Label Text
	Changing Display Length of Output-Only Entries
	Displaying Device Design Formats
	Editing Device Design Formats
	Viewing and Editing Format Relations
	1. Required Relations
	2. Optional Relations
	3. Dropped Relations
	4. User Relations
	5. No-Error Relations

	Adding Function Fields
	Modifying Function Fields
	Deleting Function Fields
	Adding Constants
	Deleting Constants
	Modifying Action Bars
	CUA Text Standard Action Bars
	File
	Function
	Selector
	Help
	Modifying Windows
	Modify the defaults to meet your requirements. Modifying Display Attributes and Condition Fields
	Editing Panel Design Prompt Text
	Function Key Text
	Subfile Selector Text
	Selector Role
	Add SFLFOLD/SFLDROP to a Subfile Function
	Example SFLFOLD/SFLDROP

	ENPTUI for NPT Implementations
	Creating Menu Bars
	Assigning Sequence Numbers for Actions
	Working with Choices
	Specifying a Drop-Down Selection Field
	Defaulting of Prompt Type
	Some Specifics of Drop-Down Lists
	Mnemonics
	National Language
	Assigning Cursor Progression
	Cursor Progression and Subfiles
	Setting an Entry Field Attribute
	Assigning Multi-Line Entry
	Using an Edit Mask
	Edit Mask - ZIP + 4 Example

	Editing Report Designs
	Standard Report Headers/Footers
	Understanding PRTFIL and PRTOBJ
	PRTFIL
	PRTOBJ
	Modifying Report Design Formats
	Automatic Choice of Report Formats
	Automatic Choice of Report Fields
	Defining Report Designs
	Suppressing Formats
	Hiding
	Dropping

	Modifying Spacing Between Formats
	Specifying Print on Overflow
	Changing Indentation
	Absolute
	Relative

	Modifying Indentation
	Defining the Overall Report Structure
	Modifying the Overall Report Structure
	Defining Print Objects Within Report Structure
	Using Line Selection Options
	Linking Print Functions
	Zooming into Embedded Print Objects
	Using Function Fields on Report Design
	Report Design Example
	Example 1: Simple Report Design
	Relations
	Access Path Entries
	Default Report Formats
	Report Design Fields by Format
	Function Fields
	Modified Report Layout

	Example 2: Extended Report Design
	County Report Segment
	County Default Report Design
	County Modified Report Design
	Distributor Report Segment
	Distributor Relations
	Distributor Access Path Entries
	Area Access Path Entries
	Distributor PRTOBJ Functions
	Distributor Modified Report Design
	Address Report Segment
	Address RTV Access Path Entries
	Address PRTOBJ Functions
	Address Modified Report Design
	Order Report Segment
	Order RSQ Access Path Entries
	Order PRTOBJ Functions
	Order Function Fields
	Order Modified Report Design
	Overall Device Structure
	Parameters to PRTOBJ Functions
	Function Fields
	Overall Report Design

	Device User Source
	When to Use Device User Source
	Understanding Device User Source
	Attachment Levels
	Special Field-Level Attachment
	Defining a Device User Source Function
	Attaching Device User Source to a Device Design
	Entry-Level Device User Source
	Explicitly Attaching Entry-Level Device User Source
	Attaching Device User Source to a Field
	Working with Inherited Entry-Level Attachments
	Overriding an Inherited Entry-Level Attachment
	Merger Commands for Device User Source
	Command Syntax
	Alphabetical List of Merger Commands
	(asterisk) or #(pound sign) indicate that the entire line is a comment.
	No Operation
	FIND
	INSERT
	MARK
	OVERLAY
	Examples
	PAINT
	POSITION
	QUIT
	REPLACE
	SCAN
	SKIP
	Notes
	UPDATE
	Notes

	Device User Source Example
	Copying Functions That Contain Attached Device User Source
	Reference Field
	Documenting Functions
	Guidelines for Using Device User Source
	Attachment Levels Are Not Hierarchical

	Understanding Extents
	Visualizing Extents
	Examples of ‘Painting’ Functions
	Contents of Extents
	Device Extent
	Format Extent
	Entry Extent
	Screen Extent

	Device Source Extent Stamp (DSES)
	Examples of Device Source Extent Stamp

	10: Modifying Action Diagrams
	Understanding Action Diagrams
	The Edit Database Relations Panel
	The Open Functions Panel
	The Edit Function Details Panel
	The Display All Functions Panel
	Specifying an Action in an Action Diagram
	Adding an Action
	Specifying a Function as an Action

	Naming a Function as an Action
	Specifying Parameters for an Action Function
	Calling a Function with a Parameter Passed as Array

	User Points
	Understanding Constructs
	Sequential
	Conditional
	Iterative
	Capabilities of Constructs

	Understanding Built-In Functions
	Add
	Example

	Commit
	Example

	Compute
	Defining a Compute Expression
	Concatenation
	Convert Variable
	Example 1
	Example 2

	Date Details
	Example

	Selection Parameters for Date Built-In Functions
	Date Increment
	Example
	Divide
	Example
	Divide with Remainder
	Duration
	Elapsed Time
	Exit Program
	New Topic
	Modulo
	Move
	*MOVE ARRAY Built-in Function
	*MOVE ARRAY Parameters
	*MOVE ARRAY Examples
	*MOVE ARRAY Usage

	Considerations for Date and Time Field Types
	Valid Moves
	Invalid Moves
	Move All
	Example

	Multiply
	Example

	Quit
	Retrieve Condition
	New Topic

	Rollback
	Retrieve Field Information
	Set Cursor
	Substring
	Subtract
	Time Details
	Time Increment

	Calculation Assumptions and Examples for Date Built-In Functions
	Business and Everyday Calendars
	Business Calendar
	Everyday Calendar

	*DATE INCREMENT Rules and Examples
	*DURATION Rules and Examples

	Understanding Contexts
	Database Contexts
	DB1
	DB2
	ELM

	Move from a Field to a Structure
	Move from a Structure to a Field
	Device Contexts
	KEY
	DTL
	2ND
	3RD
	CTL
	RCD
	CUR
	NXT

	Literal Contexts
	CND
	CON

	System Contexts
	JOB
	PGM
	*Program Mode
	*Return Code
	*Reload Subfile
	*Record Data Changed
	*Record Selected
	*Scan Limit
	*Defer Confirm
	*Print Format
	*Continue Transaction
	*Next RDB
	*Cursor Field
	*Cursor Row and *Cursor Column
	*Re-Read Subfile Record

	Differences in Subfile Processing Between EDTTRN and DSPTRNs Compared to DSPFIL, EDTFIL, and SELRCDs
	*Synon Work field (15,0) to (17,9)
	*Initial Call
	*Sbmjob override string
	*Sbmjob job name, *Sbmjob job user, *Sbmjob job number

	Function Contexts
	PAR
	LCL
	Special Considerations

	NLL
	Benefits
	Generic RTVOBJ

	WRK
	ARR
	Multiple-instance Arrays and the ARR Context

	Enhanced Array Support
	Enhanced Array Support Terms
	Enhanced Array Support Restrictions
	Performance Considerations for Multiple-Instance Array Parameters
	Generated Source
	Enhanced Array Support Usage
	Edit Function Parameters Panel
	Edit Function Parameter Details Panel
	Edit Action Diagram Panel

	Understanding Conditions
	Condition Types
	Values (VAL) Conditions Type
	Values List (LST) Condition Type
	Compare (CMP) Condition Type
	Examples
	Range (RNG) Condition Type
	Example

	Compound Conditions
	Defining Compound Conditions

	Understanding Shared Subroutines
	Externalizing the Function Interface
	Using Shared Subroutines with EDTFIL, EDTTRN, EDTRCD

	Understanding the Action Diagram Editor
	Selecting Context
	Entering and Editing Field Conditions
	Adding Conditions
	Deleting Conditions

	Line Commands
	I (Insert)
	M or MM (Move) (A or B)
	C or CC (Copy) (A or B)
	D or DD (Delete)
	N (Narrative)
	PR (Protect)
	R (References)
	U (Usages)
	V (View Summary)
	S (Show)
	H (Hide)
	Z (Zoom)

	Adding an Action --IA Command
	Deleting Constructs--D Line Commands
	Moving a Construct--M and A Line Commands
	Function Keys

	Using NOTEPAD
	NOTEPAD Line Commands
	NI (NOTEPAD Insert)
	NA or NAA (NOTEPAD Append)
	NR or NRR (NOTEPAD Replace)
	User-Defined *Notepad Function

	*, ** (Activate/Deactivate)
	Protecting Action Diagram Blocks
	Protecting a Block

	Using Bookmarks
	Submitting Jobs Within an Action Diagram
	Inserting a SBMJOB in an Action Diagram
	Defining SBMJOB Parameter Overrides
	Source Generation Overrides
	Dynamic Overrides
	Special SBMJOB Considerations
	Advantage of SBMJOB Over Execute Message

	Viewing a Summary of a Selected Block
	Using Action Diagram Services
	Scanning for Specified Criteria or Errors
	Calling Functions Within an Action Diagram
	Calling an External Function
	Calling an Internal Function

	Additional Action Diagram Editor Facilities
	Editing the Parameters
	Toggling to Device Designs
	Full Screen Mode
	Toggling Display for Functions and Messages
	Starting Edits for Multiple Functions
	Starting an Edit for Another Function
	Copying from One Function’s Action Diagram to Another Using NOTEPAD
	Modifying Function Parameters
	Switching from Action Diagram Directly to Function Device Design

	Exiting Options
	Exiting a Single Function
	Exiting All Open Functions
	Exiting a Locked Function
	Interactive Generation or Batch Submission

	Understanding Action Diagram User Points
	Change Object (CHGOBJ)
	USER: Processing Before Data Read
	USER: Processing if Data Record Not Found
	USER: Processing After Data Read
	USER: Processing Before Data Update
	USER: Processing After Data Update

	Create Object (CRTOBJ)
	USER: Processing Before Data Read
	USER: Processing Before Data Update
	USER: Processing if Data Record Already Exists
	USER: Processing if Data Update Error
	USER: Processing after Data Update

	Delete Object (DLTOBJ)
	USER: Processing Before Data Update
	USER: Processing Before Data Read

	Display File (DSPFIL)
	USER: Initialize Program
	USER: Initialize Subfile Control
	USER: Initialize Subfile Record from DBF Record
	CALC: Subfile Control Function Fields
	USER: Process Subfile Control (Pre-Confirm)
	CALC: Subfile Record Function Fields
	USER: Process Subfile Record (Pre-Confirm)
	USER: Process Subfile Record (Post-Confirm)
	USER: Process Subfile Record (Post-Confirm Pass)
	USER: Process Command Keys
	USER: Exit Program Processing

	Display Record (DSPRCD)
	USER: Initialize Program
	USER: Load Detail Screen from DBF Record
	USER: Process Key Screen Request
	CALC: Detail Screen Function Fields
	USER: Validate Detail Screen
	USER: Perform Confirmed Action
	USER: Process Command Keys
	USER: Exit Program Processing

	Display Transaction (DSPTRN)
	USER: Initialize Program
	USER: Initialize Subfile Record
	USER: Validate Header Non-key Fields
	USER: Validate Header Non-key Relations
	USER: Validate Subfile Record Fields
	USER: Validate Subfile Record Relations
	CALC: Subfile Record Function Fields
	CALC: Header Function Fields
	USER: Validate Totals
	USER: Header Update Processing
	USER: Subfile Record Update Processing
	USER: Process Command Keys
	USER: Exit Program Processing

	Edit File (EDTFIL)
	USER: Initialize Program
	USER: Initialize Subfile Header
	USER: Initialize Subfile Record (New Record)
	USER: Initialize Subfile Record (Existing Record)
	CALC: Subfile Control Function Fields
	USER: Validate Subfile Control
	USER: Validate Subfile Record Fields
	CALC: Subfile Record Function Fields
	USER: Validate Subfile Record Relations
	USER: Create Object
	USER: Delete Object
	USER: Change Object
	USER: Extra Processing After DBF Update
	USER: Process Command Keys
	USER: Exit Program Processing

	Edit Record (EDTRCD)
	USER: Initialize Program
	USER: Initialize Detail Screen (New Record)
	USER: Initialize Detail Screen (Existing Record)
	USER: Process Key Screen Request
	USER: Delete Object
	USER: Validate Detail Screen Fields
	CALC: Detail Screen Function Fields
	USER: Validate Detail Screen Relations
	USER: Create Object
	USER: Change Object
	USER: Process Command Keys
	USER: Exit Program Processing

	Edit Transaction (EDTTRN)
	USER: Initialize Program
	USER: Initialize Screen for New Transaction
	USER: Initialize Screen for Old Transaction
	USER: Validate Header Key Fields
	USER: Validate Header Key Relations
	USER: Load Existing Header
	USER: Initialize Subfile Record (Old Record)
	USER: Initialize Subfile Record (New Record)
	USER: Validate Header Non-key Fields
	USER: Validate Header Non-key Relations
	USER: Validate Subfile Record Fields
	USER: Validate Subfile Record Relations
	CALC: Subfile Record Function Fields
	CALC: Header Function Fields
	USER: Validate Totals
	USER: Create Header DBF Record
	USER: Change Header DBF Record
	USER: Delete Header DBF Record
	USER: Create Detail DBF Record
	USER: Change Detail DBF Record
	USER: Delete Detail DBF Record
	USER: Process Detail Record
	USER: Process Command Keys
	USER: Exit Program Processing

	Print File (PRTFIL) – Print Object (PRTOBJ)
	USER: Initialize Program
	USER: Record Selection Processing
	USER: Process Top of Page
	USER: Null Report Processing
	USER: On Print of File nnn Key xxx Format
	USER: On Print of Detail Format
	USER: On Print of End of Report Format

	Prompt and Validate Record (PMTRCD)
	USER: Initialize Program
	USER: Load Screen
	USER: Process Command Keys
	USER: Validate Fields
	CALC: Screen Function Fields
	USER: Validate Relations
	USER: User Defined Action
	USER: Exit Program Processing

	Retrieve Object (RTVOBJ)
	USER: Initialize Routine
	USER: Processing if Data Record Not Found
	USER: Process Data Record
	USER: Exit Processing

	Select Record (SELRCD)
	USER: Initialize Program
	USER: Load Subfile Record from DBF Record
	USER: Process Subfile Control
	USER: Process Selected Line
	USER: Process Changed Subfile Record
	CALC: Screen Function Fields
	USER: Process Command Keys
	USER: Exit Program Processing

	Understanding Function Structure Charts

	11: Copying Functions
	Creating a New Function from One That Exists
	From the Edit Functions Panel
	From a Template Function
	From the Exit Panel

	Cross-Type Copying
	What Copying Preserves
	Output/Input Fields
	What to Revisit
	Device Design
	Action Diagram User Points

	Function Templates
	Understanding Function Templates
	Creating a Template Function
	Special Considerations for EDTTRN/DSPTRN Template Functions
	Using a Template Function to Create a New Function
	Copying Internally-Referenced Template Functions
	Creating and Naming Referenced Functions
	Assigning Access Paths for Referenced Functions
	Defaulting Parameters for Referenced Functions
	Device Designs

	12: Deleting Functions
	Deleting a Function

	13: Generating and Compiling
	Requesting Generation and Compilation
	The Display Services Menu
	The Edit Functions Panel
	The Exit Function Definition Panel
	The Edit Model Object List Panel

	Compile Preprocessor

	14: Documenting Functions
	Printing a Listing of Your Functions
	Including Narrative Text
	Comparing Two Functions

	15: Tailoring for Performance
	Building an Application
	Using Display File, not Menu Options

	Determining Program Size
	Optimizing Program Objects

	Fine Tuning
	Selecting the Function Type
	Specifying the Right Level of Relations Checking
	Action Diagram Editing

	Construct Resolution in Code
	Using Single Compound Conditions
	Selecting the Proper User Points

	16: Creating Wrappers to Reuse Business Logic
	Selecting Action Diagram Statements
	Selecting Function Name and Type
	Automatic Parameter Interface Generation
	Original Contexts
	The Newly Created Function
	The Newly Created Array
	The Parameter Definitions
	The Control Context
	The Record Context
	The WRK Context
	The New Action Diagram

	A: Function Structure Charts
	Change Object
	Create Object
	Delete Object
	Display File (Chart 1 of 5)
	Display File (Chart 2 of 5)
	Display File (Chart 3 of 5)
	Display File (Chart 4 of 5)
	Display File (Chart 5 of 5)
	Display Record (Chart 1 of 5)
	Display Record (Chart 2 of 5)
	Display Record (Chart 3 of 5)
	Display Record (Chart 4 of 5)
	Display Record (Chart 5 of 5)
	Display Record– 2 Panels (Chart 1 of 7)
	Display Record – 2 Panels (Chart 2 of 7)
	Display Record – 2 Panels (Chart 3 of 7)
	Display Record – 2 Panels (Chart 4 of 7)
	Display Record – 2 Panels (Chart 5 of 7)
	Display Record – 2 Panels (Chart 6 of 7)
	Display Record – 2 Panels (Chart 7 of 7)
	Display Record – 3 Panels (Chart 1 of 8)
	Display Record – 3 Panels (Chart 2 of 8)
	Display Record – 3 Panels (Chart 3 of 8)
	Display Record – 3 Panels (Chart 4 of 8)
	Display Record – 3 Panels (Chart 5 of 8)
	Display Record – 3 Panels (Chart 6 of 8)
	Display Record – 3 Panels (Chart 7 of 8)
	Display Record – 3 Panels (Chart 8 of 8)
	Display Transaction (Chart 1 of 6)
	Display Transaction (Chart 2 of 6)
	Display Transaction (Chart 3 of 6)
	Display Transaction (Chart 4 of 6)
	Display Transaction (Chart 5 of 6)
	Display Transaction (Chart 6 of 6)
	Edit File (Chart 1 of 7)
	Edit File (Chart 2 of 7)
	Edit File (Chart 3 of 7)
	Edit File (Chart 4 of 7)
	Edit File (Chart 5 of 7)
	Edit File (Chart 6 of 7)
	Edit File (Chart 7 of 7)
	Edit Record (Chart 1 of 5)
	Edit Record (Chart 2 of 5)
	Edit Record (Chart 3 of 5)
	Edit Record (Chart 4 of 5)
	Edit Record (Chart 5 of 5)
	Edit Record – 2 Panels (Chart 1 of 9)
	Edit Record – 2 Panels (Chart 2 of 9)
	Edit Record – 2 Panels (Chart 3 of 9)
	Edit Record – 2 Panels (Chart 4 of 9)
	Edit Record – 2 Panels (Chart 5 of 9)
	Edit Record – 2 Panels (Chart 6 of 9)
	Edit Record – 2 Panels (Chart 7 of 9)
	Edit Record – 2 Panels (Chart 8 of 9)
	Edit Record – 2 Panels (Chart 9 of 9)
	Edit Record – 3 Panels (Chart 1 of 10)
	Edit Record – 3 Panels (Chart 2 of 10)
	Edit Record – 3 Panels (Chart 3 of 10)
	Edit Record – 3 Panels (Chart 4 of 10)
	Edit Record – 3 Panels (Chart 5 of 10)
	Edit Record – 3 Panels (Chart 6 of 10)
	Edit Record – 3 Panels (Chart 7 of 10)
	Edit Record – 3 Panels (Chart 8 of 10)
	Edit Record – 3 Panels (Chart 9 of 10)
	Edit Record – 3 Panels (Chart 10 of 10)
	Edit Transaction (Chart 1 of 8)
	Edit Transaction (Chart 2 of 8)
	Edit Transaction (Chart 3 of 8)
	Edit Transaction (Chart 4 of 8)
	Edit Transaction (Chart 5 of 8)
	Edit Transaction (Chart 6 of 8)
	Edit Transaction (Chart 7 of 8)
	Edit Transaction (Chart 8 of 8)
	Prompt and Validate Record (Chart 1 of 2)
	Prompt and Validate Record (Chart 2 of 2)
	Print File (Chart 1 of 5)
	Print File (Chart 2 of 5)
	Print File (Chart 3 of 5)
	Print File (Chart 4 of 5)
	Print File (Chart 5 of 5)
	Print Object (Chart 1 of 5)
	Print Object (Chart 2 of 5)
	Print Object (Chart 3 of 5)
	Print Object (Chart 4 of 5)
	Print Object (Chart 5 of 5)
	Retrieve Object
	Select Record (Chart 1 of 4)
	Select Record (Chart 2 of 4)
	Select Record (Chart 3 of 4)
	Select Record (Chart 4 of 4)

	B: How to Create a Deployable Web Service Using a Multiple-instance Array
	Define the Files
	Define the Order Details Array
	Create an EXCEXTFUN to Retrieve the Order Header and Order Details
	Retrieve the Order Header
	RTV Order Detail (*Arrays)
	CRT Order Detail (*Arrays)
	Load Order Detail Array (Order detail)
	EEF RTV Order (Order detail)

	Set the EXCEXTFUN to a Module
	Generate and Compile the Module
	Create a Service Program
	Add the Module to the Service Program
	Generate and Compile the Service Program
	Create a Web Service Function
	Deploy the Web Service Instance
	*MOVE ARRAY (*ALL)

	Index

