

Defining a Data Model
Release 8.6.00

CA 2E

This documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as
the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2011 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

If you would like to provide feedback about CA Technologies product documentation,
complete our short customer survey, which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introducing Data Modeling 11

Understanding Data Modeling ... 11

What is a Data Model? .. 11

The Life Cycle of Application Development ... 12

Advantages of a Data-Driven Approach ... 13

The CA 2E Approach to Data Modeling .. 14

Example of a CA 2E Data Model ... 15

Chapter 2: Developing a Conceptual Model 17

Before You Begin .. 17

Overview .. 18

Goals of Your Conceptual Model ... 18

Identifying Entities and Attributes ... 19

Step 1: Identifying Primary Entities ... 20

Generalization and Differentiation of Entities .. 22

Step 2: Identifying Entity Attributes .. 23

Domains ... 25

Identifying Relations... 25

Data Relationship Connections ... 26

Step 1: Identifying Relations Between Entities ... 27

Step 2: Selecting Primary Key (Unique Identifier) for an Entity .. 29

Implementing Entity To Entity Relationships .. 30

One-to-One Relationship .. 31

One-to-Many Relationship .. 31

Many-to-Many Relationship ... 33

Normalizing Your Data Model .. 35

Functional Dependence .. 35

Full Functional Dependence .. 36

Step 1: Creating First Normal Form (1NF) .. 38

Step 2: Creating Second Normal Form (2NF) ... 40

Step 3: Creating Third Normal Form (3NF) ... 42

CA 2E Basic Relations .. 43

File-to-field Relationships ... 43

File-to-file Relationships ... 44

Considerations .. 45

Performance.. 45

6 Defining a Data Model

Existing Database .. 45

Using Design Tools .. 45

Chapter 3: Understanding Your Data Model 47

CA 2E Data Model .. 47

CA 2E Data Model Objects .. 48

From Your Conceptual Model to a CA 2E Data Model .. 48

Edit Database Relations Panel .. 49

Using Files ... 49

CA 2E Files ... 50

Properties of CA 2E Files ... 50

Default Functions for REF and CPT Files .. 51

CA 2E File versus i OS File .. 52

Using Fields .. 52

CA 2E Fields ... 53

Properties of CA 2E Fields ... 53

Overriding CA 2E Default Field Attributes ... 55

Field Usages .. 55

Defining a Field as a Data Area ... 57

Shipped CA 2E Field Types .. 57

Displaying Existing Field Types .. 58

Field Type Default Characteristics ... 59

Using Field Edit Codes ... 66

Description and Usage of Field Types ... 67

ISO Date .. 71

Ideographic Character Text ... 78

Defining Function Fields as REF Fields .. 87

Using Function Fields .. 97

Using Conditions .. 102

Properties of Conditions ... 102

Condition Types .. 103

Status Field Conditions .. 103

Non-Status Field Conditions .. 106

Using Relations ... 108

CA 2E Relations ... 108

Relation Types ... 109

Relation Usage Groups .. 109

CA 2E Relations ... 109

Specifying Relations .. 114

File-to-file Relationships ... 114

File-to-field Relationships ... 115

Contents 7

Describing and Using CA 2E Relations ... 115

Owned by Relation .. 117

Known by Relation .. 120

Examples of Using Known by Relation .. 120

Qualified by Relation ... 122

Examples of Using Qualified by Relations ... 123

Extended by Relation .. 124

Example of Using Extended by Relations .. 125

Refers to Relation .. 127

Example of Using Refers to Relations ... 128

Has Relation .. 128

Example of Using Has Relations .. 129

Includes Relation ... 130

Examples of Using Includes Relations ... 130

Relation Sequencing .. 131

Using For Text and Sharing with Relations .. 131

For Text ... 132

Examples of Using For Text ... 133

Sharing .. 135

Example of Sharing .. 136

Use of For Text for a Parts Assembly .. 137

Adding Virtual Fields to File-to-file Relations .. 141

Circularity .. 143

Chapter 4: Creating/Defining Your Data Model 147

Before You Begin .. 147

Using CA 2E Model Management Facilities .. 148

Edit Database Relations Panel ... 148

Edit Model Object List Panel ... 150

Defining Your Data Model .. 151

Step 1: Defining Files ... 151

Object/Referenced Object File .. 151

File Name .. 152

File Type .. 152

Capture Files ... 152

Reference Files .. 152

Structure Files ... 153

Adding Files ... 154

Step 2: Defining Fields ... 155

Field Name .. 155

Field Types .. 156

8 Defining a Data Model

Reference Field ... 156

Field Types for Referenced Objects .. 157

Specifying Field Types ... 158

Step 3: Entering Relations ... 159

Relation Sequencing .. 159

CA 2E Relation Types Charts ... 161

Levels of Entry ... 164

Entry Types .. 164

Key Field Entries .. 164

Attribute Field Entries ... 165

Virtual Field Entries ... 165

Overriding Entries ... 165

Replacing Entries ... 166

Sharing Entries .. 167

Redirection .. 168

Redirecting Entries .. 168

Redirection of Qualifier Fields ... 169

Example of Redirecting Qualifier Fields .. 169

Example of Redirecting a Reference to a Qualified File .. 170

Procedures for Working with Entries .. 171

Display File Entries .. 172

The Edit File Entries Panel ... 172

Replace File Entries ... 172

Display Referenced Field Details Panel ... 173

Display/Redirect Relation Entries ... 173

Display Relation Entries Panel ... 174

Edit Redirected Fields Panel .. 174

Modifying For Text and Sharing Entries .. 175

Chapter 5: Maintaining Your Data Model 177

Displaying File Entries... 177

Edit File Entries Panel .. 177

Display File Entries .. 178

Adding/Modifying Field Information .. 178

Using the Edit Field Details Panel .. 179

Change Field Name and/or Type ... 181

Change Field Length .. 181

Add Narrative Text .. 182

Change Field Text and Headings ... 182

Change Valid System Name (VNM) ... 182

Adding/Modifying Conditions .. 183

Contents 9

Condition Types .. 183

Using the Edit Field Conditions Panel ... 184

Add New Conditions .. 185

To Modify Existing Conditions: .. 187

Using VAL and LST Conditions ... 187

Validating Field Entries Using Check Condition ... 188

Changing Default Conditions ... 189

Changing Translate Condition Values ... 190

Converting Conditions to List of Values .. 191

Adding/Modifying Virtual Fields... 191

Virtual Fields and Access Paths ... 192

Example of Using Virtual Fields ... 192

Virtualizing Virtual Fields .. 193

Related Procedures for Maintaining Your Model .. 194

Files ... 194

Add Narrative Text .. 194

Change a File Name ... 195

Delete a File .. 195

Fields ... 196

Delete a Field .. 196

Conditions ... 196

Delete a Condition .. 196

Relations.. 197

Add Narrative Text .. 197

Change a Relation ... 197

Override Default Relations Sequence ... 197

Delete a Relation ... 198

Creating User-Defined Field Types ... 198

Name and Text .. 199

Basic Attributes ... 199

Internal and External Length ... 199

Mapping Functions .. 200

Defining New Field Types .. 201

Edit Field Type Panel ... 202

Specifying Basic Attribute Values .. 202

Specifying Mapping Functions .. 206

Specifying Additional Attribute Values ... 208

Example: Defining a Century date Field Type (DTX) .. 209

Defining Parameters for the Mapping Functions .. 210

Defining the Mapping Functions ... 210

Supplying Parameters to Mapping Functions ... 211

Field Mapping Function Parameters Panel ... 212

10 Defining a Data Model

Specifying Additional Parameters for Mapping Functions .. 212

Mapping Function Parameters: Panel/Report Entry Level.. 213

Screen Field Mapping Parameters Panel .. 213

Example: Defining a Currency Field Type (CUR) .. 214

Example: Defining a Real Percentage Field (PCX) ... 228

Ext/Int mapping function parameters:.. 232

Int/Ext mapping function parameters:.. 233

Chapter 6: Documenting Your Data Model 237

Related Information ... 237

Documenting Files, Fields, Relations, and Application Areas ... 237

CA 2E Documentation Commands ... 238

Using Documentation Commands via Display Services Menu .. 239

Using Documentation Commands from a Command Line .. 239

Viewing the Documentation .. 240

Documentation Commands Output Listings .. 241

Chapter 7: Assimilation 245

Understanding Assimilation ... 245

Degrees of Assimilation ... 246

Using the YRTVPFMDL Command .. 246

Parameters/Functions ... 247

Adding Extra Information to Assimilated Files ... 247

Editing i OS Physical File Format Entries .. 248

Considerations ... 249

Changing Field Name and Attribute Type .. 249

Prefix ... 249

Duplicate Field Names .. 249

Inconsistent Implicit Data Model ... 250

Examples of Inconsistency .. 250

Date Formats .. 250

Using Extended by Relations in Assimilated Files .. 251

Example of Using Extended by Relations .. 251

Assimilation Procedure .. 252

Index 253

Chapter 1: Introducing Data Modeling 11

Chapter 1: Introducing Data Modeling

This chapter provides an overview of basic concepts of data modeling and how CA 2E
(formerly known as Advantage 2E) handles data modeling. Its purpose is to help you
understand data modeling and to prepare you for building and maintaining a data
model with CA 2E.

This section contains the following topics:

Understanding Data Modeling (see page 11)
The Life Cycle of Application Development (see page 12)
Advantages of a Data-Driven Approach (see page 13)
The CA 2E Approach to Data Modeling (see page 14)
Example of a CA 2E Data Model (see page 15)

Understanding Data Modeling

Data modeling is a method of representing the real world. To CA 2E, data modeling is
particularly important because a data model is the basis of everything that is designed
within CA 2E.

What is a Data Model?

A data model is a structured description of a set of data and its relationships, which
represent the business of an organization. A data model bears the same relation to the
organization it models as a map does to the terrain it represents.

A data model does not comprise in itself the true structure of an organization's
business, but rather an acceptably simplified view of it. This structure may be subjected
to certain stringent tests to verify that it can be considered an efficient, self-contained
system.

Your data model should be comprehensive and consistent in order to accurately reflect
the data and data interconnections of the organization your application supports.

A properly defined and structured data model helps you design a correct database,
which is essential to the successful implementation of your application system.

The Life Cycle of Application Development

12 Defining a Data Model

The Life Cycle of Application Development

The life cycle of application development covers the tasks required to start, complete,
and maintain an application. The tasks start with planning and conclude with
maintenance activities.

To help eliminate errors and misunderstandings, you need a structured language to
depict the requirements. It must be something that everyone understands and can be
interpreted in only one manner. You use data modeling to create this structure.

Data modeling shows how things (entities) are related and interact with each other.
Data modeling techniques are very structured and defined so that an idea can be
represented in only a single way. This approach enables you to eliminate ambiguities.

CA 2E uses data modeling to capture and describe application specifications. These
specifications reflect the user's requirements. Once these requirements are represented
by the data model and agreed to by the users, the other tasks in the application life
cycle will use this information to develop the application. With correct information in
the data model, many errors and changes will be eliminated in the later stages of the life
cycle. This makes for a more efficiently developed application.

Advantages of a Data-Driven Approach

Chapter 1: Introducing Data Modeling 13

Advantages of a Data-Driven Approach

With a process-driven approach, you define your functions and programs first and try to
fit the data required into the processes. With a data-driven approach, you begin with
defining the data first. Each data element is defined once and only once.

A data-driven approach eliminates data redundancy and sets the stage for normalizing
the database, making it easier to be accessed and maintained.

Defining a data model helps insulate the data structure from the process logic. That is,
when process logic or flow changes, the data structure or model does not need to
change. Since process logic is more susceptible to change than the data model, the
structure is easier to maintain. Using an Order Entry example: if the Order information is
defined by the order entry transaction, the database is likely to change when the
transaction changes. On the other hand, if the order information is defined based on all
the information that users think of regarding an order, the data structures are likely to
accommodate any set of transactions.

Your data model restricts the number of allowable operations and suggests processes
that can operate on the data. Some database functions are common to all entities
regardless of their structure. For example, editing a Customer entity is the same process
as editing a Supplier entity although they have different entity attributes. Inquiry and
reporting processes are possible for all entities.

This set of processes leads to process structures that can become building blocks for
larger, more complex processes. By reducing or eliminating redundancy, processes are
easier to manage and maintain.

The CA 2E Approach to Data Modeling

14 Defining a Data Model

The CA 2E Approach to Data Modeling

There are several different methodologies for creating and analyzing data models. These
methodologies differ considerably in the degree of rigor and formality of their
approaches, and in the terminology used.

CA 2E takes a data-driven approach to data modeling: it uses the entity-relation (E-R)
modeling method. An E-R model lists the significant business objects of an organization
and the relationships between these objects.

The objects are called entities. Each entity has its own properties, called attributes, that
distinguish it from another entity. For example, a company, person, or product is an
entity; a company ID, a person's name, or a product code is an attribute.

The company entity can be described and uniquely identified by its attribute; for
example, company ID. Other examples of unique identification might be a person by the
person's name, or a product by a product code.

In CA 2E, an entity means a file, and an attribute means a field on the file. The
associations between files or between a field and its file are called relationships.

CA 2E uses the basic English verbs, Known by, Has, Refers to, and Owned by, to
represent these types of relationships. Relationships drive the design process. CA 2E is
able to create the database for an application system entirely and automatically from
the types of relationships it recognizes in a data model.

In addition, CA 2E uses what it knows about relationships and integrity rules stored in a
data model to automatically generate default programs to implement an application.

For more information about entities, attributes, and relationships, see the chapter
"Developing a Conceptual Model."

For more information about types of CA 2E relations and their use, see Chapter 3,
"Understanding Your Data Model."

The following example illustrates a CA 2E data model for a simple Order Entry
application. The model identifies the entities, and their relationships, and the types of
the relationships using four basic relations.

To describe data models, CA 2E uses a simple data modeling language consisting of
statements of the form:

<Subject Verb Object>

Example: A Customer has a Customer name

Example of a CA 2E Data Model

Chapter 1: Introducing Data Modeling 15

Example of a CA 2E Data Model

 Following is an example of a data model used by CA 2E:

A Customer is Known by a Customer code

A Customer Has a Customer name

A Customer Has an Address

A Customer Has a Credit limit

A Product is Known by a Product number

A Product Has a Product price

An Order is Known by an Order number

An Order Refers to a Customer

An Order Has an Order status

An Order Has an Order date

An Order detail is Owned by an Order

An Order detail is Known by a Line number

An Order detail Refers to a Product

An Order detail Has an Order quantity

Chapter 2: Developing a Conceptual Model 17

Chapter 2: Developing a Conceptual Model

This chapter provides direction for developing a conceptual data model based on the
analysis of business information and requirements of your application project.

This section contains the following topics:

Before You Begin (see page 17)
Overview (see page 18)
Goals of Your Conceptual Model (see page 18)
Identifying Entities and Attributes (see page 19)
Domains (see page 25)
Identifying Relations (see page 25)
Normalizing Your Data Model (see page 35)

Before You Begin

You should be familiar with entity relationship diagramming conventions in order to
present the relationships with an ERD.

Overview

18 Defining a Data Model

Overview

You use the conceptual data model to identify and record the specific data elements
needed to store and retrieve information. The data and data connections described by
your model will be used to create files in the database serving your application system.
Your conceptual model will be used to create a model later in CA 2E.

You can build a conceptual data model with pencil and paper. You can also use a variety
of design tools to develop your data model and bring it into CA 2E. If you use design
tools, see Considerations topic in this chapter.

In this chapter, you will

■ Identify the entities, attributes, and relations to represent the business information
you want to describe in your data model.

■ Normalize your model to prepare for entering it into CA 2E.

When you have successfully completed these tasks, you are ready to use CA 2E to create
a data model or to maintain an existing one.

See the chapters "Understanding Your Data Model" and "Creating/Defining Your Data
Model" for more information.

See the chapter "Introducing Data Modeling" for more information about basic concepts
on data modeling and examples of a CA 2E data model.

Goals of Your Conceptual Model

Your conceptual data model should be built so that it can be effectively used to produce
a CA 2E data model. This model will then be generated as a database for your
application.

Your conceptual data model should be:

■ Comprehensive

Every item of information that is relevant to the organization should be recorded. Every
item of information should appear once and only once.

■ Consistent

There should be no mutually incompatible representations of information,
inconsistencies, or conflicting rules about what can be done with the data.

Identifying Entities and Attributes

Chapter 2: Developing a Conceptual Model 19

Identifying Entities and Attributes

This is the first task you perform to begin building a conceptual data model. The purpose
of this task is to produce a list of primary entities and the attributes for those entities.

This task consists of two steps:

■ Step 1 shows you how to identify the primary entities for your model. This step also
discusses generalization and differentiation of the entities.

■ Step 2 shows you how to identify the attributes for your primary entities.

Although you can identify the entities, attributes, and their relationships at the same
time, it may be easier to follow the steps and examples in the order they are listed.

To guide you through and give you a complete picture of the process, a sample of an
Order Entry application and examples will be used for this task.

The same examples will be used again in the next task, Identifying Relations.

Identifying Entities and Attributes

20 Defining a Data Model

Step 1: Identifying Primary Entities

The first task in building your conceptual data model is to review the data items from
your analysis of business information. Determine which are the most pertinent items
and group them into primary entities.

To determine primary entities, select the objects that are important to your business.
The end users of your application can be a good source to help you identify primary
entities. They know what the entities are for their particular business because they
physically handle them everyday.

Customers place orders for products on order entry forms. The company sells products.
Your application needs data to process an order entry form to meet the business
requirements. The following example shows a typical Order Entry form.

ABC Company Customer Copy

Customer Code:

 Phone:

Name

Address Order Number

 Date

Product Code Description Qty Price Total

___________ ___________ ___ _____ ______

___________ ___________ ___ _____ ______

___________ ___________ ___ _____ ______

___________ ___________ ___ _____ ______

For this Order Entry application, you would consider the following primary entities. They
are represented as independent boxes:

 Customer Company

Identifying Entities and Attributes

Chapter 2: Developing a Conceptual Model 21

 Order Product

The entities you have just selected (Customer, Company, Order, and Product) represent
information that is pertinent to this kind of business.

However, you realize there will be situations when some products being ordered may be
out of stock. Those particular products must be put on purchase orders, which will be
placed with specific vendors or suppliers who supply them to the company. Each vendor
or supplier supplies a particular type of product, and you want to be able to distinguish
between products.

You now want to add more entities to represent your requirements:

 Customer Company

 Order Product

 Vendor Purchase
 Order

 Supplier Supply
 Request

Note: Entities should be given precise and concrete names. For example, use Customer
instead of Person, or Country instead of Place. Use singular instead of plural form, such
as Customer, not Customers.

You have identified and listed some entities you think are important to represent and
describe the information needed for your business application. At this point, the list of
entities you produced is the first version of your data model.

Your entities should be constantly re-evaluated, reorganized, and redefined to ensure
that they are really what you meant them to be, and that they can be used as you
intended.

Identifying Entities and Attributes

22 Defining a Data Model

Generalization and Differentiation of Entities

You can refine the information, represented as entities, in your data model as often as
needed to meet your data requirements while designing the database for your
application. This topic explains how you use the two opposite processes called
"generalization" and "differentiation" to refine your identified primary entities.

Generalization and differentiation involve deleting or adding entities to your model. At
this early design phase, these processes affect the number of files that will have to be
created for your application. Generalization and differentiation mean naming and
renaming the entities and attributes, and assigning and reassigning different attributes
to different entities.

With generalization, you combine two entities representing different types of the same
thing into one entity. With differentiation, you divide one entity into two separate ones
because you decide the entity is actually representing two different things, and should
be divided.

Going back to the Order Entry example discussed earlier, you may want to review the
Purchase Order and Supply Request entities. Do you really need both Purchase Order
and Supply Request? Are they both representing the same thing: a customer's request
for a product not in stock, which the company will have to purchase from a specific
vendor or supplier? If you decide they are, then they can be generalized and combined
into one entity:

 Purchase Order

 = Purchase Order

 Supply Request

The Vendor and Supplier can also be generalized and combined into one entity, Vendor,
in the same way. To discuss differentiation, use the Order Entry example again and look
at the Vendor entity.

Does Vendor represent all of the information about a vendor, or are there special
vendors with special information? In this case, a vendor from a foreign country requires
special import and duty information that a native vendor does not require. Because of
this special information, you need to add a new entity:

 Vendor

 Vendor =

 Foreign Vendor

Identifying Entities and Attributes

Chapter 2: Developing a Conceptual Model 23

Step 2: Identifying Entity Attributes

Attributes supply informational detail to the entity. An entity can have one or several
attributes. Each instance of an entity must contain values for all the attributes to define
it. For possible values an attribute can take, see the topic, Domains, at the end of this
step.

Each attribute represents one characteristic of the entity.

Beginning with the Customer entity, you would consider the following its potential
"attributes":

CUSTOMER

Customer Code

Customer Name

Customer Address

Customer Credit Limit

Customer Account Balance

For the Product entity, the attributes would be:

PRODUCT

Product code

Product Name

Product Type

Product Description

After identifying all the attributes for the primary entities of your Order Entry
application, you have a list that looks like this:

Entity Attributes

Customer Customer Code

Customer Name

Customer Address

Customer Credit Limit

Customer Account Balance

Identifying Entities and Attributes

24 Defining a Data Model

Product Product Code

Product Name

Product Type

Product Description

Order Order Code

Order Quantity

Order Line

Vendor ID

Customer Code

Product Code

Vendor Vendor ID

Vendor Name

Vendor Address

Foreign Vendor Foreign Vendor ID

Foreign Vendor Name

Foreign Vendor Address

Foreign Vendor Country

Foreign Vendor Duty Percentage

Purchase Order Purchase Order Code

Purchase Order Quantity

Purchase Order Line

Domains

Chapter 2: Developing a Conceptual Model 25

Domains

The set of possible values an attribute can take is the domain of the attribute. When
modifying your data and describing attributes, it is important to think of their domains.
Each instance of an entity must contain values for all attributes that define the entity.

If an entity contains the attribute City, each instance of the attribute must draw its value
from the domain of City. It cannot draw its value from any other domain.

Two attributes may have common characteristics (the same length, data type, and valid
values) but not share the same domain. The attributes Customer Number and Order
Quantity both may be 6-digit numeric fields. However, they draw their values from
different domains, a Customer Number domain and an Order Quantity domain.

Other attributes may have common characteristics and share the same domain. For
example, Order Quantity and Shipped Quantity are both 6-digit numeric fields. They
share the same domain and draw from the same set of possible values.

In relational modeling, you can compare attributes that share the same domain. You
cannot compare attributes that do not share a domain.

Identifying Relations

When you finish identifying the entities and attributes of your conceptual data model,
you are ready to identify the relations. The purpose of this task is to produce an
Entity-Relationship diagram (ERD) of your data model, showing the types of
relationships that link the entities. The diagram eventually will be translated into a data
model in CA 2E.

The following examples show how you can identify and represent relations in a data
model. You can use any diagramming methodology.

This task consists of these steps:

■ Step 1 explains how to identify relationships between entities or between an entity
and an attribute.

■ Step 2 describes how to select a primary key for an entity.

Identifying Relations

26 Defining a Data Model

Data Relationship Connections

In your data model, a relationship establishes a connection between one entity and
another or between an entity and an attribute. In the database, a relationship links a file
to a file, or a file to a field (of the file).

You can identify and categorize relationship types by studying the connection to see
whether it falls into the following categories, asking yourself questions such as:

Optional—Is the connection mandatory or optional?

■ Does an order require a customer?

■ Does a product require a description?

■ Does a product require a price?

Cardinality—Is the connection a one-to-one, one-to-many, or many-to-many?

■ How many customers can be on a single order?

■ How many orders can a customer place?

■ How many prices are there for a product?

■ How many addresses can a customer have?

Involution—Does the connection exist between two different entities or from the
same entity to itself?

■ Are components a product, or are they themselves products in their own right?

■ Is a manager an employee or is there a separate entity of just managers?

If Manager is an employee, then the relation "Employee Works for Manager"
connects to the same entity. This is called involution.

By answering those questions and using an ERD, you will be able to determine the
relation types of your data.

All relationships in CA 2E data model descriptions are mandatory. You can make
relationships optional at the process level.

Identifying Relations

Chapter 2: Developing a Conceptual Model 27

Step 1: Identifying Relations Between Entities

This step details relation cardinality, which is the number of entity instances for a
relationship. This topic contains examples that illustrate different types of data
relationships.

Use these examples as guidelines to identify your entity-to-entity connections and draw
an ERD for your data model. Let us examine two separate entities in your model,
Customer and Order, and find out what the significant connection between them is.

You can tell that a relationship exists between these two entities because the customer
places the order and the order is placed by the customer, as illustrated in the following
example of a common ERD.

This relationship is viewed from both perspectives: from a customer and from the order.
Viewing a relationship from more than one perspective is important because this gives
you more information about the nature of the relationship.

With CA 2E relations, the implementation of the data model is one-way, except for the
Extended by relation.

Examples of Relationships

 The following examples show one-to-one, one-to-many, and many-to-many
relationships.

■ One-to-One

In a one-to-one relationship, each instance of one entity is related to one, and only
one, instance of another entity.

For example, to facilitate quick service, each salesperson in the company is assigned
to one territory. Customers in a territory are serviced by the salesperson assigned
to that territory.

The relationship between the two entities Salesperson and Territory is a one-to-one
relationship because each salesperson is assigned to one territory and each
territory has one, and only one, salesperson assigned to it.

The following ERD shows this one-to-one relationship.

Identifying Relations

28 Defining a Data Model

The following instance diagram shows a one-to-one relationship.

■ One-To-Many

In a one-to-many relationship, one instance of an entity is connected with several
different instances of another entity.

For example, a customer places more than one order with the company; an order is
placed by a customer. The relationship between the Customer entity and Order
entity is a one-to-many relationship because a customer can place more than one
order with the company; however, an order can be associated with one, and only
one, customer.

The following ERD shows a one-to-many relationship.

The following instance diagram shows a one-to-many relationship.

■ Many-To-Many

In a many-to-many relationship, an instance of one entity is related to more than
one instance of the other entity at a time and vice versa.

For example, the relationship between the Order entity and Product entity is a
many-to-many relationship because:

– An order can be placed for more than one product at a time.

– More than one product can appear on a single order.

– A product can appear on more than one order at a time.

The following ERD shows a many-to-many relationship.

The following

Identifying Relations

Chapter 2: Developing a Conceptual Model 29

Step 2: Selecting Primary Key (Unique Identifier) for an Entity

This step provides information for selecting primary keys for an entity.

■ Primary Key or Unique Identifier—An attribute or group of attributes assigned to
an entity to uniquely define an instance of the entity.

■ Foreign Key—An attribute or group of attributes of an entity that connects this
instance with an instance of another entity. In this way it defines the relationship
between two entities. It consists of attributes defining the primary key of the
related entity.

A primary key can either be a single attribute, a relationship, or a combination of
attributes and relationships. Each entity must have a single primary key. The entity can
have several alternate keys.

For example, the Customer entity in your Order Entry model may have several instances
representing different customers (Customer A, Customer B, Customer C). An instance is
equivalent to a record among other customer records in your Customer database file.
The primary key uniquely identifies each record.

You select Customer Code as the primary key for Customer entity:

ENTITY CUSTOMER

Attributes K Customer code

 Customer name

 Customer address

 Customer credit limit

 Customer account balance

Although you could have chosen Customer Name as a key instead, a code is a better
choice to ensure uniqueness. It also allows the customer's name to change without
having to create a new customer record.

Note: Avoid using keys whose values can change.

A primary key can also be used to implement the relationship between entities by
forming a link between the entities.

Identifying Relations

30 Defining a Data Model

For example, in the case of Customer and Order entities, the link is Customer Places
Order. The relationship between the two entities Customer and Order is recognized by
the presence of the Customer Code in the list of attributes of the Order entity.

Example:

CUSTOMER ORDER

K Customer code K Order Code

Customer name Customer code

Customer address Order quantity

Customer credit limit Order line

Customer account balance Vendor ID

 Product Code

Customer Code is the primary key of the Customer entity; it does not play a role in
identifying orders. However, Customer Code is needed in the Order entity to identify
which customer placed the order.

In this case, the Customer Code is used to represent the relationship between Order and
Customer. It becomes a foreign key in the Order entity file. The relationship means a
single customer belongs to this order.

Implementing Entity To Entity Relationships

You implement entity relationships by using foreign keys.

■ The primary key of one entity, when used in another entity, provides the link
between the two entities.

To implement a one-to-one relationship:

■ Make the primary key of one entity the primary key of the other entity.

Identifying Relations

Chapter 2: Developing a Conceptual Model 31

One-to-One Relationship

Example:

 Person

K Person ID

 Person name

 Person address

 Stockholder

K Person ID

 Number of Shares

To implement a one-to-many relationship:

■ Use the primary key of entity A as a foreign key in entity B.

One-to-Many Relationship

Example 1:

Identifying Relations

32 Defining a Data Model

 Company

K Company code

 Company name

 Company president

 Division

K Company code

K Division code

 Division name

 Division president

Example 2:

Identifying Relations

Chapter 2: Developing a Conceptual Model 33

 Company

K Customer code

 Customer name

 Customer type

 Customer credit limit

 Customer account balance

 Order

K Order code

 Customer code

 Order quantity

 Order line

 Vendor ID

 Product code

To implement a many-to-many relationship between A and B:

■ Create new entity C to contain the primary keys of A and B.

■ Remove the relationship between A and B.

■ Add a one-to-many relationship from A to C and B to C, where the primary keys of A
and B compose the primary key for C.

Many-to-Many Relationship

Example:

Identifying Relations

34 Defining a Data Model

Change to:

Project Employee

K Project code K Employee code

 Project name Employee name

 Product release Employee hire date

 Project Team

 K Project code

 K Employee code

See the chapter "Understanding Your Data Model" for more information about
relations.

Normalizing Your Data Model

Chapter 2: Developing a Conceptual Model 35

Normalizing Your Data Model

Normalization is the process of removing data redundancy and duplication from the
entities and attributes of a model.

This process involves:

■ Regrouping attributes

■ Splitting entities

■ Reassigning primary keys

Before starting the process you need to understand data relationships and familiarize
yourself with definitions of terms on key dependencies.

In order to understand the relationships among data items, you must determine which
attributes of an entity are dependent on the entity's other attributes. Each entity must
have a unique key by which it can be uniquely identified. The key can be a single
attribute or group of attributes. A key must have two properties:

■ In each instance of an entity, the value of the key must uniquely identify that
instance.

■ If the key is composed of more than one attribute, each of the attributes must be
essential to the unique identification of the entity.

Functional Dependence

Functional dependence describes the relation between the key and non-key attributes
of an entity. An attribute of an entity is functionally dependent on a key of that same
entity if, for each value of the key, there is one and only one value of the non-key
attribute.

The non-key attributes are functionally dependent on Supplier Number because there is
only one precise corresponding value for Name, City and Postal Code for a particular
value of Supplier Number.

Normalizing Your Data Model

36 Defining a Data Model

Full Functional Dependence

Full functional dependence further qualifies the relationship when the entity key is
composite; that is, composed of multiple attributes. Full functional dependence occurs
when non-key attributes are dependent on all the key attributes, not just some of them.

The following is an example of functional dependence:

Supplier

K Supplier number

 Supplier name

 Supplier city

 Supplier postal code

Full functional dependence further qualifies this relationship. For example, this term
states that the attribute(s) N of entity T is fully functionally dependent on the
attribute(s) K of entity T, if N is functionally dependent on every attribute of K but not
on any subset of K. This means that if an entity is uniquely identified by more than one
attribute (a composite key), each of its non-key attributes must be functionally
dependent on the entire key. If an attribute is dependent on a subset of the key, then
such dependency indicates that the attribute belongs in an entity having that subset of
the key as its unique identifier.

In the following example, the non-key attributes are not fully functionally dependent on
a composite key:

Supplier

K Supplier number

K Supplier status

 Supplier name

 Supplier city

 Supplier postal code

Normalizing Your Data Model

Chapter 2: Developing a Conceptual Model 37

When the Supplier Status is introduced as part of the primary key, the other non-key
attributes are not fully functionally dependent on the key. The non-key attributes can be
functionally dependent on just the Supplier Number. For example, the Supplier Name is
the same regardless of the Supplier Status value. The non-key attributes are functionally
dependent on the primary key but they are not fully functionally dependent on the
whole key.

If the non-key attributes are functionally dependent but not fully functionally
dependent, the primary key must be a composite.

A composite key can have fully functionally dependent attributes. For example, you
might want a composite key of Date and Time, where both are necessary and required.
All of the attributes will be fully functionally dependent on the composite key:

Transaction

K Transaction date

K Transaction time

 Transaction quantity

 Transaction type

 Transaction product

Normalization is the last task you perform to finalize your conceptual data model before
entering it into . Now that you have completed an ERD for your data model, you can
begin this task.

The purpose of this task is to help you refine your entities and attributes to arrive at a
third normal form by applying the three normalization rules: first normal form (1NF),
second normal form (2NF), and third normal form (3NF).

During normalization, an unnormalized entity can be analyzed, reorganized, and
progressively transformed into new entities. The process is reversible, therefore no
information will be lost during transformation.

This task consists of the following steps:

■ Step 1 covers creating first normal form (1NF).

■ Step 2 covers creating second normal form (2NF).

■ Step 3 covers creating third normal form (3NF).

Normalizing Your Data Model

38 Defining a Data Model

Step 1: Creating First Normal Form (1NF)

First normal form (1NF) is the process of eliminating repeating data groups. This is done
by representing data in the form of more than one entity. The remaining part of the
normalization process analyzes entities and attributes in terms of functional
dependence.

The rule states that for a primary key, there will be only one value for each non-key
attribute.

Use the Order entity as an example. This is the Order entity before normalization:

Order

K Order number

K Customer code

 Customer name

 Customer phone number

 Customer address

 Customer postal code

 Order date

 Product code }

 Product description } These attributes

 Product size } can have up to

 Product quantity } 4 sets of values.

 Product price }

Order detail total }

 Order total

Review the Order entity against the Order Entry Form, described under Step 1:
Identifying Primary Entities.

This entity contains a repeating group of attributes: Product Code, Product Description,
Product Size, Product Quantity, Product Price, and Order Detail Total.

Normalizing Your Data Model

Chapter 2: Developing a Conceptual Model 39

Remove this repeating group of attributes.

Your Order entity now contains only these attributes:

Order

K Order number

K Customer code

 Customer name

 Customer phone number

 Customer address

 Customer postal code

 Order date

Create a new entity and place the group of attributes you removed from the Order
entity into this new entity:

Order Detail

K Order number

K Product code

 Product description

 Product size

 Product quantity

 Product price

 Order detail total

Normalizing Your Data Model

40 Defining a Data Model

Step 2: Creating Second Normal Form (2NF)

An entity is in second normal form (2NF) if it is in first normal form and every non-key
attribute of this entity is fully functionally dependent on its primary key.

The following entity is in 1NF but the non-key attributes are not fully functionally
dependent on the primary key.

Supplier’s Inventory

K Supplier number

K Part code

 Supplier name

 Supplier status

 Supplier status description

 Part Quantity

SNumber PNumber Name Status Sstatus Desc Part Qty

111

111

111

245

245

05

10

15

05

10

Computer Store

Computer Store

Computer Store

Floppy Discount

Floppy Discount

105

105

105

100

100

Wholesale

Wholesale

Wholesale

Wholesale

Wholesale

100

210

534

498

021

Normalizing Your Data Model

Chapter 2: Developing a Conceptual Model 41

You can see that the Supplier Name and Status are functionally dependent on Supplier
Number only and not the Part Number. Therefore, the Supplier Name and Status are not
fully functionally dependent on the Supplier Number and Part Number. The entity is not
in 2NF.

The Supplier Status is functionally dependent on Supplier Number. This dependency
means that a value of Supplier Number requires a specific value of Supplier Status. If the
Supplier Number is 111, the Supplier Status must be 105.

Make the following changes to get the entity into 2NF:

Supplier

K Supplier number

 Supplier name

 Supplier status

 Supplier status description

 Supplier’s Inventory

K Supplier number

K Part number

 Part quantity

Both entities are now in at least 2NF. Supplier's Inventory is in 3NF.

Normalizing Your Data Model

42 Defining a Data Model

Step 3: Creating Third Normal Form (3NF)

An entity is in third normal form (3NF) if it is in second normal form (2NF) and each of its
non-key attributes is not dependent on another non-key attribute.

The Supplier entity is in 2NF and must be put into 3NF:

Supplier

K Supplier number

 Supplier name

 Supplier status

 Supplier status description

Supplier Status Description is functionally dependent on Supplier Status. Third normal
form requires that the entity Supplier be split into two entities: Supplier and Supplier
Status. You define the entity Supplier as follows:

You then define Supplier Status, as follows:

Supplier Status

K Supplier status

 Supplier status description

You can now maintain Supplier Status information separately. A change to a Supplier
Status Description does not require an update to the Supplier instance.

With third normal form, all attributes in an entity are fully functionally dependent on
only the entire key of the entity.

Normalizing Your Data Model

Chapter 2: Developing a Conceptual Model 43

CA 2E Basic Relations

CA 2E provides four basic relation types to describe data relationships: Owned by,
Refers to, Known by, and Has.

A relationship expresses an association between two files, or between a file and a field.
It constitutes the fundamental links in a CA 2E data model. Such links enable you to
explicitly assert the meaning of the connections within your data. A file's list of
relationships will be automatically resolved into the fields needed to implement that
file.

File-to-field Relationships

To describe a file-to-field relationship, you may use:

■ Known by to declare a field to be present on a file as a key field.

■ Known by to declare a field to be present on a file as a data field.

Normalizing Your Data Model

44 Defining a Data Model

File-to-file Relationships

To describe a file-to-file relationship, you may use:

■ Refers to specify an association between two mutually independent files. It causes
the key entries of the referenced file to be included as foreign key entries on the
referring file.

For example, if Order Refers to Customer, then the keys of Customer are included
as foreign key entries in the Order file:

 Order Refers to Customer

K Order code K Customer code

 Order quantity Customer name

 Order line Customer address

 Vendor ID Customer credit limit

 Customer code Customer account balance

 Product code

In CA 2E, a Refers to relationship has a one-to-many cardinality.

■ Owned by to cause the key entries of the owning file to be included among the key
entries of the owned file. It specifies that the high order keys of the owned by file
are the keys of the owning file.

For example, if Order is Owned by Company, then the key(s) of the Company file
appears as the major key(s) on the Order file:

 Order Owned by Company

K Company ID K Company ID

K Order code Company name

 Order quantity Company address

 Order line

 Vendor ID

 Product code

Normalizing Your Data Model

Chapter 2: Developing a Conceptual Model 45

In , the Owned by relationship has a one-to-many cardinality: the (Owned by) Order
entity is the child of the parent (Company) entity.

Considerations

This topic covers some performance, assimilation, and design tool considerations that
may help you when developing a CA 2E data model.

Performance

Since your data model's entities and attributes become files and fields in the database,
the way you design your model affects the number of times your application system
needs to access information to carry out a business transaction.

A fully normalized database breaks the data down into more files than a partially
normalized one does. It, therefore, requires more input/output activities to access
several files during processing.

For performance reasons, you may consider violating 3NF. You may define files that are
frequently accessed as 2NF, such as files with highly volatile records, inventory records,
and work records. The 2NF files contain a level of redundancy.

Existing Database

You can integrate your existing files or database into your CA 2E data model through a
process called assimilation. Existing files and field names are maintained to ensure that
both new and existing systems can use the same files.

See the chapter "Assimilation" for more information on using existing i OS files.

Using Design Tools

Instead of creating a conceptual data model with pencil and paper you can also use a
variety of design tools.

For example, CA Xtras Gateway (GWY) provides a bi-directional bridge between
SILVERRUN RDM and CA 2E data models that lets you import and export design
specifications. This includes full support for the following CA 2E model objects: files,
fields, relation, and narrative text.

Chapter 3: Understanding Your Data Model 47

Chapter 3: Understanding Your Data Model

This chapter introduces CA 2E files, fields, conditions, and relations, and how these
relate to your conceptual model.CA 2E files, fields, conditions, and relations are the
basic building blocks you will use to define and maintain your data model.

The data model you define serves as a foundation for developing a correct database for
your entire application system. It describes the files, fields, conditions, and their
relations. The data model also includes the validation rules and edit codes to be used by
your application system.

This section contains the following topics:

CA 2E Data Model (see page 47)
Edit Database Relations Panel (see page 49)
Using Files (see page 49)
Using Fields (see page 52)
Using Conditions (see page 102)
Using Relations (see page 108)

CA 2E Data Model

A CA 2E data model is made up of a number of design elements, or CA 2E model objects.
These are building blocks that can be put together according to certain rules to design
your data model. For example:

■ File—contains a list of relations that will be resolved into a list of file entries. A file
represents an entity in the model.

■ Field—describes an item of data.

■ Condition—describes the values or set of values (domains) that a field may take.

■ Relation—describes a connection between two files or between a file and a field.

CA 2E Data Model

48 Defining a Data Model

CA 2E Data Model Objects

CA 2E objects are not i OS objects. A CA 2E object exists only within a design model.CA
2E data model objects are classified into different types: files, fields, conditions, and
relations.

CA 2E objects are interrelated in a data model design as described below:

■ A file can reference either another file or a field through a relation.

■ Conditions are attached to fields to specify the values that a field may take.

CA 2E objects are referred to by an object name.CA 2E object names must be unique.
Specifically:

■ A file name must be unique within the entire model.

■ A condition name must be unique within the based-on field.

■ A field name must be unique within the design model.

CA 2E makes no distinction between upper and lowercase characters in an object name.
You can specify an object name in different ways and CA 2E will treat them as being the
same. For example:

■ Order code

■ ORDER CODE

■ Order Code

■ ORDer coDE

From Your Conceptual Model to a CA 2E Data Model

Your conceptual model contains the terms that have the following equivalents in a CA
2E data model:

Conceptual Model Data Model

Entity

Attribute

Relationship

Domain

File

Field

Relation

Field conditions;

Reference field types

Edit Database Relations Panel

Chapter 3: Understanding Your Data Model 49

Edit Database Relations Panel

You will use the Edit Database Relations panel, as shown below, to describe your data
model to CA 2E. See the chapter “Creating/Defining Your Data Model” for more
information about this panel.

The rest of this chapter describes CA 2E files, fields, conditions, and relations in detail.

Using Files

This topic provides conceptual information about files and a full description of the
different file types, with examples of how they are used.

Using Files

50 Defining a Data Model

CA 2E Files

A CA 2E file represents an entity within a CA 2E model; for example, an Order or a
Customer. A CA 2E file is defined by CA 2E relations. CA 2E automatically resolves the
relations to determine which fields are to be present on a file. The presence of a field on
a file is called an entry.

Properties of CA 2E Files

Each CA 2E file has a name and a file type. It also contains other descriptive details such
as a documentation sequence and whether the file is retrieved from an existing i OS file.

In addition, each CA 2E file has two default messages associated with it. Default
messages are created for each type of CA 2E file. These messages appear when you
attempt either to access a record that cannot be found in the file or to add a record to a
file for a key value that already exists.

File Name

CA 2E file names must be valid CA 2E names and unique within the model. A file name
can contain up to 25 alphanumeric upper or lowercase characters including embedded
blanks.

File Type

A file type is determined by the intended use of the file. File types are listed in the table
below.

File Attribute Description Example

Database CPT

REF

Capture file

Reference file

Order entry file

Company file

Non-database STR Structure file Audit date and time
stamp

Capture (CPT) and reference (REF) files are database files; data structure files are
non-database files. Capture and reference files are resolved into i OS files for
implementation.

A structure file cannot stand by itself as an i OS file. It defines a structure of fields that
can be included in more than one file.

Using Files

Chapter 3: Understanding Your Data Model 51

Reference (REF) Files

Reference (REF) files are master files that typically contain non-volatile information.

Examples of REF files include:

■ Customer

■ Product

■ Area code

■ Location code

■ Currency

Capture (CPT) Files

Capture (CPT) files typically contain transactional data that is recorded regularly for use
by your application.

The CPT file type is given to files that record high volumes of transactions and require
constant update. CPT files generally refer to reference entities for supporting
information.

Examples of CPT files include:

■ Order

■ Transaction

■ Ledger Entry

Default Functions for REF and CPT Files

REF and CPT files have different default functions. CA 2E automatically defines a number
of standard functions for files that you create for each of these two specific file types.

Default Functions for REF Files

Function Associated Access Path

CRTOBJ - Create Object

DLTOBJ - Delete Object

CHGOBJ - Change Object

UPD

UPD

UPD

SELRCD - Select Record

EDTFIL - Edit File

RTV

RTV

Using Fields

52 Defining a Data Model

Default Functions for CPT Files

Function Associated Access Path

CRTOBJ - Create Object

DLTOBJ - Delete Object

CHGOBJ - Change Object

UPD

UPD

UPD

STR Files

An STR file contains a group of fields. These fields can be incorporated into a number of
other files through the use of the Includes font relation. STR files define data structures
that are used in several places in your data model. Because STR files are not database
files, access paths cannot be specified for them.

Example of an STR File: Audit Stamp

CA 2E File versus i OS File

A CA 2E file is similar to an i OS file in the sense that it is a list of fields. A CA 2E file is
different from an i OS file because it has relations specified for it. These relations specify
referential integrity checks to be performed in the functions that use the file. The i OS
Database Manager does not perform referential integrity checks between database
files.

CA 2E creates the necessary source code to perform referential integrity checking. This
is validation of the relations between files. As an example, use the entity Employee is
Owned by the entity Company. When a Company Code is associated with an Employee
Code, CA 2E checks to ensure that the Company Code exists in the Company file.

CA 2E lets you specify whether or not these integrity checks should be performed. This
is done by specifying whether the relation is mandatory or optional. If the relation is
mandatory, the end user will have to enter a valid value in the foreign key field. If the
relation is optional, the end user has a choice whether to enter a value; however, the
value entered must be valid.CA 2E also lets you specify your own checking process if you
desire.

See the chapter "Modifying Device Designs" in Building Applications for more
information on mandatory and optional checking.

Using Fields

This topic provides conceptual information, a full description of different field types, and
examples of how they are used within your model.

Using Fields

Chapter 3: Understanding Your Data Model 53

CA 2E Fields

A CA 2E field represents an attribute within a CA 2E model; for example, Customer
Code, Order Number, or Product Price.

Fields that are placed in a file from the resolution of CA 2E relations are called entries.

See the chapter "Creating/Defining Your Data Model" for more information.

Properties of CA 2E Fields

A CA 2E field has a field name and field type.

Field Name

A field name must be unique within the data model. It can contain up to 25 alphabetic
characters in upper or lowercase, and numeric characters, including embedded blanks.

The field name is the title of the field and not the implementation name that CA 2E
assigns for each field.

Using Fields

54 Defining a Data Model

Field Type

A field type indicates which specific types of values can be entered for a field.

CA 2E uses field types to:

■ Determine default attribute values for the field such as length, validation, edit code

■ Prevent operations from working with mixed field types

■ Impose integrity checking rules for data input validation

Default field types are defined in the CA 2E shipped file, *Field Attribute Types. You can
add your own field types. Following are the shipped default field types.

■ Alphanumeric Fields

– CDE (code)

– DT# (ISO date)

– IGC (ideographic text)

– NAR (narrative text)

– TM# (ISO time)

– TS# (ISO timestamp)

– TXT (descriptive text)

– VNM (system name)

■ Numeric Fields

– NBR (number)

– VAL (value)

– QTY (quantity)

– PRC (price)

– PCT (percentage)

– DTE (date)

– TME (time)

– SGT (surrogate)

■ Special Fields

– STS (status)

– REF (reference)

See the chapter "Maintaining Your Data Model" for more information on user-defined
field types.

Using Fields

Chapter 3: Understanding Your Data Model 55

Field Attribute Values

CA 2E provides a number of default attribute values for fields based on the field type
given to that field:

■ Basic attributes—Characteristics such as length and implementation name. For
example, by default, quantities (QTY) are numeric and seven digits long.

■ Text—Several different types of text can be associated with a field. The text is used
to document fields and title fields on device designs.

■ Validation attributes—These attributes specify how data entered into the field is to
be validated. Validation can include attribute checking such as upper/lowercase
checking, Modulus checking, valid name checking, and validation through a check
condition.

Overriding CA 2E Default Field Attributes

Some of the default values of the field types may be overridden, both at the field level
and the device design level:

■ Field values—Describe the attributes of each individual field in the data model.
They are used as the initial defaults when new fields are created. You can change
these values with the Edit Fields panel.

■ Device field values—Describe the attributes of each individual instance of the field
on a device design. You can override some attribute values, such as the field
heading text and validation conditions, using the Edit Device Field panel.

Field Usages

CA 2E fields may be categorized as database fields or function fields.

Database Fields

Database fields include:

■ Key fields to identify files

■ Attributes to represent non-key fields on a file

Database Field Usages

Type Description Example

CDE

ATR

Code (key)

Data attribute

Company code

Company name

Using Fields

56 Defining a Data Model

Key database fields are given the usage type of CDE (code); attribute database fields
have the usage type of ATR (attribute). CA 2E automatically supplies the usage type
according to how the field is first used in a relation. You can change the usage type using
the Edit Field Details panel.

If the field has a usage of CDE and is being associated with a file that has an attribute
relation (Has), a warning message is issued that the usage is different. This is also true if
a field usage is defined as ATR, and the field is the referenced object of a key relation
(Known by, Qualified by).

Function Fields

A function field is only used in functions and does not reside in a database file.

You can add function fields directly to the field dictionary and then use them in device
designs and action diagrams.

Function fields have six different types of usages. A function field usage may be one of
the standard types or a user-defined function. Following are the function field usage
types:

■ CNT (count)

■ DRV (derived)

■ MAX (maximum)

■ MIN (minimum)

■ SUM (sum)

■ USR (user-defined)

The SUM, MIN, MAX, and CNT field usage types provide standard field level functions.
For example, SUM and CNT, for summing and counting; MIN and MAX, for specifying a
minimum or maximum numeric value.

The USR and DRV field usage types allow you to define your own function field.

For more information, see Using Function Fields, later in this chapter.

Using Fields

Chapter 3: Understanding Your Data Model 57

Defining a Field as a Data Area

Before entering your model, create a data area in the appropriate library by using the
IBM Create Data Area (CRTDTAARA) command. You can then add a field defined as a
data area to the *Standard header/footer file. On the Edit Field Details panel, specify
the Type as TXT and the Default Condition as *DTAARA. Modify the four-character data
area name in the DATAARA field to match the name of your data area.

For the *Standard header/footer file, CA 2E automatically initializes the field with the
information from your data area. The data area must be in your library list when you
execute your application.

To use an existing data area within your CA 2E applications, define an EXCUSRSRC
function with an access path of *NONE. Define a BOTH parameter using a USR work
field. This USR field must have the same attributes and length as the data area. In the
EXCUSRSRC, add your own logic to access the data area and place the contents of the
data area into the parameter field.

Shipped CA 2E Field Types

The definitions for all CA 2E field types (shipped and user-defined) are included in a
shipped file called *Field Attribute Types. This file comes with the shipped version of CA
2E, but each model has its own copy. You can access this file from the Edit Database
Relations panel. Changes made here apply to the model, not to the product or other
models.

Using Fields

58 Defining a Data Model

Displaying Existing Field Types

To display the field types:

1. Zoom into the *Field Attribute Types file by placing a Z against one of the file's
relations on the Edit Database Relations panel. The Display Field Types panel lists
the field types.

2. Zoom into a specific field type by placing Z against the field type to view the default
values

3. Press F9 from the Display Field Types panel to add your own user-defined field
types.

See the chapter "Maintaining Your Data Model" for more information on defining and
adding your own field types.

The following table details the field types shipped with CA 2E.

Field
Type
Name

Description Type Internal
Length

Example

CDE

DT#

D8

DTE

IGC

NAR

NBR

PCT

PRC

QTY

REF

SGT

STS

TM#

TME

TS#

TXT

VAL

VNM

Code

ISO Date

8-digit Date

Date

Ideographic text

Narrative text

Number

Percentage

Price or tariff

Quantity

Reference

Surrogate

Status

ISO Time

Time

ISO Timestamp

Descriptive name

Monetary value

Valid system name

A

A

P

P

A

A

P

P

P

P

–

P

A

A

P

A

A

P

A

6

10

8.0

7.0

20

30

5.0

5.2

7.2

5.0

–

7.0

1

10

6.0

26

25

11.2

10

Stock code

Order date

Order date

Date of birth

Kanji name

Comments

Number of employees

Profit margin

Unit price

Stock quantity

Field based on another

System key

Discontinued/Current

Time process starts

Transaction time

Transaction date/time

Product name

Stock value

File name

The following sections describe how to use the field types listed in this table.

Using Fields

Chapter 3: Understanding Your Data Model 59

Field Type Default Characteristics

Each field type has its own default characteristics. For each individual type listed in this
topic, the default characteristics are specified. Following is an example of default
characteristics for a field of type DTE.

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxDT

Packed

6.0

7.0

N

–

N

N

N

N

Y

N

N

N

N

N

N

N

N

N

LHS text (Column headings)

RHS text

Field name

Date

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

N

–

–

–

–

N

–

Y

–

Y

N

–

Y

–

Y

N

–

N

–

N

Check condition

Translate values

*NONE

–

N

–

Y

–

Y

–

Field exit option

Edit codes: Input

 Output

 Report

Blank

4

Y

Y

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

–

Using Fields

60 Defining a Data Model

Implementation name

This field type is the suffix used to identify a field when generating implementation
names. CA 2E will generate default implementation names if you have specified that you
wish it to do so.

See the chapter "Using your Development Environment" in the Administration Guide for
more information.

The field implementation name must be unique within your data model. This means
that it can be used for only one field.

When the field name for each field is generated, the suffix specified here is appended to
the generated prefix for that field.

For a field of type DTE, the suffix is DT. If you specify a suffix of MY for a user-defined
field type, CA 2E generates an implementation name of AAMY.

System data type

This field type is the data type allowed for a field in the i OS file. It can be alphanumeric
or numeric.

System data type is the data type to be stored in a database file or displayed on device
files. It can have one of the following values:

A—Alphanumeric

P—Packed numeric

S—Signed numeric (Zoned)

B—Binary (not generated)

F—Floating

A and S are data types to be displayed on device files. These values default according to
the field type. For example, DTE is numeric, TXT is alphanumeric. Values may only be
changed for fields with numeric field types (DTE, NBR) or for user-defined field types for
which the programmer/designer is allowed to change the data type.

External length

This field type is the length of the field displayed or printed on a report. This is the
number of characters or digits allowed for the field on display panels or print files. Fields
with decimal positions are entered as total number of digits, number of decimal places.
For example, for a field to contain 999.99, the length would be 5.2.

See the chapter "Maintaining Your Data Model" for more information on defining a field
type with differing lengths between external and internal fields.

Using Fields

Chapter 3: Understanding Your Data Model 61

Internal length

This field type is the length of the field when it is stored in a file. This is the number of
bytes used to store a field in a file. Fields with decimal positions are entered as total
number of digits, number of decimal places. For example, for a field to contain 999.99,
the length would be 5.2.

See the chapter "Maintaining Your Data Model" for more information on defining a field
type with differing lengths between external and internal fields.

Decimal places

This field type is the number of decimal places for numeric fields.

LHS text

This field type is the left hand side text used for the field heading. This is the text to be
placed before the field on the same line as its heading on a display panel or print
format.

Example:

Size code—BBBBBB

Quantity—BBBBBB

RHS text

This field type is the right hand side text used for the field heading. This is the text to be
placed after the field on the same line as its heading on a display panel or print format.

Example:

Size code—BBBBBB (SMALL/MEDIUM/LARGE)

Column headings

This field type is the column heading text to be placed above the field on a display panel
or print format.

Example:

Size code Quantity

BBBB 9999.99

BBBB 9999.99

Using Fields

62 Defining a Data Model

Keyboard shift

This field type specifies which keyboard shift is allowed for the field on panel files. It can
have one of these values:

Blank—no keyboard shift

X, A, N, W, I, D, M—for alphanumeric fields

N, S, Y, I, or D—for numeric fields

O, J, E, W, G, or A—for ideographic fields

For more information on keyboard shift values, refer to the IBM DDS Reference.

Allow lowercase

This field type specifies whether the field values may be in lowercase. It can have one of
these values:

Y—lowercase allowed

Blank—lowercase not allowed

Lowercase applies only to alphanumeric fields.

Mandatory fill

This field type specifies whether the field requires mandatory fill. This can have one of
these values:

Y—mandatory fill

Blank—no mandatory fill

Valid system name

This field type specifies whether the field requires the valid system name check to be
performed. Value entered for the field must be a valid i OS system name.

A valid system name must start with a letter, no more than ten characters long, and
contain only letters, digits, or one of these characters "-", "#", "$", or "@".

Using Fields

Chapter 3: Understanding Your Data Model 63

Modulus 10/11 check

This field type specifies whether the modulus 10 or 11 check is to be performed. The
value entered for the field must meet a modulus 10 or 11 check as specified by the DDS
CHECK keyword. This can have one of these values:

■ 10—apply modulus 10 check

■ 11—apply modulus 11 check

■ Blank—do not apply modulus check

Modulus check applies only to numeric fields.

Default condition

This field type is the default value to be used for the field when adding records to the
database if no value is supplied.

Note: The default condition does not specify a default value for fields on display files or
reports.

Default condition has these values:

■ * NONE—no default condition

■ condition name—condition that supplies the default value

■ * DTAARA—indicates that the value of the field is to be retrieved from the data
area specified in the DTAARA field. This field will appear when you type *DTAARA in
the Default Condition field and press Enter.

The name of the data area must be a valid system name. The data area name is used as
an internal field name within CA 2E, in place of the generated code name. In a program,
the generated code name is used. The field is loaded from the data area at the start of
the program.

An example of using data area name is the CA 2E shipped field *Company name. The
value for this field is retrieved from a data area called YYCOTXA:

Default Condition = *DTAARA

Dtaara = YYCOTXA

Implementation name = CMP

Using Fields

64 Defining a Data Model

Check condition

This field type is the name of the list condition used to specify check values for the field.
The value for Check condition is:

■ *NONE—no check condition

■ Condition name—used to check the input value of the field.

Translate values

This field type specifies whether value mapping is required to translate the display value
entered for a field into a different storage value, and vice-versa. This applies only to STS
fields or user-defined fields for which value mapping has been specified. Allowable
values are:

■ Y—use value mapping

■ Blank—do not use value mapping

Note: STS fields with translate values are implemented only in functions that have
interactive displays; they are not implemented in PRTFIL or CA 2E internal functions.

Field exit option

This field type specifies whether there is a field exit value. Allowable values are:

■ Y—field exit is required

■ Z—right adjust, zero fill

■ B—right adjust, blank fill

■ R—right to left support for non-numeric fields

Edit codes

This field type specifies the edit codes for the panel input field, the display field, and the
report field. The edit codes are specific to CA 2E,and may not relate to DDS edit codes.

The following table lists edit codes and their allowable values.

Edit
Code

Description

– For date fields: mm-dd-yyyy or yyyy-mm-dd

For timestamp fields: mm-dd-yyyy-hh:mm:ss or

 yyyy-mm-dd-hh:mm:ss

Using Fields

Chapter 3: Understanding Your Data Model 65

/ For date fields: mm/dd/yyyy or yyyy/mm/dd

For timestamp fields: mm/dd/yyyy/hh:mm:ss or
yyyy/mm/dd/hh:mm:ss

yyyy Month dd for date fields

1 Commas, no sign, 0.0

2 Commas, no sign, blank

3 No commas, no sign, 0.00

4 No commas, no sign, blank

5 Explicit, CR/DR

6 Commas, '*' as suffix

7 Commas, c as prefix, '-'

8 Commas, 'c' as prefix, '-'

9 Edit word for date field, '-' as separator

A Commas, CR, 0.00

B Commas, CR, blank

C No commas, CR, 0.00

D No commas, CR, blank

J Commas, '-', 0.00

K Commas, '-', blank

L No commas, '-', 0.00

M , '-', blank

P Edit word for phone number

R No commas, no sign, 0.00

S Edit word for U.S. social security number

T Edit word for time fields

W Edit word for long dates dd/mm/ccyy

Y Edit word for date fields

Z Zero suppression only

Using Fields

66 Defining a Data Model

Using Field Edit Codes

Edit codes are used to alter or customize panel or report design. You use edit codes to
punctuate data fields for panel entry, panel display and report output. CA 2E ships a
number of edit codes that you can use. The shipped file is YEDTCDERFP, residing in
library Y2SY.

If you are using ENPTUI (enhanced NPT user interface) you can choose to mask input
edit codes.

Starting in Release 6.0, the CA 2E DDS generator follows these rules:

■ When resolving the edit word, if ‘field length+1’ results in an edit word with a zero
in the left-most portion of the edit word, an EDTWRD with a leading zero will be
generated.

■ If the above situation is not encountered, the edit word is generated without any
changes.

This satisfies Date, Time, and Social Security number requirements where all leading
zeros are needed. However, existing limitation in the DDS generation of edit words still
remain, including:

■ Certain fields with long lengths and many decimal places fail at compile time when
combined with certain EDTWRD definitions.

■ If the first character in an EDTWRD is a format character, as in a phone number,
that character will not display for NPT DDS. This limitation can be corrected by
allowing for an integer to the left of the left-most format character and using an
edit mask.

See the chapter "Modifying Device Designs" in Building Applications for more
information on ENPTUI input edit code masking.

To obtain a list of edit codes, type a ? in any of the Edit code fields on the Edit Field
Details panel. Depending on your selection (screen input, screen output, or report
output), the Display Edit Codes panel shows a list of codes available for the selected
field.

You can change the shipped edit code masks directly in the shipped file.

Using Fields

Chapter 3: Understanding Your Data Model 67

Description and Usage of Field Types

Code (CDE)

The following table describes the default characteristics of the CDE Field.

Field Type Attribute Shipped
Default Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxCD

Alpha

6

as external

-

-

Y

N

-

-

Y

N

Y

-

-

N

N

N

-

-

LHS text (Column headings)

RHS text

Field name

Code

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

XANWIDM

N

N

N

-

N

Y

Y

Y

-

Y

Y

Y

Y

-

N

N

N

N

-

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Required

-

-

-

Y

-

-

-

N

-

-

-

Y

-

-

-

The CDE type is used for fields that represent codes. Fields of CDE type are
alphanumeric and are typically keys to a file. The valid set of values for a CDE field is
controlled by their existence as the primary key to a database file.

Examples of CDE fields include:

■ Product code

■ Currency code

■ Warehouse location code

Using Fields

68 Defining a Data Model

Eight-digit Date

The following table describes the default characteristics of the D8# Field.

Field Type Attribute

Shipped
Default
Value

Default
Override

Field Details
Override

Device Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxDX

Packed

6.0

8.0

0

-

N

N

N

N

Y

N

N

N

N

N

N

N

N

N

LHS text (Column
headings)

RHS text

Field name

Date

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

DYN

-

N

-

N

N

-

Y

-

Y

N

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Y

4

/

/

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The D8# type is one of three field types used for fields that represent dates. For
compatibility with standards set by the International Standards Organization (ISO), it is
recommended that you use DT# for your date fields. You can use the *MOVE built-in
function to convert among date fields of type DTE, DT#, and D8#.

Note: *MOVE converts the three date types to a field of type NBR differently.

Using Fields

Chapter 3: Understanding Your Data Model 69

Internal Format

D8# dates are stored internally in YYYYMMDD format in systems generated by CA 2E.

The following table shows the internal format for April 5 for various years.

Date Internal D8# Format

April 5, 2106 21060405

April 5, 2006 20060405

April 5, 1906 19060405

April 5, 1806 18060405

The valid date range is January 1, 1801 to December 31, 2199. When no date is entered,
the internal representation is zero (0).

The internal format ensures that

■ An historical view can be obtained. In this format dates can be ordered into
ascending or descending order using the database.

■ The stored internal format is independent of the displayed external format, namely,
independent of the date format used in a particular country.

Using Fields

70 Defining a Data Model

External Format

The external format for D8# fields and the valid range for entering dates depends on the
input edit code you select for the field.

■ If the edit code has a 4-digit-year format (YYYY), the range of dates you can enter is
the same as the internal format range, namely, January 1, 1801 to December 31,
2199.

■ If the edit code has a 2-digit year format (YY), the range of dates you can enter is
restricted to a ‘floating’ hundred years (00-99) starting from the year CA 2E
specified by the YCUTOFF model value. The cut-off year can be any year from
within the range of 1900-1999 and its current value is retrieved at run time. The
shipped default is 1940. In this case a year greater than or equal to 40 is assumed to
be in the 20th century; a year less than 40 is assumed to be in the 21st century.

The external format for D8# fields for both input and output also depends on the setting
of the Date Generation Validation (YDATGEN) and Date Format (YDATFMT) model
values. It can be *MDY, *DMY, or *YMD. Note that to enter, display, or print date fields
with a four-digit-year external format such as, MM/DD/YYYY, you need to change the
appropriate edit code to either / or –.

For more information on four-digit years and edit codes, refer to the table in the
description of the DT# field type in this chapter.

See the chapter "Modifying Action Diagrams" in Building Applications for more
information on *MOVE and the date built-in functions.

Validation

D8# fields are automatically validated by CA 2E. Dates are automatically translated from
external to internal format and vice-versa. Dates are validated to be in the external
format when entered on a panel and converted to internal format when written to a
file.

The date is not converted if its day, month, or year is out-of-range. Instead, the message
"Invalid date" is issued and the date is redisplayed in reverse image according to the
output edit code.

Examples of D8# fields include:

■ Date of birth

■ Order date

■ Creation date

Using Fields

Chapter 3: Understanding Your Data Model 71

ISO Date

The following table describes default characteristics of the DT# field.

Field Type Attribute Shipped Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxDZ

Alpha

6.0

10

N

-

N

N

N

N

Y

N

N

N

N

N

N

N

N

N

LHS text (Column
headings)

RHS text

Field name

Date

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

DYN

-

-

-

-

N

-

Y

-

Y

N

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

 Y

4

Y

Y

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The DT# type is one of three field types used for fields that represent dates. You can use
the *MOVE built-in function to convert among date fields of type DTE, DT#, and D8#.

Note: *MOVE converts the three date types to a field of type NBR differently.

See the chapter "Modifying Action Diagrams" in Building Applications for more
information on this conversion and date built-in functions.

For compatibility with standards set by the International Standards Organization (ISO), it
is recommended that you use DT# for your date fields. Since the DT# field type meets
ISO standards, date fields of this type are interpreted correctly for SQL and Query
Manager.

Using Fields

72 Defining a Data Model

Internal Format

ISO dates are stored internally in YYYY-MM-DD format in systems generated by CA 2E.
The following table shows the internal representation for April 5 for various years.

Date Internal DT# Format

April 5, 2106 2106-04-05

April 5, 2006 2006-04-05

April 5, 1906 1906-04-05

April 5, 1806 1806-04-05

The valid date range is January 1, 1801 to December 31, 2199. If no date is entered, the
internal representation is 0001-01-01.

The internal format ensures that

■ ISO dates can be ordered into ascending or descending order using the database.

■ The stored internal format is independent of the displayed external format, namely,
independent of the date format used in a particular country.

Using Fields

Chapter 3: Understanding Your Data Model 73

External Format

The external format for DT# fields and the valid range for entering dates depends on the
input edit code you select for the field.

■ If the edit code has a 4-digit-year format (YYYY), the range of dates you can enter is
the same as the internal format range, namely, January 1, 1801 to December 31,
2199.

■ If the edit code has a 2-digit year format (YY), the range of dates you can enter is
restricted to a ‘floating’ hundred years (00-99) starting from the year specified by
the YCUTOFF model value. The cut-off year can be any year from within the range
of 1900-1999 and its current value is retrieved at run time. The shipped default is
1940. In this case a year greater than or equal to 40 is assumed to be in the 20th
century; a year less than 40 is assumed to be in the 21st century.

The external format for DT# fields for both input and output also depends on the setting
of the Date Generation Validation (YDATGEN) and Date Format (YDATFMT) model
values. It can be *MDY, *DMY, or *YMD. Note

Note: To enter, display, or print date fields with a four-digit-year external format, such
as MM/DD/YYYY, you need to change the edit codes to either / or – .

The following table shows how the edit codes and the settings of the YDATGEN and
YDATFMT model values affect the way that dates are displayed and printed.

Note: This table also applies to user-defined 8-digit date fields that have field type 'DT8'.

YDATGEN

YDATFMT
(Run time)

Input Edit
Code

Output Edit
Codes

Date Displayed or
Printed As:

*MDY — 4

/

–

Y

/

–

10/27/95

10/27/1995

10-27-1995

*DMY — 4

/

–

Y

/

–

27/10/95

27/10/1995

27-10-1995

*YMD — 4

/

–

Y

/

–

95/10/27

1995/10/27

1995-10-27

*VRY *MDY 4

/

–

Y

/

–

10/27/95

10/27/1995

10-27-1995

Using Fields

74 Defining a Data Model

YDATGEN

YDATFMT
(Run time)

Input Edit
Code

Output Edit
Codes

Date Displayed or
Printed As:

*VRY *DMY 4

/

–

Y

/

–

27/10/95

27/10/1995

27-10-1995

*VRY *YMD 4

/

–

Y

/

–

95/10/27

19/95/1027 (2)

19-95-1027 (2)

Note: Due to limitations within DDS, you cannot produce this result at run time with
YDATGEN set to *VRY and YDATFMT set to *YMD. To display or print digit years in *YMD
format you need to set YDATGEN to *YMD.

Validation

DT# fields are automatically validated by . ISO dates are automatically translated from
external to internal format and vice-versa. Dates are validated to be in the external
format when entered on a panel, and converted to the internal format before being
written to a file.

The date is not converted if its day, month, or year is out-of-range. Instead, the message
"Invalid date" is issued and the date is redisplayed in reverse image according to the
output edit code.

CA 2E generates ISO dates as the i OS Date type with DATFMT(*ISO) and assimilates i OS
Date fields as type DT#.

Examples of DT# fields include:

■ Date of birth

■ Order date

■ Creation date

Using Fields

Chapter 3: Understanding Your Data Model 75

Date (DTE)

The following table describes the default characteristics of the DTE field

Field Type Attribute Shipped Default
Value

Default
Override

Field Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxDT

Packed

6.0

7.0

0

-

N

N

N

N

Y

N

N

N

N

N

N

N

N

N

LHS text (Column
headings)

RHS text

Field name

Date

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

DYN

-

N

-

N

N

-

Y

-

Y

N

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Blank

4

Y

Y

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The DTE type is one of three field types used for fields that represent dates. For
compatibility with standards set by the International Standards Organization (ISO), it is
recommended that you use DT# for your date fields. Use the *MOVE built-in function to
convert among date fields of type DTE, DT#, and D8#.

Note: *MOVE converts the three date types to a field of type NBR differently.

Using Fields

76 Defining a Data Model

Internal Format

DTE dates are stored on file by systems generated by CA 2E as follows.

■ DTE dates greater than or equal to 1900 are stored on file in CYYMMDD format.

■ DTE dates earlier than 1900 are stored on file as a negative value.

The following table shows the internal format for April 5 for various years.

Date Internal DTE Format

April 5, 2106 2060405

April 5, 2006 1060405

April 5, 1906 60405

April 5, 1806 939595–

The valid date range is January 1, 1801 to December 31, 2199. When no date is entered,
the internal representation is zero (0).

The internal format ensures that

■ An historical view can be obtained. In this format dates can be ordered into
ascending or descending order using the database.

■ The stored internal format is independent of the displayed external format, namely,
independent of the date format used in a particular country.

Using Fields

Chapter 3: Understanding Your Data Model 77

External Format

The external format for DTE fields and the valid range for entering dates depends on the
input edit code you select for the field.

■ If the edit code has a 4-digit-year format (YYYY), the range of dates you can enter is
the same as the internal format range, namely, January 1, 1801 to December 31,
2199.

■ If the edit code has a 2-digit year format (YY), the range of dates you can enter is
restricted to a ‘floating’ hundred years (00-99) starting from the year specified by
the YCUTOFF model value. The cut-off year can be any year from within the range
of 1900-1999 and its current value is retrieved at run time. The shipped default is
1940. In this case a year greater than or equal to 40 is assumed to be in the 20th
century; a year less than 40 is assumed to be in the 21st century.

The external format for DTE fields for both input and output also depends on the setting
of the Date Generation Validation (YDATGEN) and Date Format (YDATFMT) model
values. It can be *MDY, *DMY, or *YMD. Note that to enter, display, or print date fields
with a four-digit-year external format such as, MM/DD/YYYY, you need to change the
appropriate edit code to either / or –.

For more information on four-digit years and edit codes, refer to the table in the
description of the DT# field type in this chapter.

See the chapter "Modifying Action Diagrams" in Building Applications for more
information on *MOVE and the date built-in functions.

Using Fields

78 Defining a Data Model

Validation

DTE fields are automatically validated by CA 2E. Dates are automatically translated from
external to internal format and vice-versa. Dates are validated to be in the external
format when entered on a panel and converted to internal format when written to a
file.

A date cannot be converted if its day, month, or year portion has an out-of-range value.
If you enter an invalid date, the message, "Invalid date" is issued and the date is
redisplayed in reverse image according to the output edit code:

■ If the edit code has a four-digit-year format (YYYY), the invalid day and month
portions are reproduced as they were entered. An invalid year is replaced by the
special value 9999 to indicate that the entered year is out of range.

■ If the edit code has a two-digit-year format (YY), all date portions are reproduced
with no change.

Examples of DTE fields include:

■ Date of birth

■ Order date

■ Creation date

Ideographic Character Text

The following table describes the default characteristics of the IGC field.

Field Type Attribute Shipped
Default Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxIG

Alpha

20

as external

-

-

N

-

Y

-

Y

N

Y

-

-

N

N

-

N

-

LHS text (Column headings)

RHS text

Field name

IGC Text

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

O

-

N

N

-

N

N

Y

Y

-

Y

-

Y

-

-

N

-

N

-

-

Using Fields

Chapter 3: Understanding Your Data Model 79

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

N

-

-

-

Y

-

-

-

N

-

-

-

Y

-

-

-

The IGC type is used for fields that contain both ideographic and alphanumeric data.
Ideographic data consists of Japanese, Korean or Chinese characters. The fields have the
default keyboard shift O.

The source generated for files containing IGC fields automatically contains the necessary
keywords, such as IGCCNV. Examples of IGC fields include:

■ Customer name

■ Customer address

For more information on keyboard shifts and ideographic enhancements, refer to IBM i
DDS Reference, Appendix I.

Narrative Text

The following table describes the default characteristics of the NAR field.

Field Type Attribute

Shipped
Default Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxNA

Alpha

30

as external

-

-

N

Y

-

-

Y

N

Y

-

-

N

N

N

-

-

LHS text (Column headings)

RHS text

Field name

Text

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

XANWIDM

Y

N

N

-

N

Y

Y

Y

-

Y

Y

Y

Y

-

N

N

N

N

-

Using Fields

80 Defining a Data Model

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

N

-

-

-

Y

-

-

-

N

-

-

-

Y

-

-

-

Multi-Line Entry N N Y Y

The NAR type is used for fields that represent narrative text. NAR field attribute type
should be used in contrast with the TXT field type, which specifies a basic descriptive
title for an (entity) file, such as Company name or Product name. The NAR attribute type
can be regarded as a catch-all to define data fields not covered by any other field types.

Examples of NAR fields include:

■ Order comments

■ Address lines

Number (NBR)

The following table contains Default characteristics of the NBR Field.

Field Type Attribute Shipped
Default Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxNB

Packed

5.0

as external

0

-

N

Y

-

Y

Y

N

Y

-

Y

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

Number

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

NSYDI

-

N

-

N

N

-

Y

-

Y

Y

-

Y

-

-

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Using Fields

Chapter 3: Understanding Your Data Model 81

Field exit option

Edit codes: Input

 Output

 Report

Zero

4

3

3

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The NBR type is used for fields that contain purely numeric data values. By default, NBR
fields are for integers.

Numeric fields with characteristics such as VAL, QTY, PCT, PRC, should use these field
types since they provide a more precise specification. The NBR type can be regarded as
a catch-all for numeric data fields that are not covered by other types.

Examples of NBR fields include:

■ Number of customers

■ Number of records in file

Note: When prompting on numeric fields, the ? cannot be used. The prompt function
key (F4) allows prompting. The YCUAPMT model value must be set to Y to enable F4 for
prompting.

See the YCHGMDLVAL command in CA 2E Command Reference Guide for more
information on changing model values.

Percentage (PCT)

The following table contains the Default characteristics of the PCT Field.

Field Type Attribute Shipped
Default Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxPC

Packed

5.2

as external

2

-

N

Y

-

Y

Y

N

Y

-

Y

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

Percent

N

Y

Y

Y

Y

Y

Using Fields

82 Defining a Data Model

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

NSIDY

-

N

-

N

N

-

Y

-

Y

Y

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Blank

4

3

3

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The PCT type is used for fields that represent a percentage or a part of a whole
expressed in hundredths.

Examples of PCT fields include:

■ Percentage purity

■ Percentage market share

■ Percentage usage

■ Profit margin

■ Market index

Price (PRC)

The following table contains the Default characteristics of the PRC Field

Field Type Attribute Shipped
Default
Value

Default
Override

Field Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxPR

Packed

7.2

as external

2

-

N

Y

-

Y

Y

N

Y

-

Y

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

Price

N

Y

Y

Y

Y

Y

Using Fields

Chapter 3: Understanding Your Data Model 83

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

NSIYD

-

N

-

N

N

-

Y

-

Y

Y

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Blank

4

3

3

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The PRC type is used for fields that represent a price such as a monetary rate or value
per unit.

Price fields are typically used to represent a value per unit. PRC field type should be
used in contrast with these field types:

■ Pure numeric value (NBR): if the number does not have a standard characteristic,
such as Line number, a pure numeric type should be used.

■ Numeric fields with other standard characteristics (VAL, PCT): ensure that the field
is a price and not a value.

Examples of PRC fields include:

■ Retail price

■ Manufacturing price

■ Discount price

■ Customs tariff

Using Fields

84 Defining a Data Model

Quantity (QTY)

The following table contains the Default characteristics of the QTY Field.

Field Type Attribute Shipped
Default Value

Default
Override

Field Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxQT

Packed

5.0

as external

N

-

N

Y

-

Y

Y

N

Y

-

Y

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

Quantity

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

YNSID

-

N

-

N

N

-

Y

-

Y

Y

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Blank

4

3

3

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

Using Fields

Chapter 3: Understanding Your Data Model 85

The QTY type is used for fields that represent quantities; that is, numbers of a given
characteristic in standard units. A clear specification of characteristics facilitates
verification and use of the data model.

The units measured by a quantity depend on your business. For property it may be
square feet, for garment retailing it may be meters of fabric, for pharmaceuticals it may
be milligrams. The criteria to be considered in assigning the attribute QTY to a field is
not what the actual quantity is but whether it is a quantity.

QTY field type should be used in contrast with the following other field types:

■ Pure numeric value (NBR): if the number does not have a standard characteristic
such as Line number, a pure numeric type should be used.

■ Numeric fields with other standard characteristics (VAL, PCT): you should ensure
that the field is a quantity and not a value.

Examples of QTY fields include:

■ Yards of fabric (m)

■ Floor space (sq.m)

■ Gross tonnage (T)

Using Fields

86 Defining a Data Model

Reference Field (REF)

The REF field type is used to specify that the definition of a field is based on the
definition of another field. The name of the referenced field must be specified in the
definition. The referencing field is given the same attributes as the referenced field but
has a different field name.

The text, check and default conditions, and generation name are unique for each field.
You can override these attributes.

The field length, data type, usage, and edit codes are shared. A REF field can inherit
narrative (help text) from the referenced field.

You can specify different check and default conditions for the referenced and
referencing fields.

For example, an existing STS field called State has all of the state abbreviations listed as
conditions. If you need two states for an Order, two fields can be created: Ship To State
and Bill to State. Both of these new fields would be REF fields, referencing the field
State. They can now share the same conditions of the field to which they refer, State.

Defining a group of similar fields as REF fields, based on one particular field, ensures
that all the fields in the group belong to the same domain as defined in CA 2E.

CA 2E carries out domain checking to ensure that only a field of the right type and size is
passed as a parameter to a function.

REF fields do not share the same true domain. They do, however, share the same set of
conditions. Where CA 2E requires a field to be in the same domain, the field must be the
parent field or a REF field referencing the parent.

Examples of REF fields include:

■ Delivery quantity (REF Order quantity)

■ Manager code (REF Employee code)

■ Sub-area code (REF Area code)

■ Array element 2 (REF Array element 1)

Using Fields

Chapter 3: Understanding Your Data Model 87

Defining Function Fields as REF Fields

If you define a function field with a usage type of SUM, CNT, MIN, or MAX as REF field,
the input parameter to the field function will be the referenced field.

See the chapter "Defining Functions" in Building Applications for more information on
specific function fields.

See the chapter "Modifying Device Designs" in Building Applications for more
information on adding, changing, or modifying function fields.

Surrogate (SGT)

The following table contains the default characteristics of the SGT field.

Field Type Attribute Shipped
Default Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxSG

Packed

7.0

as external

0

N

-

N

Y

-

Y

Y

N

Y

-

Y

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

Quantity

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

N

-

N

-

N

N

-

Y

-

Y

Y

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

N

3

3

4

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

Using Fields

88 Defining a Data Model

The SGT field type should be used to designate a field that is a system-assigned key.
Surrogate is a numeric value.

Examples of SGT fields include:

■ System key

■ Alternate key

Status (STS)

The following table contains the default characteristics of the STS Field:

Field Type Attribute Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxST

Alpha

1

1

-

-

N

Y

Y

-

Y

N

Y

Y

-

N

N

N

N

-

LHS text (Column headings)

RHS text

Field name

Values list

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

XANWID

N

N

N

-

N

Y

Y

Y

-

Y

Y

Y

Y

-

N

N

N

N

-

Check condition

Translate values

*NONE

N

N

N

Y

Y

Y

N

Field exit option

Edit codes: Input

 Output

 Report

N

-

-

-

Y

-

-

-

N

-

-

-

Y

-

-

-

Using Fields

Chapter 3: Understanding Your Data Model 89

The STS field type is used for fields that are indicators or flags. Status fields can take a
limited number of discrete values, each of which has a meaning assigned to it.

The values for a status field and their meanings are specified through the use of specific
field conditions allowed for status fields. If a check condition is specified for a status
field, it can only take the values specified by that condition.

For value mapped status fields, you can specify that a status field has a different internal
length from its external length; the value field is then mapped between the two values.

For more information on valued mapped status fields, refer to this topic, Field Type
Default Characteristics, the Translate values option.

A call to an inquiry program is automatically generated for status fields that appear as
input capable fields in CA 2E standard function panel displays. The inquiry shows the
allowed values for a status field if you press F4 (prompt) or enter ? in the selection area
of the panel.

Only conditions of type VAL or LST can be attached to status fields.

See the section Using Conditions for more information.

The following examples show fields of STS type and the conditions that can be attached
to them:

■ Order status (Ordered, Paid, Held, and Canceled)

■ Product Status (Active, Not active)

■ Quality (Passed, Failed, Under test)

■ Allow refund (Yes, No).

ISO Time (TM#)

The following table contains the default characteristics of the TM# field.

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxTA

Alpha

6.0

8

N

-

N

N

-

N

Y

N

N

-

N

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

Time

N

Y

Y

Y

Y

Y

Using Fields

90 Defining a Data Model

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

DYN

-

-

-

-

N

-

Y

-

Y

N

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Y

T

T

T

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The TM# type is one of two field types used for fields that represent times. For
compatibility with standards set by the International Standards Organization (ISO), it is
recommended that you use TM# for your time fields. Since the TM# field type meets ISO
standards, time fields of this type are interpreted correctly for SQL and Query Manager.

CA 2E automatically generates code to validate TM# fields.

ISO time is stored internally in HH.MM.SS format and externally as HHMMSS.

Note: A value of 00.00.00 on the physical file represents zero, not a valid time.

CA 2E generates ISO times as the i OS Time type with TIMFMT(*ISO) and assimilates i OS
Time fields as type TM#.

Examples of TM# fields include:

■ Time of birth

■ Time of order

■ Time of creation

Using Fields

Chapter 3: Understanding Your Data Model 91

Time (TME)

The following table contains the default characteristics of the TME field.

Field Type Attribute Shipped
Default Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxTM

Packed

6.0

as external

0

-

N

N

-

N

Y

N

N

-

N

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

HH:MM:SS

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

NYID

-

-

-

-

N

-

Y

-

Y

N

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Blank

T

T

T

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The TME type is one of two field types used for fields that represent times. For
compatibility with standards set by the International Standards Organization (ISO), it is
recommended that you use TM# for your time fields. You can use the *MOVE built-in
function to convert between date fields of type TME and TM#.

CA 2E automatically generates code to validate TME fields. TME times are always stored
on file in HHMMSS format.

Examples of TME fields include:

■ Time of birth

■ Time of order

Using Fields

92 Defining a Data Model

ISO Timestamp (TS#)

The following table contains the default characteristics of TS# field.

Field Type Attribute Shipped
Default Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxTS

Alpha

18.0

26

N

-

N

N

N

N

Y

N

N

N

N

N

N

N

N

N

LHS text (Column headings)

RHS text

Field name

Timestamp

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

DYN

-

-

-

-

N

-

Y

-

Y

N

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

blank

4

/

/

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

Using Fields

Chapter 3: Understanding Your Data Model 93

The TS# type is used for fields that represent timestamps. Since the TS# field type meets
standards set by the International Standards Organization (ISO), timestamp fields of this
type are interpreted correctly for SQL and Query Manager.CA 2E automatically
generates code to validate TS# field.

ISO timestamp is stored internally in YYYY-MM-DD-HH.MM.SS.NNNNNN format.
External formats are:

External Format Valid Edit Codes

MM-DD-YYYY-HH:MM:SS or

YYYY-MM-DD-HH:MM:SS

MM/DD/YYYY/HH:MM:SS or

YYYY/MM/DD/HH:MM:SS

MM/DD/YY/HH:MM:SS:NNNNNN

 -

/

T and Y

Note: A value of 0001-01-01-00.00.00.000000 on the physical file represents zero, not a
valid timestamp.

The external format for TS# fields for both input and output also depends on the setting
of the Date Generation Validation (YDATGEN) and Date Format (YDATFMT) model
values.

For more information on how edit codes and the settings of YDATGEN and YDATFMT
affect the way in which timestamps are displayed and printed, refer to the table in the
description of the DT# field type in this chapter.

You can use the *MOVE built-in function to convert between timestamp fields and time
and date fields.

CA 2E generates ISO timestamp as the i OS Timestamp type and assimilates i OS
Timestamp fields as type TS#.

Examples of TS# fields include:

■ Process ending date and time

■ Transaction audit date and time

■ Date and time of creation

Using Fields

94 Defining a Data Model

Text (TXT)

The following table contains the default characteristics of the TXT field

Field Type Attribute

Shipped Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxTX

Alpha

25

as external

-

-

N

Y

-

-

Y

N

Y

-

-

N

N

N

-

-

LHS text (Column
headings)

RHS text

Field name

Text

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

ANWID

Y

N

N

-

N

Y

Y

Y

-

Y

Y

Y

Y

-

N

N

N

N

-

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

N

-

-

-

Y

-

-

-

N

-

-

-

Y

-

-

-

Multi-Line Entry N N Y Y

Using Fields

Chapter 3: Understanding Your Data Model 95

The TXT type is used for fields that represent text description. It can be used to define
alphanumeric fields that are not appropriate for type CDE or STS.

The TXT field should be used to provide a title for an object, such as on inquiries. The
use of the TXT attribute should be contrasted with the narrative text (NAR) type, which
is used for additional descriptive comments.

Examples of TXT fields include:

■ Customer name

■ Currency name

■ Member name

■ Country name

Value (VAL)

The following table contains the default characteristics of the VAL field.

Field Type Attribute Shipped Default
Value

Default
Override

Field Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxVA

Packed

11.2

as external

2

-

N

Y

-

Y

Y

N

Y

-

Y

N

N

N

-

N

LHS text (Column
headings)

RHS text

Field name

Monetary value

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

NSYID

-

N

-

N

N

-

Y

-

Y

Y

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Blank

4

C

C

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

Using Fields

96 Defining a Data Model

The VAL type is used for fields that represent a monetary value, such as an amount in
units of a particular currency. The VAL type should be used in contrast with the
following field types:

■ Pure numeric value (NBR): if the number does not have a standard characteristic
such as Line number, a pure numeric type should be used.

■ Numeric fields with other standard characteristics (QTY, PCT): ensure that the field
is a value as opposed to a quantity.

Examples of VAL fields include:

■ Value of order ($)

■ Value of stock holding ($)

■ Customer credit limit ($)

Valid System name

The following table contains the default characteristics of the VNM field.

Field Type Attribute Shipped Default
Value

Default
Override

Field Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxVN

Alpha

10

as external

-

-

N

Y

-

-

Y

N

Y

-

-

N

N

N

-

-

LHS text (Column
headings)

RHS text

Field name

Name

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

XAI

N

N

Y

-

N

Y

Y

Y

-

Y

Y

Y

Y

-

N

N

N

N

-

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

N

-

-

-

Y

-

-

-

N

-

-

-

Y

-

-

-

Using Fields

Chapter 3: Understanding Your Data Model 97

The VNM type is used for fields that represent system entities including objects,
formats, and field names. A valid system name must

■ Begin with a letter, $, # or @

■ Contain no more than ten characters

■ Contain only characters, digits, or the characters $, #, @, and underscore

■ Contain no embedded blanks

■ For i OS, must be uppercase

This type is used for defining fields that must conform to the operating system's naming
convention. For DDS, it is implemented by using the CHECK(VN) keyword.

Examples of VNM fields include:

■ Member name

■ Job name

■ User name

Using Function Fields

Function fields are used to hold data requiring calculated values such as order quantity,
location space, or population size. Function fields are given specific usage types. The
usage types determine the allowable values of a function field.

Function fields specify work or calculation fields that can be used in CA 2E functions.
Function fields can be placed on device designs and defined to represent special
derivatives like summations, maximum and minimum values.

Function Field Usages

Type Description Data Type Example

DRV

USR

User defined logic

User-defined field

Any

Any

Value = Price + Quantity

Control total

CNT

MAX

MIN

SUM

Count of records

Maximum value

Minimum value

Sum of fields

Numeric

Numeric

Numeric

Numeric

Number of lines on order

Largest item on order

Smallest item on order

Order total

Usage types of function fields are listed and described in the pages that follow.

See the chapter "Defining Functions" in Building Applications for more information.

Using Fields

98 Defining a Data Model

Count (CNT)

The CNT usage type is given to those function fields that contain a count of the number
of records containing the field (to be counted) over a series of records.

A function field of usage type CNT has two parameters:

■ Result parameter, which is the derived field itself. This must be placed on a total
format of any function that calls the CNT function.

■ Input parameter attribute to be counted. This must be present on the detail format
of the calling function.

The series of records are defined by the standard function within which the field is
defined. For instance, in a Print File function, the CNT field could calculate the number
of times a field occurs in the detail lines of the report, to be displayed in the next total
format.

Fields of type CNT must be numeric. If the function field is defined as a REF field, based
on another field,CA 2E assumes that the CNT field is a count of the number of records
containing the based-on field. This method of definition cannot be used if the field to be
counted is not itself a numeric field.

Examples of CNT fields include:

■ Number of employees on employee file

■ Number of customers in company file for a company

■ Number of items within warehouse

Derived (DRV)

The DRV usage type is given to function fields that perform a user-defined calculation
specified by an action diagram. The field can then be used in any function where the
calculation is required. This method of definition cannot be used if the field to be
counted is not itself a numeric field.

A DRV function field has one output parameter: the derived field itself. Input
parameters may be specified for the function.

You can edit the action diagram and specify the parameters for the derived field.

Examples of DRV fields include:

■ Order line value

■ Discounted order value

Using Fields

Chapter 3: Understanding Your Data Model 99

Maximum (MAX)

The MAX usage type is given to function fields that contain the highest value found for a
field over a series of records.

A function field of usage type MAX has two parameters:

■ Result parameter—The derived field itself. This must be placed on a total format of
any function, which calls the MAX function.

■ Input parameter—The field for which the highest value is to be determined. This
must be present on the detail format of the calling function.

The series of records are defined by the standard function within which the field is
defined. For instance, within an Edit Transaction function, a MAX field defined on the
header could be used to calculate the maximum value of a field on the subfile record.

Fields of type MAX must always be numeric. If the function field is defined as a REF field,
based on another numeric field, assumes that the based-on field is the field whose
highest value is to be calculated. This method of definition cannot be used if the field to
be calculated is not itself a numeric field.

Examples of MAX fields include:

■ Largest order item : maximum of order quantity

■ Biggest warehouse location : maximum of location size

■ Largest town : maximum of town size

■ Highest line number : maximum of line number

Using Fields

100 Defining a Data Model

Minimum (MIN)

The MIN usage type is given to function fields that contain the lowest value found for a
field over a series of records.

A function field of usage type MIN has two parameters:

■ Result parameter—The derived field itself. This must be placed on a header format
of any function, which calls the MIN function.

■ Input parameter—The field for which the lowest value is to be determined. This
must be present on the details format of the calling function.

The series of records are defined by the standard function within which the function
field is defined.

For instance, within an Edit Transaction function, a MIN field defined on the header
could be used to calculate the minimum value of a field on the subfile record.

Fields of usage type MIN must always be numeric. If the function field is defined as a
REF field, based on another numeric field,CA 2E assumes that the based-on field is the
field whose lowest value is to be calculated. This method of definition cannot be used if
the field to be calculated is not itself a numeric field.

Examples of MIN fields include:

■ Smallest order item : minimum of order quantity

■ Smallest warehouse location : minimum of location size

■ Smallest town : minimum of town size

Using Fields

Chapter 3: Understanding Your Data Model 101

Summation (SUM)

The SUM usage type is given to function fields, which contain the sum of the values
found for another field over a series of records.

A function field of usage type SUM has two parameters:

■ Result parameter—The field containing the result of the summation.

This field must be placed on a total format of any function that calls the SUM
function.

■ Input parameter—The field for which the sum is to be calculated. This must be
present on the detail format of the calling function.

The series of records are defined by the standard function within which the field is
defined. For instance, in a Print File function, the SUM field could calculate the sum of
the values in a field from the detail lines of the report, which is to be displayed in the
next total format.

Function fields of type SUM must always be numeric. If the function field is defined as a
REF field, based on another numeric field,CA 2E assumes that it is the sum of the values
in the based-on field that is to be calculated. This method of definition cannot be used if
the field to be calculated is not itself a numeric field.

Examples of SUM fields include:

■ Total order value : sum of order line value

■ Total warehouse space : sum of location space

■ Total population size : sum of area population size

User-Defined (USR)

The USR usage type is given to any field that you wish to add to a function device design.
You can make such a field input capable if you wish.

It is your responsibility to initialize and process the USR fields in the action diagram.CA
2E performs basic field checking, such as date validation.

Examples of USR fields include:

■ Order total check value

■ Command request string

■ Next menu option

Using Conditions

102 Defining a Data Model

Using Conditions

A CA 2E condition both specifies the values or set of values that a field may take and
indicates what those values mean.

Conditions are used to

■ Validate the entry of data

■ Specify the select/omit criteria for access paths

■ Specify processing conditions in action diagrams

■ Condition the appearance of fields on function device formats

■ Specify function parameter values when calling functions in action diagrams

■ Specify default field values for adding records to a database

Properties of Conditions

Each condition has a name, a type, and an associated value. All the conditions
associated with a single field must be unique.

Using Conditions

Chapter 3: Understanding Your Data Model 103

Condition Types

A condition type specifies the type of validation rule it imposes. CA 2E has four types of
conditions, divided into two categories: those that are used with status fields and those
used with non-status fields.

The condition types allowed for status fields are:

■ VAL (Value)

■ LST (Value List)

The condition types allowed for non-status fields are:

■ CMP (Compare)

■ RNG (Range)

This table lists the valid condition types and the field types to which they can be
attached. The use of the different types of field conditions is described in the sections
following the table.

Condition
Type

Description Example Field Type

CMP

RNG

VAL

LST

Compare using an operator

Valid range between two values

Value

List of value conditions

Greater than 5

0–20

A

Held, Paid, Unpaid

All others

All others

STS

STS

See the chapter "Modifying Action Diagrams" in Building Applications for more
information on using conditions involving functions.

Status Field Conditions

The VAL (Value) and LST (Value List) are the two conditions allowed for use with status
fields. You can use these condition types to:

■ Specify single (VAL) and multiple values (LST)

■ Specify value mapping (VAL)

See the chapter "Maintaining Your Data Model" for more information on specifying
value mapping and converting conditions to values list for status fields.

Value (VAL) Condition

This condition type is used to specify single values that a status field may take.

Using Conditions

104 Defining a Data Model

Internal and External Values

You can specify two related values for a VAL condition:

■ Internal value—The value held on the implemented database file to represent the
condition

■ External value—The value entered by and displayed to the user in functions

CA 2E automatically generates source to translate between the two values. The internal
and external values may have different lengths. This value mapping facility may be used
to facilitate translation into different national languages. Value mapping only takes
place if a value is specified for the Translate condition (cnd) values field on the Edit Field
Details panel and if a Check condition value is specified for the field.

If you add or modify values within that LST condition, you will need to recompile the
functions that use the field. The validation check will then include your changes.

The following table contains examples of VAL conditions.

Condition File
Value

Translate
Condition Value

Display / Input
Value

Full-time Employee

Part-time Employee

F

P

N

N

F

P

Invoice status is 'Held'

Invoice status is 'Paid'

Invoice status is 'Delivered'

H

P

D

Y

Y

Y

HLD

PAD

DLV

If no Translate cnd values is specified, this condition is implemented using the VALUES
keyword in the display file DDS.

If Translate cnd values is specified, this condition is implemented by HLL code specifying
that the condition is to be checked against a CA 2E-created database file.

See the chapter "Maintaining Your Data Model" for more information on conditions and
converting condition values.

Using Conditions

Chapter 3: Understanding Your Data Model 105

List (LST) Condition

This condition type is used for conditions that specify a list of values that a status field
may take. Each LST condition is made up of one or more VAL conditions.

When you specify this condition type, a special LST condition, *ALL values, is created as
soon as a condition for the field is defined.

LST conditions have a special use in specifying field value checking in Display Device type
functions. If you specify a Check condition for a field using the Edit Field Details panel or
the Edit Screen Entry Details panel, CA 2E generates the necessary code to ensure that
any value entered is a valid condition in the list for all interactive functions that use that
field.

If you add or modify values within the LST condition, you will need to recompile the
functions that use the field. The validation check will then include your changes.

Condition List Inquiries

In generated functions, you can display the list of values available for a status field in
either of two ways: enter ? in the field, or place the cursor on the field and press F4. The
F4 to prompt only works if the YCUAPMT model value is set to Y (Yes).

For more information on using the YCHGMDLVAL command to change the value for
YCUAPMT model value, refer to the CA 2E Command Reference Guide.

Examples of LST Conditions

The following five value conditions are attached to an Invoice Status field:

■ LST Condition—All Values

Value Condition File Value

Invoice not yet due

Invoice due

Invoice paid

Invoice held

Invoice canceled

U

D

P

H

C

Using Conditions

106 Defining a Data Model

You may then define and create two different LST conditions; for example, Invoices
Outstanding and Completed Invoices, using a combination of the above VAL
conditions:

■ LST Condition—Outstanding Invoices

Value Condition File Value

Invoice not yet due

Invoice due

Invoice held

U

D

H

■ LST Condition—Completed Invoices

Value Condition File Value

Invoice paid

Invoice canceled

P

C

Non-Status Field Conditions

The conditions that can be attached to non-status fields include the CMP (Compare) and
RNG (Range).

Using Conditions

Chapter 3: Understanding Your Data Model 107

Compare (CMP) Condition

This condition type is used for conditions that specify values that a non-status field may
take, defined in terms of a fixed value and an operator.

Valid Operators

■ EQ—Equal to

■ NE—Not equal to

■ GT—Greater than

■ LT—Less than

■ GE—Greater than or equal to

■ LE—Less than or equal to

Examples of CMP Condition:

Field name Condition name Operation Value

Order quantity

Credit limit

License date

Greater than 10

Less than $100.00

Less than expire date

(Enter as YYMMDD)

GT (>)

LT (<)

LT (<)

10

100

991203

This condition is implemented using the COMP keyword in the display file DDS.

Range (RNG) Condition

This condition type is used for conditions that specify a range of values that a non-status
field may take, in terms of two fixed values between which the field value must lie, end
points included.

Examples of RNG Conditions:

Field name Condition Name From To

Stock quantity

Transaction value

Between 10 and 100

GT -250 and LT 250

10

250-

100

250

This condition is implemented using the RANGE keyword in the display DDS file.

See the chapter "Maintaining Your Data Model" for more information on using
conditions.

Using Relations

108 Defining a Data Model

Using Relations

This topic provides conceptual information and a full description of CA 2E relations. It
also explains and includes examples of how different types of relations are used within
your model.

CA 2E Relations

A CA 2E relation expresses an association between two files or between a file and a
field. Relations constitute the fundamental links in a data model. They enable you to
make assertions about the meaning of the connections within your data.

 CA 2E uses basic English verbs to describe relations as shown in these examples:

 Customer Known by Customer code

 Customer Has Customer name

 Customer Refers to Salesperson

The Refers to relation indicates that a relationship exists between the two files
(Customer-Salesperson); Known by and Has indicate the relationship between the file
and the field (Customer-Customer code, or Customer-Customer name).

Several relations can be specified for a single file. CA 2E automatically resolves the
relations of a file into the fields that are needed to implement that file. The fields that
result from resolving a relation are called file entries.

Using Relations

Chapter 3: Understanding Your Data Model 109

Relation Types

There are eight types of relations. An understanding of the purpose of these relation
types is central to understanding CA 2E.

■ Defined as

■ Extended by

■ Has

■ Includes

■ Known by

■ Owned by

■ Qualified by

■ Refers to

Relation Usage Groups

Depending on how they operate within a data model, CA 2E relations are grouped under
three different usage groups:

■ Definition relations, which declare files to exist

■ Key relations, which define the keys that identify a file by reference either to the
keys of another CA 2E file or to a field

■ Attribute relations, which declare the non-key fields that are present in a file by
reference either to another file or to a field

The use of specific CA 2E relations allows for the physical arrangement, selection, and
retrieval of information based on the arrangement of key fields in the database. The
relations you choose determine which fields are to appear on which file, whether a field
is a key field or foreign key field, and whether certain fields can be shared between files.

You must use the appropriate CA 2E relation types to describe a file-to-file or
file-to-field relation respectively.

CA 2E Relations

Usage Type Relation Used For

Definition Defined as File-to-file relationship

Key Owned by

Known by

Qualified by

File-to-file relationship

File-to-field relationship

File-to-field relationship

Using Relations

110 Defining a Data Model

Attribute Refers to

Includes

Has

File-to-file relationship

File-to-file relationship

File-to-field relationship

Other Extended by File-to-file relationship

Example of Relations Used in a Data Model

The following examples focus on the CA 2E relation types: Owned by, Known by,
Qualified by, Has, and Refers to.

Example 1: Simple Sales Ledger

You have a number of customers who order your products. Each order can involve a
number of different products but can be issued to only one customer. Customer and
Product are identified by Customer code and Product code respectively; an order is
identified by an Order number that is unique within the business. Each Order is made up
of an Order header and a variable number of Order detail lines, each of which is for a
particular quantity of a particular Product.

The situation can be represented diagrammatically as follows:

Using Relations

Chapter 3: Understanding Your Data Model 111

We could model this situation by using the CA 2E relation statements described below.

■ A Customer could be described as follows:

FIL Customer REF Known by FLD Customer code CDE

FIL Customer REF Has FLD Customer name TXT

The key of the Customer file is the Customer code.

■ A Product could be described as follows:

FIL Product REF Known by FLD Product code CDE

FIL Product REF Has FLD Product name TXT

FIL Product REF Has FLD Product size NBR

■ An Order could be described as follows:

FIL Order CPT Known by 1 FLD Order code CDE

FIL Order CPT Has 2 FLD Order date DT#

FIL Order CPT Has 3 FLD Order status STS

FIL Order CPT Refers to 4 FIL Customer REF

Using Relations

112 Defining a Data Model

FIL Order Detail CPT Owned by 1 FIL Order CPT

FIL Order Detail CPT Known by 2 FLD Order line no NBR

FIL Order Detail CPT Has 3 FLD Order quantity QTY

FIL Order Detail CPT Refers to 4 FIL Product REF

The previous relations result in the following entries in the files:

 Product

 Customer

 K Product code

Product name

Product size

 K Customer code

Customer name

 Order

 Order Detail

 K Order code

Order date

Order status

Customer code

 K

K

Order code

Order line no

Order quantity

Product code

Example 2: A More Complicated Product Structure

Your products have a more complicated structure than first imagined. Each Product
belongs to a Product group that serves as part of the product identifier. Each Product
also has a Product type that is not part of the product identifier, but has some extra
information associated with it. We can refine the model to reflect this situation by
adding a Product group and a Product type file.

Using Relations

Chapter 3: Understanding Your Data Model 113

A Product group could be described as follows:

FIL Product group REF Known by FLD Product group code CDE

FIL Product group REF Has FLD Product group name TXT

A Product type could be described as follows:

FIL Product type REF Known by FLD Product type code CDE

FIL Product type REF Has FLD Product type name TXT

FIL Product type REF Has FLD Pack size QTY

FIL Product type REF Has FLD Freight charge VAL

The definition of a Product could then be amended by adding an Owned by relation to
associate each Product with Product Group and a Refers to relation to associate a
Product type with each Product.

FIL Product REF Owned by Product group FIL REF

FIL Product REF Known by Product code FLD CDE

FIL Product REF Has Product name FLD REF

FIL Product REF Has Product size FLD QTY

FIL Product REF Refers to Product type FIL REF

We now have entries on two new files, the Product group and the Product type. A new
entry for the Product group code has been added wherever the Product file was
referenced by other CA 2E files, in this case, on the Order details:

 Product Group

 Product Type

 K Product group code

Product group name

 K Product type code

Product type name

Pack size

Freight charge

Using Relations

114 Defining a Data Model

 Product

 Order Detail

 K

 K

Product group code

Product code

Product name

Product size

Product type code

 K

K

Order code

Order line no

Order quantity

Product group code

Product code

Specifying Relations

This topic provides information for using the eight CA 2E relation types and includes
examples that illustrate and explain how each individual type is used.

You specify a relation through the Edit Database Relations panel. Relations are specified
as relation statements that have the following format:

Subject Relation Object

OBJ REL OBJ

Subject OBJ is the name of a file, REL is the name of a relation type, and Object OBJ is
the name of a file or field.

File-to-file Relationships

The most important aspects of your data model are described by the relations that
connect the files within the model.

To describe file-to-file relations you use:

■ Owned by

■ Extended by

■ Refers to

■ Includes

Using Relations

Chapter 3: Understanding Your Data Model 115

File-to-field Relationships

File-to-field relations are used to explicitly state that a field is to be present on a file.

You can use these three types of CA 2E relations to describe a file-to-field relationship:

■ Known by

■ Qualified by

■ Has

Describing and Using CA 2E Relations

This section specifies how each relation type is used and provides examples.

Defined as Relation

The Defined as relation declares that a file exists. For example, to say a file named
"Product" exists:

Product Defined as Product

A Defined as relation is present for each file.CA 2E implicitly creates the Defined as
relation if the definition of the file was not done using the Defined as relation in the first
place.

The Defined as relation does not cause any field entries to be added to a file.

Using Relations

116 Defining a Data Model

Examples of Using Defined as Relation

Example 1: Defining a Single Entity

Let us say that a rose is a rose, declared with the following relations:

FIL Rose REF Known by FLD Any other name CDE

FIL Rose REF Has FLD Petals TXT

FIL Rose REF Has FLD Thorns NBR

FIL Rose REF Has FLD Rose Type STS

This will automatically result in the following additional relation:

FIL Rose REF Defined as FIL Rose REF

Example 2: Defining Several Entities (Top-down)

The Defined as statement constitutes the most basic way of declaring an entity to exist.
If you are creating a new model working top down, you may first declare all the entities
that you think will be required to define your model. Example:

FIL Company REF Defined as FIL Company REF

FIL Division REF Defined as FIL Division REF

FIL Product REF Defined as FIL Product REF

FIL Customer REF Defined as FIL Customer REF

There must be a Defined as relation for every CA 2E file. If you make a reference to a
non-existing file, a Defined as statement is created automatically for the file.

In practice, you seldom need to enter a Defined as statement explicitly, unless you
choose to define the entities in your model before using them in any other relation.

Using Relations

Chapter 3: Understanding Your Data Model 117

Displaying Defined as Relations

Defined as relations are not normally shown on the Edit Database Relations panel. You
can display Defined as relations by entering DFN or ALL in the relation level (Rel lvl) field
on the positioner line at the top of the Edit Database Relations panel.

Deleting Defined as Relations

A Defined as relation cannot be deleted until all references to the file are also deleted.

Owned by Relation

The Owned by relation denotes a parent-child relationship. The primary key(s) of the
owning file become part of the primary key of the owned by file. For instance, if Order
Detail is Owned by Order, the key of Order, Order code, is the high order key of Order
Detail.

The file of an Owned by relation must be of type REF or CPT. All the key fields of the
owning file are incorporated as high order keys in the owned file.

A file can have more than one Owned by relation. A file can have only Owned by
relations to define its keys. It is not necessary to have other key relations, such as
Known by or Qualified by.

The Owned by relation allows you access to any of the fields on the owning file. If a field
is accessed on the owning file, it creates a virtual field on the owned file. Virtual field
values can be used but cannot be updated.

An Owned by relation can have its description clarified by using the For text extension.

See the section Using for Text and Sharing with Relations for more information on using
text and Sharing with Owned by relations.

Using Relations

118 Defining a Data Model

Examples of Using Owned by Relations

Example 1: Orders within Company

The Owned by relation may be used to specify the high order key of a file. Let us say
that you operate a multi-company sales ledger and that all orders are within company.

A Company could be defined as follows:

FIL Company REF Known by FLD Company code CDE

FIL Company REF Has FLD Company name TXT

An Order could be defined as follows:

FIL Order REF Owned by FIL Company REF

FIL Order REF Known by FLD Order code CDE

FIL Order REF Has FLD Order date DT#

This specifies that the key of the Company file is the high order key of the Order file,
which results in the following entries:

 Company Order

 K Company code

Company name

 K

 K

Company code

Order code

Order date

Using Relations

Chapter 3: Understanding Your Data Model 119

Example 2: Orders within Company within Country

Owned by relations may be used to construct a hierarchy. In the example given above,
the Owned by statement asserts that the keys of Company are the high order keys of
Order. If you later decide that a Company is only unique within Country, then adding
Country to the Company file with an Owned by relation will automatically add it to the
Order file. The presence of the relation stating Order is Owned by Company causes the
automatic addition.

A Country could be defined as follows:

FIL Country REF Known by FLD Company code CDE

FIL Country REF Has FLD Company name TXT

Company could then be redefined as follows:

FIL Order REF Owned by FIL Company REF

FIL Order REF Known by FLD Company code CDE

FIL Order REF Has FLD Company name TXT

The definition of Order requires no change:

FIL Order REF Owned by FIL Company REF

FIL Order REF Known by FLD Order code CDE

FIL Order REF Has FLD Order date DT#

This results in the following entries, where you can see the Country code has been
introduced automatically onto the Order file:

 Country File Company File Order File

 K Country code

Country name

 K

 K

Country code

Company code

Company name

 K

 K

 K

Country code

Company code

Order code

Order date

Using Relations

120 Defining a Data Model

Known by Relation

The Known by relation specifies that a field is the key field, or one of the key fields of a
file. This means that records in the file can be uniquely identified by the value of this
field together with the values of any other key fields.

The field specified as the object of a Known by relation is added as a key field entry to
the file containing the relation.

Examples of Using Known by Relation

Example 1: A Single Known by Relation - Company

Suppose you wish to identify companies by a company code.

A Company could be defined as follows:

FIL Company REF Known by FLD Company code CDE

FIL Company REF Has FLD Company name TXT

This results in the following entries:

 Company file

K Company code

Company name

Using Relations

Chapter 3: Understanding Your Data Model 121

Example 2: Multiple Known by Relations - Manager

There may be more than one Known by relation on a file. For example:

FIL Event REF Known by FLD Date DT#

FIL Event REF Known by FLD Time TM#

FIL Event REF Has FLD Location TXT

Note that the presence of more than one Known by relation on a file may indicate that
an entity has been omitted from the model. For instance, consider the following
relations to define a Manager:

FIL Manager REF Known by FLD Manager type STS

FIL Manager REF Known by FLD Manager code CDE

FIL Manager REF Has FLD Manager name TXT

FIL Manager REF Has FLD Salary VAL

Neither Manager name nor Manager salary are properties of Manager type, which
suggests that Manager type should be an entity in its own right, and that Manager
should be Owned by Manager type.

Using Relations

122 Defining a Data Model

Qualified by Relation

The Qualified by relation can be used to qualify a file identifier by one or more variable
factors such as the date, the time, or a sequence number.

The Qualified by relation would typically be used for entities that represent a continuum
of values. An example may be prices or currency rates that come into effect on a given
date and prevail for a while. The identification of such entities may be qualified by a
date.

Another common usage would be to describe step functions, such as volume discount
breaks or tax ranges, which similarly come into effect at a certain threshold and prevail
until the next threshold is reached.

Qualified by relations are further specified to tell whether the record retrieval is to be
*PREVIOUS, to retrieve the nearest record less than or equal to the search value, or
*NEXT, to retrieve the nearest record greater than or equal to the search value.

Note: These values are mutually exclusive; you cannot specify both on the same file.

To specify these values, enter + in the subfile selector of the Qualified by relation, then
press F5.

Qualified by relations are similar to Known by relations: they are resolved by adding the
named field as a key field to the file containing the relation. The Qualified by relation,
however, has a special property: a reference to a file containing a Qualified by relation
may be redirected.

The field usage required for the field of a Qualified by relation needs to be ATR and not
CDE.

See the chapter "Creating/Defining Your Data Model" for more information on
redirection.

Using Relations

Chapter 3: Understanding Your Data Model 123

Examples of Using Qualified by Relations

Example 1: A Qualified File - Product Prices

Your company has a number of products:

FIL Product REF Known by FLD Product code CDE

FIL Product REF Has FLD Product description TXT

Your product prices change from time to time. You may then describe a Product price
file as follows:

FIL Product price REF Owned by FIL Product CDE

FIL Product price REF Qualified by FLD Effective date DT#

FIL Product price REF Has FLD Price PRC

Thus for each change of Product price you would have a separate record, a state of
affairs represented by the following entries:

Example 2: Using a Qualified File - Product Prices

If you now wish to use the Product price in an Order detail file, you could define an
Order file as follows:

FIL Order REF Known by FLD Order number CDE

FIL Order REF Has FLD Order date DT#

FIL Order REF Has FLD Order status STS

FIL Order REF Refers to FIL Customer REF

And, define an Order detail file as follows:

FIL Order detail REF Owned by FLD Order CPT

FIL Order detail REF Known by FLD Order line no NBR

FIL Order detail REF Has FLD Order quantity QTY

FIL Order detail REF Refers to FIL Product price REF

This would result in the following entries:

Using Relations

124 Defining a Data Model

 Order detail file

 K

 K

Order number

Order line no

Order quantity

Product code

Effective date

The fields on the file are the same as if you had used a Known by relation instead of a
Qualified by relation for the Effective date. However, additional processing logic is
created for the Qualified by relation.

The difference in using a Known by instead of a Qualified by relation is that you will have
a code generated that refers to the correct product price. The code is based not on an
exact value match of the effective date but on the closest previous value of the effective
date.

Extended by Relation

The Extended by relation declares a file to be an extension of another file. The relation
records an association that is not expressed by any other relation, and is, in particular, a
one-to-one or one-to-none association between the identifiers of two files.

When it is used with an existing Owned by relation, the Extended by relation has no
effect on the entries of the file being extended; it merely makes the fields from the
extended file available for selection as virtual fields on the file being extended.

A virtual field is logically present in a view of a file, though it physically resides in
another file.

See the section Adding Virtual Fields to File to File Relations for more information.

A one-to-none relation denotes a relation where an instance exists in one file and the
corresponding instance does not exist in another file. For example, the Product file
could be extended by the export details file. Some products may be exported and some
may not. This would mean that a product record may or may not have an associated
record in the export detail file.

Note: It is not recommended that you use the Extended by relation unless the extending
file is Owned by the extended file, as unpredictable results may occur during source
code generation.

Using Relations

Chapter 3: Understanding Your Data Model 125

Example of Using Extended by Relations

Your basic Customer information consists of the following fields:

FIL Customer REF Known by FLD Customer code CDE

FIL Customer REF Has FLD Customer name TXT

FIL Customer REF Extended by FIL Customer detail REF

You may enter additional details about Customers in another file called Customer detail:

FIL Customer detail REF Owned by FIL Customer CDE

FIL Customer detail REF Has FLD Credit limit VAL

FIL Customer detail REF Has FLD Managing Director TXT

This results in the following entries:

 Customer file Customer detail

 K Customer code

Customer name

 K Customer code

Credit limit

Managing Director

Using Relations

126 Defining a Data Model

If you wish to create a function that brings both Customer and Customer detail
together, you need to build an access path that contains fields from both files. If you
were doing this on the Customer detail file, this would not present a problem since you
could specify virtual fields on the Owned by relation

FIL Customer detail REF Owned by FIL Customer CDE

 VRT Customer name TXT

FIL Customer detail REF Has FLD Credit limit VAL

FIL Customer detail REF Has FLD Managing Director TXT

However, if you wish to attach your function to the Customer file, you would not be able
to obtain the customer details unless you had an Extended by relation. Using the
Extended by relation, you can specify virtual fields as follows:

FIL Customer detail REF Known by FLD Customer code CDE

FIL Customer detail REF Has FLD Customer name TXT

FIL Customer detail REF Extended by FIL Customer detail REF

 VRT Credit limit VAL

 VRT Managing Director TXT

Each Customer may have only one Customer detail record: there is a one-to-one
correspondence between files.

There are two implementation reasons why you may consider using the Extended by
relation rather than simply including the data from the extended file in the basic file:

■ To save space. If some data fields are only present on a minority of records, then it
may be desirable to place the rarely used fields into an Extended by file.

■ To avoid recompilation of an existing system. If you wish to add fields to an existing
file that is already used by a large number of programs, you could avoid level check
problems by placing the extra fields in another file owned by the original file. An
Extended by relation would make the new file details available from the based-on
file.

Note: An Extended by relation effectively constrains an Owned by relation, which is
normally one-to-many, to be a one-to-one relationship. It is only appropriate to use
the Extended by relation for cases where a one-to-one or one-to-none relationship
holds.

Using Relations

Chapter 3: Understanding Your Data Model 127

Refers to Relation

The Refers to relation specifies that a file references another file. A Refers to relation is
resolved by including the identifiers (keys) of the referenced file into the referring file as
foreign key fields.

The Refers to relation allows access to any of the fields on the referred to file from the
referring file. If a field is accessed on the referred to file, it creates a virtual field on the
referring file. Virtual field values can be used but cannot be updated.

A virtual field is logically present in a view of a file, though it physically resides in
another file.

See the chapter "Maintaining Your Data Model" for more information on virtual fields.

A Refers to relation can have a For text extension to further clarify its description.

For more information on using For text and Sharing with Refers to relations, see the
section Using For text and Sharing with Relations.

The Refers to relation can be contrasted with the Includes relation, which includes all
fields from the referenced file, and with the Owned by relation, which is resolved into
key entries on the owned file.

Note: Up to 60 Refers to relations can be placed on a file.

Using Relations

128 Defining a Data Model

Example of Using Refers to Relations

Where Order detail refers to Product, Product may be defined as follows:

FIL Product REF Known by FLD Product code CDE

FIL Product REF Has FLD Product name TXT

The Product could then be referenced elsewhere, for instance by an Order detail file:

FIL Order detail REF Owned by FIL Order CPT

FIL Order detail REF Known by FLD Order line no NBR

FIL Order detail REF Has FLD Order quantity QTY

FIL Order detail REF Refers to FIL Product REF

This results in the Product code being added to the Order detail file as a foreign key
field:

 Product file Order detail file

 K Product code

Product name

 K

 K

Order code

Order line no

Order quantity

Product code

Has Relation

The Has relation declares a field to be present in a file as an attribute. Each field
declared as a subject of a Has relation for a file is included in the file as a non-key field.

Using Relations

Chapter 3: Understanding Your Data Model 129

Example of Using Has Relations

A company is defined as follows:

FIL Company REF Known by FLD Company code CDE

FIL Company REF Has 1 FLD Company name TXT

FIL Company REF Has 2 FLD Creation date DT#

FIL Company REF Has 3 FLD Profit last year VAL

FIL Company REF Has 4 FLD No of employees NBR

These relationships will result in the following entries:

 Company file

 K

Company code

Company name

Creation date

Profit last year

No of employees

For each CA 2E file, all the file-to-field relations must be unique. The same field cannot
be declared twice in the same file. A field can be declared in two different files.
Although it can be declared with two different usages, this is not recommended. For
example:

FIL Product REF Known by FLD Product code CDE

FIL Order Detail REF Has FLD Product code CDE

Using a field as an attribute in one file and as an identifier in another file usually
indicates that a relation is missing from your model.

Using Relations

130 Defining a Data Model

Includes Relation

The Includes relation states that a file is to include fields that have already been
declared as being present in a structure file. The Includes relation allows the use of a
group of fields or "a data structure," in several different files.

Specifying an Includes relation causes all of the fields in the included file to be present
as non-key fields in the including file.

See the section Using Files for more information on structure files.

Examples of Using Includes Relations

You have an Audit stamp structure file that is made up of three components:

FIL Audit stamp STR Has FLD Date DT#

FIL Audit stamp STR Has FLD Time TM#

FIL Audit stamp STR Has FLD User ID CDE

You may wish to refer to the Audit stamp in a number of files.

For instance, a product file:

FIL Product REF Known by FLD Product code CDE

FIL Product REF Has FLD Product name TXT

FIL Product REF Has FLD Product quality QTY

FIL Product REF Includes FIL Audit stamp STR

For instance, an order file:

FIL Order REF Known by FLD Order number CDE

FIL Order REF Has FLD Order status STS

FIL Order REF Includes FIL Audit stamp STR

This would result in the following entries:

 Product Order

Using Relations

Chapter 3: Understanding Your Data Model 131

 K Product code

Produce name

Product quantity

Date

Time

User ID

 K Order number

Order status

Date

Time

User ID

Relation Sequencing

The relations that describe a file are resolved into entries in the order they are specified
on that file.

The following table contains the default sequence order for CA 2E relations.

Usage group Relation

Definition Defined as

Key Owned by

Known by

Qualified by

Attribute Extended by

Refers to

Has

Includes

You can change this default sequence. You can control the order in which CA 2E resolves
relations by using the sequence field on the relation statements.

See the chapter "Creating/Defining Your Data Model" for more information on changing
the sequence order of relations.

Using For Text and Sharing with Relations

A CA 2E relation is specified in the form of a relation statement, consisting of the
referencing file, a referenced file or field, and the relationship between them. The
relationships can be further clarified using a For text clause.

Using Relations

132 Defining a Data Model

For Text

You can add a For text clause to a relation statement to further clarify the description of
a relationship. Owned by and Refers to are the only relations that can use For text.

To extend a relation, type a + in the selection field beside the Owned by or Refers to
relation and press F5.

The For text helps document the meaning of a relation. The For text is also used to
identify file entries that may be duplicates of existing file entries based on a previously
defined relationship.

If a given file refers to another file more than once, the For parameter can be used to
distinguish between each reference.

CA 2E files cannot contain duplicate fields. To prevent duplicate fields from being added
to a file from the resolution of the Owned by and Refers to relations, CA 2E uses the
following procedure:

■ If the new entry arises from a relation that has For text, CA 2E uses the For text
and the entry name to define the new field.

Example: If Company code is the entry that arises from a relation that has Invoice in
its For text, the new field will be Invoice Company code, with a REF field type,
referencing Company code.

■ CA 2E then checks the field dictionary to determine whether Invoice Company code
exists. If it does, CA 2E uses the field. If it does not, creates the Invoice Company
code as a new field to be added to the file, referencing the existing field (Company
code).

■ If the new entry arises from a relation without For text,CA 2E uses the entry name
and a surrogate number to define the new field. The surrogate number is added as
part of the entry name.

Example: If Company code is the new entry, the new field may be Company code 25642.

The new field has a field type of REF, referencing the existing field (Company code).

You may override this processing and modify the names of fields by using the Display
Referenced Field Details panel.

Using Relations

Chapter 3: Understanding Your Data Model 133

Examples of Using For Text

You have two entities defined, Customer and Order. The Order is placed by one
Customer but can be paid for by a different Customer. The Order needs to have two
references to the Customer entity to define the two Customers, one for ordering and
one for invoicing.

To clarify which Refers to relation is for invoicing Customer and which is for ordering
Customer, use For text.

FIL Customer REF Known by FLD Customer code CDE

FIL Customer REF Has FLD Customer name TXT

FIL Order REF Known by FLD Order code CDE

FIL Order REF Refers to FIL Customer TXT

 For: Ordering Sharing: *ALL

FIL Order REF Refers to FIL Customer REF

 For: Invoicing Sharing: *ALL

The resolved entries for the two entities will be:

 Customer

 K Customer code

Customer name

 Order

 K Order code

Customer code

Invoicing Customer code

Using Relations

134 Defining a Data Model

Note that when a file A Refers to a file B more than once, the For text is applied only to
the second and subsequent Refers to relations. To change the first relation, type R
(replace field) against the first relation on the Edit Field Entries panel and define a new
referenced field on the Display Referenced Field Details panel with the For text
appended; in our example, Ordering Customer code. The resolved entries for the Order
file would then be:

 Order

 K Order code

Ordering Customer code

Invoicing Customer code

Using Relations

Chapter 3: Understanding Your Data Model 135

Sharing

Sharing means you want to share or choose a specific instance or key value in the chain
of relationships. This is not just an implementation specification; it relates business
requirements as well.

Sharing only takes place if the referenced entity has more than one key field; only the
high order keys may be shared. The low order key will always require a separate entry.

Take the following model for example:

Customer is Owned by Company

Order Refers to Customer For Ordering Customer

Order Refers to Customer For Invoicing Customer

An Order refers to the Customer twice, first for Ordering Customer and then for
Invoicing Customer. This requires two entries in Order of Customer Code, one for
Ordering and one for Invoicing.

For the Company Code entry, there is a choice. If the two customers (ordering and
invoicing) must be customers of the same company, then, to ensure this, the Company
Code is shared for the two Refers to relations. That means there would be only one
Company Code entry in the Order file. If the two customers can be customers of
different companies, then the Company Code is not shared for the two Refers to
relations. That is when two Company Code entries in the Order file are needed, one for
ordering and one for invoicing.

The Owned by and Refers to relations may imply that a key field should be added to a
file when that field already exists on the file because it was resolved from a preceding
relation, causing duplicate entries.

You can control whether separate entries are created for a field in a file-to-file relation
by checking the value specified for the Sharing parameter on the relation statement. For
example:

■ If *NONE is specified for the Sharing parameter, a separate entry is added to the file
for all the fields.

■ If *ALL is specified for the Sharing parameter, the high order keys may be shared.
The low order key will always have a separate entry.

■ If a file name is specified for the Sharing parameter, the entry is shared if it is
present in the specified file and in both the owned and owning files. A separate
entry is added if the file name or *ALL is not specified in either of these files.

You can use the Default Sharing Type (YSHRDFT) model value to set the default sharing
to *NONE or *ALL.

Using Relations

136 Defining a Data Model

Example of Sharing

A Product Bill of Materials requires two Owned by relations from the Product file to the
Assembly file. One relation represents the Parent Product; the other represents the
Component Product. The Product file is owned by the Division file, which is owned by
the Company file. You use Sharing to specify that the Components of a Product must be
from the same Company as the resulting or Parent Product but that the components
can be from different divisions.

The Sharing text specifies that the two Owned by relations share the Company file
record.

See the chapter "Creating/Defining Your Data Model" for more information on sharing
entries and redirection.

Using Relations

Chapter 3: Understanding Your Data Model 137

Use of For Text for a Parts Assembly

This example is intended to show the use of For text to distinguish between different
entries of the same field on a single file. This example includes the use of Sharing.

A Company is defined as follows:

FIL Company REF Known by FLD Customer code CDE

FIL Company REF Has FLD Customer name TXT

FIL Division REF Owned by FIL Company REF

FIL Division REF Known by FLD Division code CDE

FIL Division REF Has FLD Division name TXT

And each Company is split into divisions, thus a Division is defined as follows:

FIL Division REF Owned by FIL Company REF

FIL Division REF Known by FLD Division code CDE

FIL Division REF Has FLD Division name TXT

Let us now introduce the products handled by the company and say that each Division
produces different products or parts. This means that a Part is to be defined as follows:

FIL Part REF Owned by FIL Division REF

FIL Part REF Known by FLD Part code CDE

FIL Part REF Has FLD Part name TXT

The above relations result in the following entries. Note that Part has both Company
code and Division code in its key:

 Company file Division file

 K Company code

Company name

 K

 K

Company code

Division code

Division name

Using Relations

138 Defining a Data Model

 Part file

 K

 K

 K

Company code

Division code

Part code

Part name

The basic description of an Assembly includes two separate references to a Part, one as
Resulting Part and one as Component Part. You can distinguish between the two by use
of the For text:

FIL Assembly REF Owned by FIL Part REF

 For: Resulting Sharing: *ALL

FIL Assembly REF Owned by FIL Part REF

 For: Component Sharing: *ALL

FIL Assembly REF Has FLD Assembly qty QTY

After the first instance of the Part code field on the Part file, the For text will be prefixed
to each additional instance to create a unique entry name.

As a further consideration, you need to decide whether the Resulting parts and the
Component parts belong to the same Division and Company. Whether they do or not is
indicated by the value specified for the Sharing field. As a default, sharing is assumed. In
this instance, it will be assumed that the Company and Division for both Component and
Resulting parts is the same. The Component part must be from the same Company and
Division as the resulting part. This means any fields that would be duplicated by the
resolution of both Owned by relations will not actually be repeated.

The following entries would result:

 Assembly file

Using Relations

Chapter 3: Understanding Your Data Model 139

 K

 K

 K

 K

Company code

Division code

Part code

Component Part code

Assembly qty

Thus, the additional instances of Company code and Division code that may arise from
the second Owned by relation have been suppressed.

If the Component belongs to different divisions and companies than the "Resulting"
part, we would specify that there is no sharing of common keys; that is, specify a value
of *NONE for the Sharing field. This causes any fields, whose presence would be
duplicated on the generated file by the resolution of both of the Owned by relations, to
be repeated with different names.

FIL Assembly REF Owned by FIL Part REF

 For: Resulting Sharing: *NONE

FIL Assembly REF Owned by FIL Part REF

 For: Component Sharing: *NONE

FIL Assembly REF Has FLD Assembly qty QTY

This would result in the separate entries for the Resulting Company code, the Resulting
Division code, and Resulting Part code, as follows:

 Assembly file

Using Relations

140 Defining a Data Model

 K

 K

 K

 K

 K

 K

Company code

Division code

Part code

Component Company code

Component Division code

Component Part code

Assembly quantity

A third variation may be the case where components can be from divisions different
than those of the resulting assembly but the resulting assembly and component must be
for the same company. In this case you would specify that there is sharing only of
Company. This causes the duplicate reference to the Company code to be dropped.

FIL Assembly REF Owned by FIL Part REF

 For: Resulting Sharing: Company

FIL Assembly REF Owned by FIL Part REF

 For: Component Sharing: Company

FIL Assembly REF Has FIL Assembly qty QTY

This would result in the following entries:

 Assembly file

 K

 K

 K

 K

 K

Company code

Division code

Part code

Component Division code

Component Part code

Assembly qty

Using Relations

Chapter 3: Understanding Your Data Model 141

Adding Virtual Fields to File-to-file Relations

The fact that a relation exists between two files means that, given a record from one
file, it is possible to look for a corresponding record on the other file in order to obtain
related data items.CA 2E allows you to specify which data items are to be obtained
through a file-to-file relation by allowing you to specify virtual fields. A virtual field is a
field that is present logically in a view of a file although it physically resides in another
file.

Virtual fields can be specified on the following relations:

■ Owned by

■ Refers to

■ Extended by

FIL Order line REF Refers to FIL Product REFT

 VRT Product name XT

where:

Refers to—Represents a File to file relation

Product—Represents a CA 2E file containing field

Product name—Represents a virtual field name

Virtual fields can be defined only in one direction on the relation. In CA 2E, the file that
can contain virtual fields is the file where the relation is defined. For example, Division is
Owned by Company. Fields from the Company (owning file) can be virtualized to the
Division (owned file). Fields from Division cannot be virtualized to Company. Division
contains the virtual fields. Division is where the Owned by relation is defined.

A virtual field may itself be a virtual field on the referenced file.

You can specify virtual fields for relations using the Virtual Field Entries panel.

The example below shows how virtual fields are added to a relation:

■ On the Order file we could have the Customer name as a virtual field:

FIL Order CPT Known by 1 FLD Order code REF

FIL Order CPT Has 2 FLD Order date CDE

FIL Order CPT Has 3 FLD Order status TXT

FIL Order CPT Refers to 4 FIL Customer

Using Relations

142 Defining a Data Model

 VRT Customer name

■ On the Order Detail file we could have both the Order information, including the
Customer name and the Product name as virtual fields:

FIL Order detail CPT Owned by 1 FLD Order REF

 VRT Order date DT#

 VRT Order status STS

 VRT Customer code CDE

 VRT Customer name TXT

FIL Order detail CPT Known by 2 FLD Order line no CDE

FIL Order detail CPT Has 3 FLD Order quantity QTY

FIL Order detail CPT Refers to 4 FIL Product REF

 VRT Product name TXT

■ This would result in the following entries on the files:

 Order Order detail

 K

 V

Order code

Order date

Order status

Customer code

Customer name

 K

 V

 V

 V

 V

 K

V

Order code

Order date

Order status

Customer code

Customer name

Order line no

Order quantity

Product code

Product name

See the chapter "Maintaining Your Data Model" for more information on how to add
virtual fields to a relation.

Using Relations

Chapter 3: Understanding Your Data Model 143

Circularity

This topic addresses how circularity manifests itself and how to avoid virtualizing a field
back onto the originating file.

If you can follow the path of relations from a file and end up returning to that file, you
have an instance of circularity within the model. This does not necessarily mean that the
series of relations is invalid, but that you must check the sequence of relations to ensure
that the sequence will allow you to pass the virtual fields that you require. Circularity
manifests itself in the disappearance and duplication of virtual fields.

Although the following three relations are acceptable, they can lead to circularity:

■ Parent Refers to child

A Refers to B, B Owned by A

■ Use of the Extended by relation

A Extended by B, B Owned by A

■ Self-referral

Example: A Refers to A

Using Relations

144 Defining a Data Model

Here is an example of a model containing these relations:

 Account details Owned by Customer

 Account details Has Account opened date

 Customer Known by Customer code

 Customer Extended by Account details

 Customer Has Customer type

Virtualizing against the Owned by relation would allow you to declare Customer type as
a virtual field on the Account details file, and you could declare Account opened date as
a virtual field on the Customer file over the Extended by relation. The file entries would
now look like this:

 Account details Customer code Key

 Customer type Virtual

 Account opened date Attributes

 Customer Customer code Key

 Account opened date Virtual

 Customer type Attributes

If you then resynchronize the model, the virtual entry Account opened date no longer
appears on the Customer file. During resynchronization, the relations are expanded into
file entries. When expansion occurs, the Account details file relations will be expanded
into entries before the Customer relations.

The expansion of relations would occur in this sequence:

1. Expand the relation, Account details Owned by Customer. The Customer file is still
to be expanded, which you must do now before any virtual can be defined.

2. Expand the relation, Customer Known by Customer code. This results in the key
entry Customer code on the Customer file.

3. Expand the relation, Customer Extended by Account details. The Account details file
is not to be expanded, as the expansion started in step 1.

No entries that exist on Account details can be virtual fields on the Customer file,
since the relation, Account details Has Account opened date, has not been
expanded.

Using Relations

Chapter 3: Understanding Your Data Model 145

4. Expand the relation, Customer Has Customer type. This results in the attribute
entry, Customer type, on the Customer file.

The expansion of Customer has finished, so it returns to Account details.

5. One entry exists on Customer that can be a virtual field on Account details:
Customer type. This results in the field Customer type becoming a virtual entry on
the Account details file.

6. Expand the relation, Account details Has Opened date. This results in the attribute
entry, Account opened date, on the Account details file.

Expansion ends here. Two further steps are needed:

1. The Customer file must be expanded before the Account details file. You could do
this by renaming the Customer file so that it comes before Account details
alphabetically. This is not always satisfactory or easy. It would be better to add a file
to the model that Refers to Customer, and itself has a name alphabetically lower
than Account details. For example, a file name beginning with an asterisk (*) would
serve this purpose. This file does not need to exist physically, because its sole
purpose is to alter the expansion sequence within the model.

2. The Extended by relationship must be the last relation in the Customer file. You
could do this simply by giving the Extended by relation a sequence number.

The model relations would now look like this:

 *Force Sequence Refers to Customer

 Account details Owned by Customer

 Account details Has Account opened date

 Customer Known by Customer code

 Customer Has Customer type

 Customer Extended by 99 Account
details

The expansion of relations would happen in this sequence:

1. Expand the relation, *Force sequence Refers to Customer. The Customer needs to
be expanded now before any virtual fields can be defined.

2. Expand the relation, Customer Known by Customer code. This results in the key
entry, Customer code, on the Customer file.

3. Expand the relation, Customer Has Customer type. This results in the attribute
entry, Customer type, on the Customer file.

Using Relations

146 Defining a Data Model

4. Expand the relation, Customer Extended by Account details. The Account details file
needs to be expanded now before any virtual fields can be defined.

5. Expand the relation, Account details Owned by Customer. The Customer file
expansion started in step 1. One entry exists on Customer that can be virtualized on
Account details: Customer type. This results in the virtual entry, Customer type, on
the Account details file.

6. Expand the relation, Account details Has Account opened date. This results in the
attribute entry, Account opened date, on the Account details file.

The expansion of Account details has finished, so it returns to *Force sequence. No
virtuals will have been specified on the *Force sequence Refers to Customer relation.
Expansion ends here.

If you find that virtuals have disappeared due to circularity in your model, you will also
find that if you try to put them on again they will appear twice in the file entries. If this
happens, repeatedly remove the virtuals until they do not appear in the file entries.
Follow the steps above before adding them again.

Chapter 4: Creating/Defining Your Data Model 147

Chapter 4: Creating/Defining Your Data
Model

This chapter shows you:

■ How to create a data model in CA 2E based on the conceptual model you developed
earlier. You may have an ERD of your conceptual model ready to enter into CA 2E.

■ How to work with file entries that are resolved from the CA 2E relations that you
use to describe file relationships in your model.

See the chapter "Developing a Conceptual Model" for more information on how to
produce an ERD.

This section contains the following topics:

Before You Begin (see page 147)
Using CA 2E Model Management Facilities (see page 148)
Defining Your Data Model (see page 151)

Before You Begin

You should have created a design model, using the Create Model Library (YCRTMDLLIB)
command, so that you can add information to it before using this module.

See the following:

■ The chapter "Creating and Managing Your Model" in the Administration Guide for
more information about preparing to use

■ Administration Guide for information on how to set up model values

■ Building Access Paths for information on how to build access paths

■ Building Applications for information on how to build functions

Using CA 2E Model Management Facilities

148 Defining a Data Model

Using CA 2E Model Management Facilities

CA 2E provides facilities to help you manage your model, including the Edit Database
Relations panel and the Edit Model Object List panel.

You can access a model as one of three different user types: designer, programmer, or
user.

See the Administration Guide for more information on how to use CA 2E facilities. See
the chapter "Using Your Development Environment" in the Administration Guide for
more information on types of users.

Edit Database Relations Panel

The Edit Database Relations panel allows you to describe your data model to CA 2E. This
is your starting point when creating a new data model. From here you can branch off to
other areas in CA 2E.

Using CA 2E Model Management Facilities

Chapter 4: Creating/Defining Your Data Model 149

Note: Although you need to use the Edit Database Relations panel to define files and
relations, you can also use the Edit Model Object List panel to handle many of the other
functions provided by the Edit Database Relations panel.

At the Edit Database Relations panel, you can edit your data model, access information,
or navigate through CA 2E by using:

■ Line selection values to perform model-related activities:

■ Add narrative text to describe your model at file, field, or relation level.

N0, N, N1—narrative for model object

N2—narrative for referenced object; field or file

N3—narrative for Refers to with Sharing Relations. Available only on relations if
sharing by an access path (not *None or *All)

■ Display all relations beginning with the "object" (S1) and relations that include
the "referenced object" (S2).

■ Display all relations referring to the "object" or all relations beginning with the
next file (T1, T2).

■ Virtualize (V).

■ Clarify a relation with For text (+ and F5)

■ Delete a relation (D).

■ Specify redirection (E0).

■ Go to the Edit File Entries panel (E); to the Edit Database Functions panel (F); to
the Edit File Details panel (Z1 or Z); to the Edit Field Details panel (Z2).

■ Function keys to define objects (F10), access online Help (Help key), the Data
Dictionary (F7),CA 2E online map (F14) or CA 2E Display Services Menu (F17).

■ Application areas to group your model files into specific categories under specific
areas defined by a unique identification code. By specifying an application area
code, you can choose to display or view only the part of the model (files) you wish,
or use with documentation commands.

Note: Alternatively, you can use model object lists to group together any
combination of model object types; you are not restricted to grouping files. In
addition, CA 2E provides many powerful tools and commands to operate on model
object lists.

Using CA 2E Model Management Facilities

150 Defining a Data Model

Edit Model Object List Panel

The Edit Model Object List panel is an interactive utility for working with lists of model
objects. This panel serves as an alternate entry point into your model where you can
perform most functions available from the Edit Database Relations panel other than
editing relations and creating model objects. You can temporarily transfer to the Edit
Database Relations panel from the Edit Model Object List panel by entering YEDTMDL or
Y2 on the command line. When you finish your editing, press F3 to return to the Edit
Model Object List panel.

The Edit Model Object List panel has a PDM-like interface and has the following main
features.

■ Multiple views of current model object list

■ Object identification - object name, owner, type, and attribute

■ Audit information - change date, time, user, and type, and impact processed
indicator

■ Implementation details - implementation name and date and time of last
generation

■ Impact analysis information - date, time, and action required

■ Access to model profile

■ Options to work with model objects

■ Capability of switching between model object lists

■ View of detailed description of any model object

■ Options and function keys for impact analysis (usages and references)

■ Use of user-defined options

For more information:

■ On the Edit Model Object Lists panel, see the chapter “Managing Model Objects” in
Generating and Implementing Applications.

■ On model object lists, see the chapter “Managing Model Objects” in Generating and
Implementing Applications.

■ On application areas, see the chapter “Using Your Model” in the Administration
Guide.

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 151

Defining Your Data Model

The purpose of this chapter is to define and create files, fields, and relations based on
the entities, attributes, and relationships from your conceptual model. The files, fields,
conditions, and relations are the CA 2E basic model design objects that must be defined
and created before you can build access paths and functions to operate on your model.

See the chapter “Understanding Your Data Model” for more information on files, fields,
conditions, and relations.

This task consists of three steps:

1. Defining Files

2. Defining Fields

3. Entering Relations

You can choose to do one step at a time or to combine all three steps by entering CA 2E
relation statements first.

Step 1: Defining Files

You define a file to CA 2E by describing its name and type and its relationship with other
files and fields.

Object/Referenced Object File

A file represents an entity within your model; for example, Order. It is referred to as an
object in a CA 2E data model.

All of your entity objects must be defined to CA 2E by a file name and file type. For each
of the objects you define, CA 2E creates a file. A file can be linked either to another file
or to a field through a CA 2E relation. The file or field to which it connects is called a
referenced object. Referenced objects must also be defined to as either CA 2E a file or
field.

A CA 2E file is defined by several different CA 2E relations. Each database (REF and CPT)
file must have at least one key relation. The relations are automatically resolved by CA
2E to determine which fields are to be placed on a file.

Defining Your Data Model

152 Defining a Data Model

File Name

You define a file to CA 2E by describing its name and type. The file name must be unique
within your data model. It can contain up to 25 alphanumeric upper or lowercase
characters including embedded blanks.

File Type

The file type must be one of the CA 2E valid file types. Depending on how it is intended
to be used, a file can have a type of capture (CPT), reference (REF), or structure (STR).

Capture and reference files are database files; structure files are non-database files.
Whether a file is capture or reference depends on the role of the fields that make up
that file.

See the chapter "Understanding Your Data Model" for more information on using file
types.

Capture Files

Capture files should contain regularly recorded transactional data that your application
uses.

You should select a CPT file type for files that have a high volume of transactions and
require constant update. An example of a CPT type file is an Order file. An order file has
many orders that are processed daily.

CA 2E provides three types of default functions for capture files. When you specify a file
as a CPT type file, three internal functions are created to allow you to create, change, or
delete the records in the file. They are Create Object (CRTOBJ), Change Object
(CHGOBJ), and Delete Object (DLTOBJ).

Reference Files

Reference files are master files containing basic data that your application uses.

You should select a REF file type for files that contain non-volatile information; for
example, a Customer file. A customer file contains detailed information about a
customer such as name, address, telephone.

In addition to the three default functions created for a capture file, a reference file has
two other functions that allow you to maintain a file or select a record from a list. They
are Select Record (SELRCD) and Edit File (EDTFIL).

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 153

Structure Files

A structure file contains a group of fields. These fields can be incorporated into other
files by the use of the Includes relation.

For example, you would give the STR type to the Audit Stamp file.

Audit Stamp Has Update date

 Has Update time

 Has User

 Has Update program

Any file within the system that needs the field definitions of the Audit Stamp file can
obtain them simply with an Includes relation.

Order Known by Order number

 Has Order date

 Refers to Customer

 Includes Audit Stamp

Structure file types can use the Has, Refers to, and Includes relations.

CA 2E lets you virtualize fields to an STR file on a Refers to relation. The virtual field in
the STR file will not be available as part of the structure when it is included in another
file.

The Refers to relation is not moved to the file that includes the structure. There are no
referential integrity checks performed for this Refers to relation. The file entry resolved
from the Refers to relation is available in the structure.

Structure files are also used to group fields from various files for passing parameters
when building functions. When using structure files, all fields of the structure are
verified for required and optional checking on device designs.

For more information:

■ On parameters, see the chapter "Modifying Function Parameters" in Building
Applications

■ On using arrays as parameters, see the chapter "Defining Arrays" in Building Access
Paths

Defining Your Data Model

154 Defining a Data Model

Adding Files

Follow these instructions to add files:

1. At the Edit Database Relations panel, press F10.

The Define Objects panel displays. This panel allows you to create objects. You can
define more than one object on the subfile panel for a single Enter key.

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 155

Note: If you entered information on the Edit Database Relations panel, some
information may appear on the Define Objects panel.

2. Define a file:

a. Define the object as a file. In the Object type column, enter FIL.

b. In the Object name column, enter a name for the file.

c. In the Object attr column, specify the file type by doing one of the following:

■ Enter CPT (capture), REF (reference), or STR (structure).

■ Select the file type from a list of default attributes. In the Object attr column, enter
? and press Enter. From the list that appears, select the desired file type.

This procedure automatically creates the Defined as relationship to declare the
existence of the file.

Note: The two-character identifying mnemonic lets you define a maximum of 684 files.
If you exceed this number CA 2E displays a message instructing you to reset the Last
Used File Prefix (YFILPFX) model value and to supply a new object prefix for your model.

To do so run the following commands:

YCHGMDLVAL MDLVAL(YOBJPFX)
 VALUE(new-object-prefix)

YCHGMDLVAL MDLVAL(YFILPFX)
 VALUE(*RESET)

Note: The first of these commands causes all new objects to begin with the new object
prefix. The second command reinitializes the identifying mnemonic for files to AA. As a
result, all subsequent file names will be unique

For more information on the YCHGMDLVAL command and model values, see the CA 2E
Command Reference Guide.

Step 2: Defining Fields

A CA 2E field represents an attribute within a CA 2E data model. A field is the attribute
that describes the characteristic of an entity in your conceptual model; for example,
Customer Code for Customer, Order Number for Order, or Product Price for Product.

Field Name

A field name must be unique within the data model. It can contain up to 25 alphabetic
characters in upper or lowercase, and numeric characters, including embedded blanks.

Defining Your Data Model

156 Defining a Data Model

Field Types

CA 2E provides a number of pre-defined field types that are suitable for different
purposes such as values, prices, quantities, and text. You can override the defaults later
at the field level and again at the device level. In addition, you can change the supplied
defaults or add additional field types of your own.

You define a field to CA 2E by giving it a field name and field type. See the table of CA 2E
Field Types that follows for a description of the field types and how you can use them.

Reference Field

The Reference (REF) field type allows you to define one field in terms of another.
Reference fields share the same domain, which means that one field takes the same set
of values of another field.

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 157

Field Types for Referenced Objects

The field type specifies all of the default characteristics for a field.

CA 2E uses field types to make default assumptions about properties of a field. It also
uses field types to validate entries.

To describe fields, select one of the field types from the following table.

The following table contains CA 2E field types.

Field Type
Name

Description Type Length Example

CDE

DT#

DTE

IGC

NAR

NBR

PCT

PRC

QTY

REF

SGT

STS

TM#

TME

TS#

TXT

VAL

VNM

Code

ISO Date

Date

Ideographic text

Narrative text

Number

Percentage

Price or tariff

Quantity

Reference

Surrogate

Status

ISO Time

Time

ISO Timestamp

Descriptive name

Monetary value

Valid system name

A

A

P

A

A

P

P

P

P

-

P

A

A

P

A

A

P

A

6

10

7.0

20

30

5.0

5.2

7.2

5.0

-

7.0

1

10

6.0

26

25

11.2

10

Stock code

Order date

Date of birth

Kanji name

Comments

Number of employees

Profit margin

Unit price

Stock quantity

Field based on another

System key

Discontinued/Current

Time process starts

Transaction time

Transaction date/time

Product name

Stock value

File name

Defining Your Data Model

158 Defining a Data Model

Specifying Field Types

Follow these instructions to specify field types to newly defined fields.

1. At the Edit Database Relations panel, access the Define Object panel. Press F10.

The Define Objects panel displays. This panel allows you to create objects. You can
define more than one object on the subfile panel for a single Enter key.

Note: If you entered information on the Edit Database Relations panel, some
information may appear on the Define Objects panel.

2. Define a field:

a. Define the object as a field. In the Object attr column, enter FLD.

b. In the Object name column, enter a name for the field.

c. In the Object attr column, specify the field type by doing one of the following:

■ In the Object attr column, enter the code for the field type; for example, CDE or
TXT.

■ Select the field type from a list of default field types. In the Object attr column,
enter ? and press Enter. From the list that appears, select a field type.

a. In the Field usage column, enter the field usage. The usage defines whether the
field can be used as a key (CDE), an attribute (ATR), or a function field.

See the chapter "Understanding Your Data Model" for more information about fields.

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 159

Step 3: Entering Relations

CA 2E has two types of relations, file-to-file relations and file-to-field relations, which
together consist of eight relation types. To define a relation you must use one of these
eight relation types, described later in this topic.

You use CA 2E relations to declare the existence of a file and to describe the connection
between files or between a file and a field. The relations you enter for a file are resolved
into the fields that are needed to implement that file. Because a file consists of a list of
relations, to completely define a file, you must enter all the relations that describe that
file.

The Has, Known by, Owned by, and Refers to are CA 2E basic relations that cover most
data modeling cases. CA 2E automatically creates Defined as relations for each of the
files you define.

CA 2E also resolves a primary key based on the relation types that you enter for a file. It
requires a unique key for all database files, which should be the smallest set of fields
needed.

Relation Sequencing

CA 2E uses default sequence order for relations. You can override the default sequence
by entering different sequence numbers into the Seq column of the Edit Database
Relations panel.

The default order and sequence of relations is as follows:

Order/Level Sequence Relation

Key 1

2

3

Owned by

Known by

Qualified by

Attribute 4

5

6

7

Extended by

Refers to

Has

Includes

Defining Your Data Model

160 Defining a Data Model

The two levels of sequencing are key level and attribute level. You cannot sequence key
relations after attribute relations. If you use the same sequence number on different
relations within the same level, the order of these relations follows the default ordering.

Sequence numbering follows the collating sequence order of importance. Blank is first,
followed by 1, 2, 3, and so on.

Note: You can add sequence numbers after all relations for the file have been entered.
Blank sequence numbers come before numbered sequence numbers.

The Refers to relation for involuted relations should appear after all other relations on
the file if virtual fields are to be specified for the relation.

The sequence number you use may have some consequence when you later add virtual
fields to a file that references itself.

CA 2E expands the relationship based on which file entries are known at the time the
relation is resolved. If a field is to be virtualized but has not been expanded or is not
known to the file, the field cannot be virtualized.

For example, Employee Refers to Department and Employee Refers to Employee For
Manager. If Department Name is virtualized from Department and Department Name is
also desired for Manager's Department, the Employee Refers to Department
relationship must be sequenced before the Employee Refers to Employee For Manager
relationship.

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 161

A file-to-file relationship is expanded to place the fields that are the key of the related
file on that file. In the above example, if Department is keyed by Department Code, the
relationship Employee Refers to Department is expanded to show the Department Code
as a foreign key on the Employee file. Department also has an attribute of Department
Name that is to be virtualized onto the Employee file. Upon expansion of the
relationships, the virtual fields create file entries. As a result, when the Employee Refers
to Department relationship is expanded, the virtual field Department Name also
becomes a file entry for Employee.

When the relationship Employee Refers to Employee For Manager is expanded, the key
of Employee is another file entry such as Employee Code. For this relationship, you want
to virtualize the field Department Name of the manager. Expanding the relationship
Employee Refers to Employee For Manager will also include another field: Department
Name for Manager.

If the Employee Refers to Employee For Manager relationship is expanded before the
Employee Refers to Department relationship, the virtual field Department Name for
Manager is not known as a file entry and will not be expanded as a virtual field.

For more information about:

■ Procedures, see the chapter on Relation Sequencing (see page 159).

■ Virtual fields, see the chapter "Maintaining Your Data Model."

CA 2E Relation Types Charts

Use your conceptual model's ERD as a guide to determine the types of relations needed
for your model's files, or consult the CA 2E Relation Types charts that follow. The first
chart describes the file-to-file relation types and the second chart describes the
file-to-field relation types.

The following table contains file-to-file relations.

Relation Description

Defined as Declares that the file exists

Owned by Specifies that the keys of the owning file are to become major key
fields of the owned by file

Extended by Declares the file to have a one-to-one or one-to-none relationship
with another file

Refers to Causes the key fields of the referenced file to be included as non-key
fields on the referring file

Includes Causes fields from the referenced file or included structures to be
included as attributes in the referencing file

Defining Your Data Model

162 Defining a Data Model

The following table contains file-to-field relations.

Relation Description

Known by Declares the field to be present as a key field on the file

Qualified by Declares a field to be present on a file as a key field; is used with
continuous variables

Has Declares the field as a data field on the file

To enter relationships, use the Edit Database Relations panel:

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 163

1. Enter the object name. The object name is always a file name.

2. In the relation column, enter the relationship.

3. Enter the referenced object name:

■ For a file-to-file relation, enter a file name.

■ For a file-to-field relation, you must enter a field name.

WARNING! Do not use CA 2E shipped fields, those beginning with '*', for defining
file-to-field relations.

Define all objects and referenced objects. If you do not define an object or referenced
object, CA 2E highlights the name and sends a message letting you know that it needs to
be defined.

To define these objects, access the Define Objects panel by pressing F10. The Define
Objects panel displays with some information already entered.

For undefined objects, the object type is FIL and the file name is the object name. In the
Object attr column, enter the file type (CPT, REF, STR).

For undefined referenced objects:

■ The object type is based on the relation. If the relation is file-to-file, the type is
FIL. If the relation is file-to-field, the type is FIL or FLD.

■ The object name is the referenced object name.

■ If the object type is FLD and the relation is a Known by relation, the field usage
is CDE. If the relation is a Qualified by or Has relation, the field usage is ATR.

For the object attribute:

■ If the object type is FLD, enter the field type in the Object attr column.

■ If the object type is FIL, enter the file type (CPT, REF, STR) in the Object attr column.

You can use this method for defining files, fields, and relations in combination with
other described methods. If you enter all information on the Edit Database Relations
panel, CA 2E defaults the values to the Define Objects panel. Complete the definition for
the objects on the Define Objects panel.

See the chapter "Understanding Your Data Model" for more information on CA 2E
relations and examples.

This topic provides detailed information for working with file entries.

File entries are resolved from CA 2E relations that you use to describe file relationships
in your model. An entry indicates the presence of a field on a file. A relation may imply
that one or more fields are to be created for your file.

Defining Your Data Model

164 Defining a Data Model

The entries, excluding virtual field entries, indicate the fields to be present in a physical
file.

Levels of Entry

The entries of a file arise from three different levels at which you specify relations for
the file:

■ File level—all those fields resulting from the resolution of file relations.

■ Access path level—all those fields resulting from the resolution of access path
relations. They must be either inclusive of or be a subset of the entries from the file
relations level.

■ Device file level—those fields resulting from the resolution of device file relations.
Entries resolved at this level are a subset of the access path level entries, which may
not include every relation of the file.

You can add additional entries to device designs for function fields.

Entry Types

Entries are classified into three categories depending on the types of relation from
which they are resolved:

■ Key field entries

■ Attribute entries

■ Virtual field entries

There are no entries resolved from definition, or Defined as, relations. A Defined as
relation is used simply to define a file.

Key Field Entries

These entries arise from the resolution of CA 2E key relations, such as Owned by, Known
by, and Qualified by.

For example, if you specify:

Customer is Known by Customer code

the Customer code field will be present as a key field on the Customer file.

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 165

Attribute Field Entries

These entries arise from the resolution of CA 2E attribute relations, which are Refers to,
Has, and Includes.

For example, if you specify:

Customer Has Customer name

the Customer name field will be present as an attribute field on the Customer file.

Virtual Field Entries

These entries arise from the specification of virtual fields on file-to-file relationships
expressed by the Refers to, Owned by, or Extended by relations.

For example, if you have the relation:

Order Refers to Product

where Product name is specified as a virtual, Product name will appear on the Order file
as a virtual field.

See the chapters "Understanding Your Data Model," and "Maintaining Your Data Model"
for more information on how to specify virtual fields at file relations level.

Overriding Entries

You can override CA 2E default entries of a file with replacing, sharing, and redirection.

You can override default entries for those entries arising from certain relations: Owned
by, Refers to, Extended by, and Qualified by relations.

Defining Your Data Model

166 Defining a Data Model

Replacing Entries

When more than one instance of a field is defined for a file, separate fields and names
are created by default. CA 2E automatically defines and creates the necessary additional
field based on the existing field.

You can specify an alternative field to replace the one CA 2E supplies. The new field
must have the same domain as the one it replaces. It must be defined as a field of REF
type, with a definition based on the replaced field.

If you already have a field defined that you would rather use, you can specify it on the
Display Referenced Field Details panel (Replace field). This panel shows all the eligible
fields for an entry. From here, you can transfer to the Define Objects panel to define
new fields, based on the field to replace.

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 167

Sharing Entries

Key fields (identifiers) can be shared between file entries arising from the resolution of
the Owned by and Refers to relations.

All files that you use as targets of sharing must always be defined as relations above the
relation you are defining. Never share relations that are lower, and do not move shared
relations lower.

Sharing is performed by matching the keys of the file named in the sharing parameter to
the fields that already exist in the file. Thus you can control the fields shared by proper
sequencing of the relations. When you name a file in the sharing parameter that is
defined as a prior relation in the file, sharing uses the keys defined for that relation in
preference.

For example:

Order Detail Refers to Item Master

 For: Ordered

 where Item No. (ordered) is the key

Order Detail Refers to Item Balance

 For: Shipped, Sharing: *NONE

 where Item No. (shipped) and Warehouse No.

 are the keys

Order Detail Refers to Shipping Instructions

 Sharing: Item Balance

 where Item No. (shipped) and State Code

 are the keys

The explicit reference of Sharing Item Balance ensures that the Item No. of the item
being shipped is used as the key to the Shipping Instructions, rather than that of an item
ordered even though the Ordered Item No occurs higher in the entries.

See the chapter "Understanding Your Data Model" for more information on sharing
entries between relations.

Defining Your Data Model

168 Defining a Data Model

Redirection

Normal resolution of a CA 2E relation causes one or more fields to be added as entries
to a file. You can override this resolution by redirecting a relation entry. Redirecting
means that you specify that the source of a field value, needed to implement an
instance of the relation, is to be supplied from another field of the same type already
present on the file.

A source field may itself be either a virtual or non-virtual field. Advantages are as
follows:

■ There is less need to carry redundant fields on a record purely for the purpose of
supplying keys to access another file.

■ You can specify redirection of key fields to other instances of the same (base) field
on a record.

Redirecting Entries

You can redirect entries resolved from a Qualified by relation or a Refers to relation.

Redirection of key fields resolved from a Qualified by relation provides a central
mechanism for indicating to functions that when records are to be retrieved from a file
to satisfy a relation, the retrieval is to be done on the basis of a nearest match rather
than an exact match. For instance, you would use the prices in effect on a given date to
price an order on that date for each product.

Retrieval may be done on a basis of nearest less than or nearest greater than depending
on the value specified for the Sharing field.

The entry to be redirected must be sequenced after the relation entry that provides the
source field for the redirection. You can specify sequence numbers on the Edit Database
Relations panel to override the default order of relations.

Never redirect relations that are lower or move these relations so they are lower. If
relations are not sequenced properly and you select a field for redirection, the selection
will not take effect.

For more information on relation sequencing, see the chapter Creating/Defining Your
Data Model.

The following discussion covers the two types of redirection: redirection of qualifier
fields and redirection of key fields.

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 169

Redirection of Qualifier Fields

A qualifier field is resolved from a Qualified by relation. Redirection of qualifier fields
allows you to specify that a relation between two files is satisfied not by an exact match
of values, but by the nearest match. The redirected field gives the search value.

This redirection is particularly useful when you deal with variables such as prices and
discounts.

You can redirect entries arising from qualified fields to any other fields of the same
attribute type that are present in the referencing file. For example, dates can be
redirected to other dates, numbers to other numbers, and values to other values.

If the length of the overriding field is not the same as the redirected field, a truncated
value is used.

For qualified redirection, a field that has been redirected is not dropped from the model
file entry list or from the generated physical file.

You can use qualified redirection only on fields defined as qualified keys on the
referenced file by means of a Qualified by relation.

Example of Redirecting Qualifier Fields

A Product price could be defined as follows:

FIL Product price REF Owned by FIL Product REF

FIL Product price REF Qualified by FLD Effective date DT#

FIL Product price REF Has FLD Product price PRC

When referring to the Product price in relations that describe other files, you may
redirect the source of the Effective date as follows:

FIL Order detail CPT Refers to 4 FIL Product price REF

 Order date RDR Effective date DT#

Defining Your Data Model

170 Defining a Data Model

Example of Redirecting a Reference to a Qualified File

When pricing orders, you always want the current price to be used. If product prices do
not change every day, each product price record represents not an individual price on a
particular day, but a price that is current over a period. When retrieving a price record
you do not necessarily retrieve a record exactly matching the date; instead, you want
the nearest record. To achieve this, redirect the qualifier reference, using the Display
Relation Entries panel. To access this panel, place E0 against the Refers to relation on
the Edit Database Relations panel. The following is a sample Display Relations Entries
panel.

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 171

Fields may only be redirected to other fields on the access path that are of the same
field type; for instance, both DT# fields.

If Order date is redirected to Effective date, at execution time:

■ The Order date is used to look for the price currently in effect. The price record
found is that with the nearest date previous to the Order date. Thus if an Order
date of 11/29/93 is used to look for the price for Product 00002 in the following
table of prices, the price record in effect from the 11/15/93 would be found:

■ The date of the price is placed on the Order record.

Note that if new price records are added, such as 11/18/93, 22.75, pricing of the
existing order is not affected unless it is specifically repriced. However, new orders
are priced at the new rate automatically.

Note also that, if product prices change every day, you would not need to redirect
the reference since there would be a record present for each product for each date.
Each product price would then represent a discrete value rather than a continuum
of values.

Procedures for Working with Entries

This section includes step-by-step instructions for

■ Displaying file entries

■ Replacing file entries

■ Displaying and redirecting relation entries

■ Modifying For Text and Sharing entries

Defining Your Data Model

172 Defining a Data Model

Display File Entries

Displaying the entries for a CA 2E file gives you a means of examining the fields that will
be present in the physical file. The physical file is used to implement your file CA 2E. To
display file entries:

1. On the Edit Database Relations panel, enter E next to the file for which you want to
display entries (for example, Customer) and press Enter.

The Edit File Entries panel displays the entries for the file you selected. A sample
panel appears below.

2. To exit, press F3 and return to the Edit Database Relations panel.

The Edit File Entries Panel

Replace File Entries

1. On the Edit File Entries panel, enter R next to the field you want to replace.

The Display Referenced Field Details panel appears. This display lists all the fields
with the same definition that are eligible fields for an entry. You may select one of
them. A sample panel appears below.

2. Select the field you want by typing X next to it. This field replaces the field you
indicated in step 1.

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 173

Display Referenced Field Details Panel

From this panel you can transfer to the Define Objects panel to define new fields. The
Define Objects panel will have transferred to it all the required information. You have
only to enter the field name.

Display/Redirect Relation Entries

You can display and redirect entries resolved from Refers to relations only. Follow these
steps to display and specify redirection of relation entries.

1. From the Edit Database Relations panel, enter E0 next to the Refers to relation and
press Enter.

CA 2E displays the Display Relation Entries panel. A sample panel appears below.

2. Enter R next to the desired field to access the Edit Redirected Fields panel.

The Edit Redirected Fields panel shows, for a given relation entry, all the possible
other entries to which the relation entry can be redirected. You can select any one
of the indicated fields to specify redirection to that entry. A sample appears on the
next page.

Defining Your Data Model

174 Defining a Data Model

Display Relation Entries Panel

1. Enter X next to the field that you want to use to supply the value for redirection and
press Enter.

Edit Redirected Fields Panel

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 175

Modifying For Text and Sharing Entries

Follow these steps to modify For Text and Sharing entries.

1. Position the Edit Database Relations panel by entering the file name in the Object
positioner field at the top of the panel and press Enter.

2. Place a plus sign (+) in the subfile select field next to the relation and press F5. You
are allowed to expand Owned by, Refers to and Qualified by relations.

3. The panel will be expanded to allow you to modify the For Text and Sharing entries.

Chapter 5: Maintaining Your Data Model 177

Chapter 5: Maintaining Your Data Model

This chapter provides detailed instructions for you on the various tasks needed to
maintain a data model in CA 2E.

You perform the tasks described in this chapter to add more information to a newly
created model or to modify an existing one. If you are in the process of building a
model, complete the tasks in the order they are listed.

This section contains the following topics:

Displaying File Entries (see page 177)
Adding/Modifying Field Information (see page 178)
Adding/Modifying Conditions (see page 183)
Adding/Modifying Virtual Fields (see page 191)
Related Procedures for Maintaining Your Model (see page 194)
Creating User-Defined Field Types (see page 198)

Displaying File Entries

In the previous chapter "Creating/Defining Your Data Model," you entered the
definitions of your files, fields, and their relations.

Based on the relations you entered, CA 2E creates entries for your files. File entries are
fields that are resolved from CA 2E relations for a file and used to implement that file. A
relation may imply more than one entry on a file.

You may want to view those entries now so that you can modify the fields or add new
information to suit your model's needs.

See the chapter "Creating/Defining Your Data Model" for more information about
entries.

Edit File Entries Panel

You can view the entries of a selected file using the Edit File Entries panel. This panel
shows the field names, field type, the CA 2E implementation name for the field, the
default CA 2E field length, and whether the field is a key field or an attribute. It also
shows the key sequence (Ksq). This sequence dictates the order in which the fields
compose the primary key. You cannot change any of this information while you are at
this panel.

For more information on adding or changing fields, see the Adding/Modifying Field
Information section in this chapter.

Adding/Modifying Field Information

178 Defining a Data Model

Display File Entries

To display file entries follow these steps.

1. On the Edit Database Relations panel, type E next to the file for which you want to
display entries and press Enter.

The Edit File Entries panel displays.

Note: CA 2E has created these entries for your Employee file as shown on the
panel and indicated which entry is a key field (K), an attribute field (A), or a virtual
field (V).

A key field entry is resolved from the Owned by, Known by, and Qualified by
relations. An attribute field entry is resolved from a Has, Refers to , or Includes
relation. The key order is indicated under the Ksq column.

CA 2E also gives each entry an implementation name and a default length according
to the field type you entered for these fields.

2. Press F3 to return to the Edit Database Relations panel.

You can document and obtain hard copy printouts of the files, fields, and relations that
you entered for your model by using CA 2E documentation commands.

See the chapter "Documenting Your Data Model" for more information on documenting
your data model.

Adding/Modifying Field Information

This section lists the tasks to add new information or to modify existing information for
the fields that CA 2E creates for your model's files.

Adding/Modifying Field Information

Chapter 5: Maintaining Your Data Model 179

Using the Edit Field Details Panel

You can access the Edit Field Details panel in the following ways:

■ From the Edit Database Relations panel, type Z2 on the relation with the field as the
referenced object and press Enter.

The Edit Field Details panel displays.

■ From the Edit Database Relations panel, do the following:

a. Press F7 to display all of the fields on the Edit Fields panel.

b. From this panel, select the desired field and access the details by typing Z next
to the field, and pressing Enter.

■ From the Edit Model Object List panel, enter option 2 for the selected field.

The Edit Field Details panel displays.

The Edit Field Details panel allows you to modify field information. The values for the
field were originated from default values of the field type. These values can be modified
to change the characteristics of the field. The changes you make to a particular field will
be available throughout the model.

Press F10 to view the appearance fields instead of the field control information.

Adding/Modifying Field Information

180 Defining a Data Model

The following table lists the overrides for CA 2E default field values for field types.

Data Attribute Default Model
Level

Field Level Device
Level

Field length

System data type

Keyboard shift

By type

By type

By type

Y

N

Y

Y

-

N

N

-

N

Implementation name

Text headings

Left hand side text

Right hand side text

Column headings

By type

By type

Field name

Field type`

Field name

-

-

-

Y

-

-

-

-

Y

N

Y

Y

Y

Y

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

Field exit option

By type

N

VNM only

N

By type

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

Y

Check condition

Translate values

By type

STS only

-

N

Y

Y

Y

N

Edit codes: Input

 Output

 Report

By type

By type

By type

Y

Y

Y

Y

Y

Y

Y

Y

Y

Adding/Modifying Field Information

Chapter 5: Maintaining Your Data Model 181

Change Field Name and/or Type

Keep these points in mind when you rename fields:

■ The text and column headings automatically change.

■ You cannot rename two fields with the same name.

To change the type and/or name of a field:

1. From the Edit Database Relations panel, press F7 to display the Edit Fields panel.

2. Zoom into the details of the field by entering Z next to the field and pressing Enter.
The Edit Field Details panel displays.

3. Press F8 to change the name or type. The cursor will be on the name entry area.

a. To change the field name, type a new name over the current one and press
Enter.

b. To change the field type, key a new field type over the current one and press
Enter. You may also place a ? to select from the list of field types.

4. Press F3 to return to the Display Fields screen. The new field name and/or type you
entered is shown on the panel.

Press F3 to return to the Edit Database Relations panel.

Change Field Length

You can change the length of a field from the Edit Field Details panel. Type the new
length over the existing one and press Enter.

Note: You cannot change field length for DTE fields.

Adding/Modifying Field Information

182 Defining a Data Model

Add Narrative Text

To add narrative text to a field:

1. Access the Edit Narrative Text panel in any of the following ways:

■ On the Edit Field Details panel, press F20.

■ Type N2 next to a relation, with the field from the Edit Database Relations
panel as the referenced object.

■ Use selection options 21 or 22 from the Edit Model Object List panel.

2. Add any text, notes, or descriptive information you want to include for the field at
this panel.

This becomes the generated help text or design documentation.

For more information:

■ About narrative text, see the chapter "Using Your Model" in the Administration
Guide

■ On including narrative text in documentation listings, see the chapter
"Documenting Your Data Model" in this guide

Change Field Text and Headings

You can modify the text and headings of a field from the Edit Field Details panel. The
headings are used on reports and panels as prompts for the field. They have initial
values of the field name.

To change field text and headings from the Edit Field Details panel, type the new text
over the existing text and press Enter.

Change Valid System Name (VNM)

The Valid System Name value for fields of VNM type is modifiable. To change field Valid
System Name (VNM), on the Edit Field Details panel, enter one of the allowable values
(Y or Blank).

See the chapter "Understanding Your Data Model" for more information on field types
and how to modify field type values.

Adding/Modifying Conditions

Chapter 5: Maintaining Your Data Model 183

Adding/Modifying Conditions

A condition specifies the value or list of values a CA 2E field may take. You can add,
change, or delete conditions using the Edit Field Conditions and the Edit Field Condition
Details panels.

Condition Types

A condition type specifies the type of validation rule it imposes.

Field conditions can be used to

■ Validate the entry of data

■ Select or omit data in access paths

■ Specify processing conditions in a function that operates on the data

For more information about using conditions with access paths and functions, see the
Building Applications chapter "Modifying Action Diagrams"

Select one of the following four types of conditions:

■ VAL to specify single values

■ LST to specify a list of values

■ CMP to specify an arithmetic comparison for a field

■ RNG to specify the range of valid values for a field

VAL and LST are used for status fields; CMP and RNG are used with non-status fields.

For this task, you will use conditions to

■ Validate the entry of data

■ Specify default values when adding records to a file

Adding/Modifying Conditions

184 Defining a Data Model

Using the Edit Field Conditions Panel

The Edit Field Conditions panel shows all the conditions that exist for a selected field.
Use this panel to add or modify conditions.

1. From the Edit Database Relations panel, do either of the following:

■ Type Z2 next to the relation with the field you want to add conditions.

■ Press F7 to get a list of fields, then type Z next to the field to which you want to
add conditions, then press Enter.

The Edit Field Details panel displays.

2. Press F9 to obtain the Edit Field Conditions panel.

The Edit Field Conditions panel displays the conditions for the selected field.

Adding/Modifying Conditions

Chapter 5: Maintaining Your Data Model 185

Add New Conditions

When adding a condition, you must add the condition type, the meaning of the
condition, and the value used to describe the condition in the file.

1. From the Edit Field Conditions panel:

Type a name and a condition type (VAL, LST, CMP, or RNG) and press Enter.

The Edit Field Conditions Details panel displays.

Adding/Modifying Conditions

186 Defining a Data Model

For STS fields:

■ If type is VAL, and Translate condition value is Yes, enter the display and file
(storage) values for the condition.

■ If type is VAL, and Translate condition value is No, enter the file (storage) and
mnemonic values for the condition.

■ If type is LST, select the existing conditions for the list by typing + next to each
selection. Deselect conditions that are currently attached to the list but no
longer required by typing - next to each selection.

■ If type is LST, specify one of the following prompt functions. These functions
provide a method to display and select the allowed values list when F4 or ? is
used for the field.

■ Condition Values Displayer

■ Drop Down List

For non-STS fields:

■ If type is CMP, enter the compare operator and the compare value.

■ If type is RNG, enter the From compare value and the To compare value.

Note: You can add additional VAL, CMP, and RNG conditions while on the Edit Field
Details panel.

Press F3 to return to the Edit Field Conditions panel.

The conditions you have added are shown on the panel.

Adding/Modifying Conditions

Chapter 5: Maintaining Your Data Model 187

To Modify Existing Conditions:

1. From the Edit Field Conditions panel, select a condition by typing Z next to the
condition you want to modify and press Enter. The Edit Field Conditions Details
panel displays.

2. Change the name of the condition using F8 to make the field name modifiable.

3. Change the existing condition information and press Enter.

The Edit Field Conditions panel displays.

For VAL conditions, the value listed under File/From Value is stored in the file; the value
under Display/To Value is what appears on all panels and reports. For example:

■ Text Description: Open Order

■ File/From Value: O - stored in file

■ Display/To Value: OPN - shown on panel

■ Mnemonic - shown on panel

File/From Value and Display/To Value are often the same.

Note: CA 2E automatically adds a special condition for the *ALL values LST condition of a
STS field.

Using VAL and LST Conditions

VAL conditions on status fields describe a single condition for that field, such as Open or
Invoiced. It is often desirable to describe a set of these conditions and address them as a
single condition. For example, Open, Picked and Shipped conditions might constitute the
condition Active. To do this, CA 2E provides the ability for a set of VAL conditions to be
grouped under a single LST condition.

By default, all VAL conditions are included in the special LST condition *ALL values. You
may create other LST conditions from any combination of VAL conditions.

LST conditions also permit the same VAL to be relabeled as a different condition. In this
case, the LST has only one entry, that of the VAL. This is particularly useful with subfile
selectors and function keys where a single VAL (such as "A" or "F8") may define different
conditions on different panels.

To accomplish this you may consider changing all your VALs on the Subfile selector field
SFLSEL to condition such as:

VAL

VAL

Condition

A

B

Value

A

B

Adding/Modifying Conditions

188 Defining a Data Model

and to then use a single entry list to define the actual condition. For example:

LST

LST

LST

Condition

Add

Activate

Allocate

Entry

A

A

A

Validating Field Entries Using Check Condition

To validate data entry for a field, CA 2E uses a check condition which initially defaults to
*NONE. The default indicates that any value is allowed for the field, even if conditions
have been defined for it.

You can override this default with one of the conditions you have added to a field to
impose specific validation. The field value will be validated against the condition for the
field. If the value does not meet the criteria of the condition, an error message will be
displayed.

Note: Although you have defined conditions, if you leave check condition to *NONE,
checking will not occur at this level. It can still take place at the device level.

For STS fields, the check condition must be a LST condition. As an example, follow these
instructions to specify the *ALL values condition to validate a status field.

■ On the Edit Field Details panel, type *ALL values in the Check condition field and
press Enter.

■ You can also select a condition from a list of existing conditions by typing ? in the
Check Condition field on this panel.

Adding/Modifying Conditions

Chapter 5: Maintaining Your Data Model 189

Changing Default Conditions

You use a default condition to provide a value to a field when there is no value entered
for the field. The default condition specifies the value to store for the field.

The allowable types for the Default condition are

■ VAL for STS fields

■ CMP with an *EQ operation for all other fields

The Default condition has a value of *NONE, defaulted by CA 2E. You can change the
condition to any valid condition available for the field.

1. On the Edit Field Details panel, you can either:

■ Type the name of the condition to be used for the Default condition.

■ Or select a condition from a list of conditions for that field with ? and press
Enter.

2. Press Enter.

Adding/Modifying Conditions

190 Defining a Data Model

Changing Translate Condition Values

The Translate Condition values field is available only for STS fields. This is used to specify
that the field has a display value that can be different than the stored value. To give this
capability to a STS field:

■ You must provide a Check condition of LST for the field. Even if the Check condition
is not correct at this time, you must provide a dummy.

■ You can then change the Translate Condition value from blank to Y.

To access the Edit Field Conditions panel and change Translate Condition values field:

1. From the Edit Database Relations panel:

a. Press F7 to access the Display Fields panel.

b. Type Z against the desired field to access the Edit Field Details panel.

2. From the Edit Field Details panel, type ? for the Check Conditions field and Y for the
Translate Cnd Values field.

Placing a ? displays the Edit Field Conditions panel. If there have not been any
conditions defined for the field, the panel will not show any conditions. In this case,
you need to define a condition of type VAL for the field.

This condition will be a single value condition since the translation of values has not
yet been defined for the field. After you create the condition, a new condition
should appear, the *ALL values condition. It was created automatically by CA 2E.

3. Select the desired condition by typing X next to a LST Condition field on the Edit
Field Conditions panel and press Enter.

4. Press F9 from the Edit Field Details panel to display the Edit Field Conditions panel.

5. Create the desired condition by typing the name and type of the condition and
press Enter.

The condition of type VAL must have an internal and an external value.

6. On the Edit Field Conditions Details panel, enter the values and press Enter.

Note: If an initial condition was created to form the *ALL values condition, this initial
condition has the same internal and external value. You can change or delete this
condition if desired.

Adding/Modifying Virtual Fields

Chapter 5: Maintaining Your Data Model 191

Converting Conditions to List of Values

CA 2E generates source code to call a select facility for any status fields that appear as
input-capable fields on a function device design. If you prompt a status field that
requires data input, the select facility displays the allowed external values.

CA 2E provides the Display Values List panel.

For example, to display a list of values for the Credit Status field, press F4 while
positioning your cursor on the Credit Status field on the device file of a CA 2E generated
program.

You will see the following panel:

Place 1 to select a value.

You can create the values list file from a CA 2E model using the Convert Condition
Values (YCVTCNDVAL) command.

For more information on using the YCVTCNDVAL command see the CA 2E Command
Reference Guide.

Adding/Modifying Virtual Fields

You add virtual fields to a file-to-file relation, such as Refers to, to indicate which item of
data can be obtained through the relation. Virtual fields provide a way to view
information from another related file without having the information physically exist in
the related file.

Adding/Modifying Virtual Fields

192 Defining a Data Model

Virtual Fields and Access Paths

Virtual fields are defined through relations to a file. These virtual fields are available to
access paths built over the file. However, additional virtual fields cannot be added at the
access path level.

For more information on access path virtual fields, see the Building Access Paths
chapters "Modifying Access Paths" and "Tailoring For Performance."

Example of Using Virtual Fields

Because the Order detail file Refers to the Product file, you can specify any Product
detail, such as Product name or Pack size, as a virtual field on the Order detail file. For
example:

■ If you define a Product as follows:

FIL

FIL

FIL

Product

Product

Product

REF

REF

REF

Known by

Has

Has

FLD

FLD

FLD

Product code

Product name

Pack size

CDE

TXT

QTY

Any file that has a Refers to relationship with a relation that refers to Product can
include any non-key field of Product as a virtual field. For example, an order detail line
can include Product name and Pack size as virtuals:

FIL

Order
detail

CPT Refers to FIL

VRT

VRT

Product

Product name

Pack size

REF

TXT

QTY

Adding/Modifying Virtual Fields

Chapter 5: Maintaining Your Data Model 193

By indicating a field on the Product file (referenced file) as a virtual field, you allow the
system to make the data contained in this particular field of the Product file available for
functions that operate on the Order Detail file (referencing file).

In this case, the Order Detail file may include any of the non-key fields of the Product file
as virtual fields.

When you specify virtual fields for a relation, CA 2E generates the necessary source to
join the files that actually contain the virtual field to the related file. For DDS, this
process is usually implemented through the use of an i OS join logical file. For SQL, a
view over multiple tables is used. Because of i OS limitations, CA 2E generates special
logic to support virtual fields in SPN access paths.

You can only add virtual fields to relations that connect a pair of files through the
relation types Owned by, Refers to, and Extended by.

When you specify virtual fields for a file that references itself, sequence the Refers to as
the last relation.

Virtualizing Virtual Fields

The fields you have chosen as virtual fields may themselves be virtual fields on the
referenced file.

For more information see the chapter "Creating/Defining Your Data Model."

For instance, if in the above example Product Refers to Quality, with Quality name
specified as a virtual field, then Quality name may be a virtual field for Order detail as
well.

FIL

FIL

Quality

Quality

REF

REF

Known by

Has

FLD

FLD

Quality code

Quality name

CDE

TXT

FIL

Product REF Refers to FIL

VRT

Quality

Quality name

CDE

TXT

FIL

Order
detail

REF Refers to FIL

VRT

VRT

VRT

VRT

Product

Product name

Pack size

Quality code

Quality name

CDE

TXT

QTY

CDE

TXT

Related Procedures for Maintaining Your Model

194 Defining a Data Model

You can specify as many levels of virtual fields as allowed by i OS for levels of database
join. Depths of three or more are not recommended.

Follow these instructions to add virtual fields to a file relation or modify existing virtual
fields.

1. On the Edit Database Relations panel, type V next to the file relation for which you
want to add virtual fields and press Enter.

The Edit Virtual Field Entries panel displays. This panel shows a list of fields of the
referenced file.

2. Type + next to the field that you want to be a virtual field and press Enter .

You can add one or many virtual fields for a relation.

Pressing Enter confirms your selection. Note that an * (asterisk) has been placed in
the selection column, indicating the field is now a virtual field.

To remove a virtual field, type a – next to the selected field.

Related Procedures for Maintaining Your Model

Use the following procedures to perform maintenance tasks involving files, fields,
conditions, and relations.

Note that the maintenance described in this subtopic can also be accomplished using
options on the Edit Model Object List panel.

For more information on the Edit Model Object List panel, see the Generating and
Implementing Applications chapter "Managing Model Objects."

Files

Add Narrative Text

1. On the Edit Database Relations panel, type N next to the file. The Edit Narrative
Text panel displays.

2. Fill this panel with the text, notes or any descriptive information you want to
include.

For more information:

■ On narrative text, see the Administration Guide

■ On how to include narrative text in documentation, see the chapter "Documenting
Your Data Model"

Related Procedures for Maintaining Your Model

Chapter 5: Maintaining Your Data Model 195

Change a File Name

1. On the Edit Database Relations panel, zoom into the file details by typing Z against
any of the relations of the file.

2. On the Edit File Details panel, press F8, type the file name, and press Enter.

Delete a File

To delete a file, you must delete the Defined as relation for that file. Before you can
delete a Defined as relation, you must first delete all other references to the file. Use
the positioning option to view all references.

1. Delete all relations, except a Defined as relation.

This includes all Owned by, Known by, Refers to, Has, Extended by, Qualified by,
and Includes relations.

On the Edit Database Relations panel, type a D next to each of the relations of the
file and press Enter.

2. Delete the Defined as relation (DFN).

When you delete the Defined as relation, CA 2E removes all the access paths and
functions associated with this file.

■ On the Edit Database Relations panel, enter DFN for the Rel lvl and press Enter.

■ Type a D next to the Defined as relation and press Enter.

3. Optionally delete all fields that are now unreferenced.

From the Edit Database Relations panel:

■ Press F7 to display the Display Fields panel.

■ Press F11 to display unreferenced fields.

■ Enter a D next to each of the fields to be deleted and press Enter.

4. Delete all messages for this file. This includes all user-created messages in addition
to the default messages.

There are two default messages:

 "File name" EX (record already exists)

 "File name" NF (record not found)

■ On the Edit Database Relations panel, type an *m above the Object field to
position to the *Messages file. Press Enter.

■ Type F against any Message field and press Enter.

■ On the Edit Message Functions panel, type D next to the message to be deleted
and press Enter.

Related Procedures for Maintaining Your Model

196 Defining a Data Model

Fields

Delete a Field

1. From the Edit Database Relations panel, press F7 to display the Display Fields panel.

2. A field can be deleted only if it is not referenced by any other field, file, or relation.
Press F11 from the Display Fields panel to display a list of unreferenced fields in
your model.

3. Type D next to each of the fields to be deleted and press Enter.

Conditions

Delete a Condition

A condition cannot be deleted if it is referenced. You must first remove all the
references where the condition is used before you can delete a condition. A condition
may have been used in other places such as in an access path or action diagram.

On the Edit Field Conditions panel, type D next to the condition you want to delete and
press Enter.

Related Procedures for Maintaining Your Model

Chapter 5: Maintaining Your Data Model 197

Relations

Add Narrative Text

1. On the Edit Database Relations panel, type N0 next to a relation. The Edit Narrative
Text panel displays.

2. Fill this panel with the text, notes, or any description you want to include. Press
Enter, F3 to exit.

For more information:

■ On using narrative text, see the Administration Guide.

■ On how to include narrative in documentation, see the chapter "Documenting Your
Data Model"

Change a Relation

You can change a relation by typing over that relation's statement on the Edit Database
Relations panel. The file (object), the relation, and the related file or field (referenced
object) on the statement can be changed. CA 2E provides automatic relation syntax
checking to prevent entry of invalid statements.

1. On the Edit Database Relations panel, type a new object, relation, or referenced
object (file or field) over the existing name and press Enter.

2. Press F10 to define objects if the referenced object is not yet defined.

Note: To change the file or field name, do not type over the name and define a new
object. Zoom into the file or field details and change the name.

Override Default Relations Sequence

You can change the sequence order of relations by entering a new sequence number
using the Sequence field on the relation statements.

For more information on sequencing redirected or shared relations, see the chapter
"Creating/Defining Your Data Model."

On the Edit Database Relations panel, type the new sequence number(s) in the Relation
Seq column and press Enter.

Creating User-Defined Field Types

198 Defining a Data Model

Delete a Relation

To delete a relation, type D next to the relation to be deleted and press Enter.

Note: Defined as relations can only be deleted if there are no references by other
relations to the file it defines.

Example: File B cannot be deleted, that is the Defined as relation cannot be deleted,
until the other relations have been deleted. This includes relations that reference that
file. If A refers to B, the file B cannot be deleted until the relation A Refers to B is
removed.

FIL

FIL

B

B

REF

REF

Defined
as

Known by

FIL

FLD

B

b1

REF

REF

and also,

FIL

A REF Refers to FIL B REF

Deleting the Defined as relation removes all functions and access paths built over this
file, including default functions and access paths.

Creating User-Defined Field Types

CA 2E provides a wide range of default field types that cover many data requirements. If
you need a field type that is not defined within the CA 2E product, you can create your
own. This topic provides instructions on defining and creating your own field types in
addition to the ones supplied by CA 2E's shipped file *Field Attribute Types.

Included in this topic are examples for creating the following user-defined field types.

■ Century Date Field Type

■ Currency Field Type

■ Real Percentage Field Type

Each specific CA 2E user-defined field type has a number of attribute values that will be
assigned to any new fields given that type. You can specify which of those values cannot
be changed and which can be overridden at the individual field level. You may also
specify value mapping and validation routines centrally to the data model for your new
field type.

Note: Only a user of type *DSNR may define new field types.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 199

Name and Text

You must specify a 3-character mnemonic for the field type you define. You cannot
duplicate existing field type mnemonics.

You can also add explanatory text to a field. The text will appear next to the field name
shown on the Display Object Attribute panel.

You should define a unique 2-character mnemonic code, which will be used to generate
field names for fields of the same field type. The field name mnemonic will be defaulted
to the first two letters of the 3-character field type.

Basic Attributes

You can specify default values for all basic field attributes. These are

■ i OS data type

■ Internal and external length

■ Keyboard shift character

■ Allow lowercase

■ Check valid system name

■ Mandatory fill required

■ Modulus 10/11 check

■ Values mapping

For more information refer to the Edit Field Type panel and the description of attributes
that follows.

Internal and External Length

You can specify default values for both the internal and the external length of the field;
these lengths may be different. You can either specify fixed values or allow the user to
supply both internal and external values. You can also calculate the external length from
the supplied internal length with a length conversion function.

For more information on field length calculation, see the examples following.

Creating User-Defined Field Types

200 Defining a Data Model

Mapping Functions

If a field is to be stored internally in a form different from the one in which it is displayed
externally, then you can specify mapping functions to describe how the values are to be
translated.

These functions can be any CA 2E functions. They must be attached to the CA 2E
shipped file *Field attribute types. The functions must have at least one parameter.
There are restrictions about how other parameters can be specified.

For each field, you can use mapping functions in each direction as described below.

■ External-to-Internal function: to specify how the entered value for the field is to be
mapped to the internal value. Validation may be included in this function.

■ Internal-to-External function: to specify how the stored value is to be converted to
the displayed value. You must specify value mapping for the field type if you specify
an internal-to-external function. To specify value mapping, enter a Y in the Initial
value column for Allow value mapping.

Note: If you use an EXCUSRSRC function, only define your work variables once, in the
Internal-to- External function.

For more information on mapping functions, see Specifying Mapping Functions.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 201

Defining New Field Types

You use the Edit Field Type panel to define new field types. This panel enables you to
update the attributes for CA 2E field user-defined types. This panel is display only for CA
2E system field types.

Follow these instructions to define your own field type:

1. On the Edit Database Relations panel, type *F in the Object positioner area to
display the *Field attribute types file.

Type Z against one of the relations for the *Field attribute types file to access the
field types. The Display Field Types panel displays.

This panel shows a list and the description of all the existing field types contained in
the shipped file.

2. Press F9 to display the Edit Field Type panel, which is where you define a new field
type. Enter all of the necessary information to specify the characteristics of the field
type. The options are explained following the panel.

Creating User-Defined Field Types

202 Defining a Data Model

Edit Field Type Panel

Specifying Basic Attribute Values

This panel shows the attributes of the field type (DTX, as used for the first example) and
highlights the two main columns where you can change its values.

The first column, Allow user entry, indicates how the field type attributes will be
displayed when a field of this type is shown for editing on the Edit Field Details panel;
the second column, Initial values, is for specifying the initial default values allowed for
that field type.

For example, you would select and change the values for the Internal data type of the
DTX attribute as follows:

Attribute

Internal data type

Allowed user entry

O (I,O,H)

Initial value

P

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 203

For Allow user entry, O means the Internal data type attribute is to be displayed with a
fixed value; I means it can be modified; and H means it is to be hidden altogether.

For Initial value, P means you want Internal data type to have the value of Packed
numeric.

The following description of the attributes and default values shown for a field type on
the Edit Field Type panel will explain further how you define a new field type.

■ Field type—The field type for which the attribute values are to be specified.

■ Text—A short description of the field type, for example, "8-character date field."

■ Right hand side text—the default right hand side text for fields of this type.

■ Internal data type—The system data type of the field to be stored on a database
file. It can have one of these values:

A: Alphanumeric

P: Packed numeric

S: Signed numeric (zoned)

B: Binary (does not get generated)

F: Floating (does not get generated)

■ Internal length—The number of bytes used to store a field in files. Fields with
decimal positions are entered as: total number of digits, number of decimal places.
For example, for a field to contain 999.99, the length would be 5.2.

■ External data type—System data type of field to be displayed on device files. It can
have one of these values:

■

A: Alphanumeric

S: Signed numeric (zoned)

■ External length—The number of characters or digits in a field on a panel or print
file. Fields with decimal positions are entered as: total number of digits, number of
decimal places. For example, for a field to contain 999.99, the length would be 5.2.

■ Keyboard shift—Specifies which keyboard shift is allowed for the field on panel
files. It can have one of these values:

Blank no keyboard shift

X, A, N, W, I, D, or M: alphanumeric fields

N, S, Y, I, or D: numeric fields

O, J, E, W, G, or A: ideographic fields

Creating User-Defined Field Types

204 Defining a Data Model

For more information on keyboard shift values, refer to the IBM DDS Reference manual.

■ Lowercase—specifies whether the field values may be in lowercase. Lowercase
applies only to alphanumeric fields. It can have one of these values:

Y: lowercase allowed

Blank: lowercase not allowed

■ Check valid system name—specifies whether any value entered for the field must
be a valid i OS system name. A valid system name must start with a letter, no more
than 10 characters long, and must contain only letters, digits or one of these
characters: "-", "#", "$", or "@".

■ Mandatory fill—specifies whether an entry if any must be made for every character
of the field. This can have one of these values:

Y: mandatory fill

Blank: no mandatory fill

■ Modulus check 10/11—specifies whether any value entered for the field must meet
a modulus 10 or 11 check as specified by the DDS CHECK keyword. Modulus check
applies only to numeric fields. This can have one of these values:

10: apply modulus 10 check

11: apply modulus 11 check

Blank: do not apply modulus check

■ Allow value mapping—specifies whether value mapping will be implemented for
the field. If value mapping is 'Y', you must specify an Int/ext function and an Ext/int
function. If no value mapping is required, you can still specify an Ext/int function to
perform other validation.

This can have one of these values:

Y: field is to be value mapped

Blank: field is not to be value mapped

■ Int/ext len conv—specifies how external length is to be determined. This can have
one of these values:

I: use internal length. This will force the External length
value to equal the Internal length value on the Edit
Field Type screen.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 205

C: invoke user program. The calculation will be
performed by a field length calculation program
named YxxxLENR1C where "xxx" is the 3-character
name of the data type. You must supply this program
yourself.

V: if the field is valued mapped, allow user entry of the
external length. If it is not value mapped, use internal
length.

Blank: allow user entry of the external length.

■ Int/ext function—This is the function that is to convert the internal value to
external value for the field. It must be a function attached to the *Field attribute
types file.

■ Ext/int function—This is the function that is to convert the external value to
internal value for the field and validate it if required. It must be a function attached
to the *Field attribute types file.

Creating User-Defined Field Types

206 Defining a Data Model

Specifying Mapping Functions

You can examine and change the value mapping functions in a model using the Edit
Functions panel for the *Field attribute types file. This panel shows the mapping
functions attached to the field types file.

You can obtain the Edit Functions panel in two ways:

■ Type ? for the Ext/int function or the Int/ext function fields on the Edit Field Type
panel.

This will show you a list of functions for the *Field attribute types. Functions can be
added on the Edit Functions panel.

■ Type F next to a relation of the *Field attribute types on the Edit Database Relations
panel.

When you define a function that is based on an access path containing fields of a
user-defined field type, CA 2E automatically does the following in the function
definition:

■ Include fields of the external field type on the device designs of the function.

■ Include the field mapping functions at the appropriate points in the action
diagrams.

■ Pass the internal and external fields to the mapping function parameters.

■ Specify that the internal fields are to be used to update the database.

If value mapping is specified for a field type (in other words, Y is specified in the Initial
value column of Allow value mapping), both internal/external and external/internal
functions must be defined and both must have two parameters. This is to supply and
return the internal and external values as appropriate.

If the external/internal function is being used for validation only, only one parameter
needs be supplied: the external value.

Function type First
parameter

Parameter
Usage

Second
Parameter

Parameter
Usage

External/Internal

Internal/External

EXT FLD

EXT FLD

I

O

INT FLD

INT FLD

O

I

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 207

The order in which you specify the parameters is important. Ensure the following:

■ The external version of the field must always be the first parameter, regardless of
usage. The field used to define the external parameter should have a field type of
NBR, CDE or TXT.

■ The field used to define the internal parameter should always be the second
parameter. You can specify additional parameters after these two fields.

Creating User-Defined Field Types

208 Defining a Data Model

Specifying Additional Attribute Values

Use the Edit Field Type Defaults to specify the default initial values for some additional
basic attributes of the field; for instance, field exit options and edit codes. You can
obtain this panel in either of two ways:

■ For existing field types, enter Z next to the field type on the Display Field Types
panel

■ Press Enter when defining a new attribute type from the Edit Field Type panel.

The Edit Field Type Defaults panel allows you to enter and change the following
attributes of the field type:

■ Internal length

■ External length

■ Data type

■ Mnemonic code

■ Keyboard shift

■ Lowercase

■ Mandatory fill

■ Modulus 10/11

■ Valid System Name (VNM)

■ Field Exit options

■ Edit codes

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 209

Example: Defining a Century date Field Type (DTX)

This example shows how to define a century date field data type (DTX). Since the
shipped DT# field type has the capabilities defined here, use this example only to
understand the steps needed to define your own field type. The DTX field type is to have
the following characteristics.

■ Internal format packed numeric: CCYYMMDD, fixed length

■ External display format numeric: DD/MM/CCYY, fixed length

■ Value mapping to convert between the internal and external values

■ Validation to check that entered dates are valid

The first step is to define the mapping functions needed for the DTX field type.

Type P next to the Check DTX and Convert DTX to display their parameters. Press Enter.

Creating User-Defined Field Types

210 Defining a Data Model

Defining Parameters for the Mapping Functions

You use the Edit Function Parameter and Edit Function Parameter Detail panels to
specify the parameters for mapping functions.

The two mapping functions for the DTX field data type, Check DTX and Convert DTX,
should have parameters defined for them as follows:

Function
Name

FIRST
PARAMETER

SECOND
PARAMETER

 Function
Type

Name Usage Data
Type

Name Usage Data
Type

Check DTX Ext/Int Century

external

I NBR

8.0

Century

internal

O

Convert
DTX

Int/Ext Century

external

I O DTX

8.0

 O NBR

8.0

Century

internal

I DTX

8.0

The fields Century internal and Century external are used only to define the parameters
on the century data type mapping functions. They can be defined with the Define
Objects panel and should be of the same data type (packed, zoned, alphanumeric, etc.)
and size as the respective internal and external formats of the field data type. For the
DTX field, both internal and external formats are numeric. The Century internal field
could itself be a field of type DTX.

If necessary, use the Define Objects panel to define fields of appropriate data types to
use as parameter fields on the mapping functions.

Defining the Mapping Functions

Having specified the parameters for the Check DTX and Convert DTX functions, you can
describe the internal processing of the functions themselves, using an action diagram of
type Execute Internal Function. The Check DTX function would do the following:

1. Check that the date entered is a valid date of the form DDMMCCYY.

2. Convert the external value of the DTX field, in DDMMCCYY format, into the internal
value, in CCYYMMDD format.

The Convert DTX function has only to convert the internal value of the field, in
CCYYMMDD format, to the external value, in DDMMCCYY format.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 211

Supplying Parameters to Mapping Functions

When a function uses a field with a mapped user-defined field type, calls to the mapping
functions are included automatically. The internal and external values are automatically
supplied to the required parameters of the mapping functions.

If you specify additional parameters on a mapping function, you must also decide from
where the values for those parameters are to be obtained in the functions, which use
the field type.

For each parameter you can specify:

■ The name of another field present in the same format as the field of the data type
(FIL).

■ A condition value of a field in the same format as the field of the data type (CND).

■ The name of a field in the JOB context.

■ A constant value (CON).

The source of field mapping function parameters can be specified at two levels:

■ File entry

■ Function screen/report entry

You can also specify whether the values specified at file level may be overridden at
a device design level.

To specify the context of the values for any additional parameters on the mapping
functions, you use the Field Mapping Function Parameters and the Screen Field
Mapping Function Parameters panels.

The Field Mapping Function Parameters panel allows you to specify a default context for
the mapping parameters.

The example of the Field Mapping Function Parameters panel below shows how to
define the No. of decimals parameter for mapping fields of data type CUR described
earlier under "Specifying Additional Parameters for Mapping Functions." Note that you
can override the source of the parameter at a lower level.

Creating User-Defined Field Types

212 Defining a Data Model

Field Mapping Function Parameters Panel

To access this panel from the Edit Database Relations panel, use an E to obtain the Edit
File Entries panel to display the entries of the file that has a function containing the
mapped user-defined field. Use an M against the entry to set up the additional
parameter to the mapped user-defined field type function.

For more information see Displaying File Entries at the beginning of this chapter.

For each mapping function parameter you can enter the context and the name of the
field which is to supply the value to the mapping function parameters. This value will be
used in all functions based on the file unless it is overridden at the device level.

A special context is available on this panel: FIL. This context indicates that the parameter
field is to be found in the same context as the mapped field, wherever it is being used,
such as DTL or RCD on a screen, CUR on a report.

You can also specify whether the source of the mapping function parameter is fixed or
whether it can be overridden at the panel or report level. The third alternative is to
specify that an override is always required.

Specifying Additional Parameters for Mapping Functions

You can specify additional parameters on the mapping functions if you wish. For
example, for the currency amount data type you might specify that the number of
decimal places was an additional input parameter to the mapping functions. This
parameter could then be used to control the positioning of the decimal place.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 213

Mapping Function Parameters: Panel/Report Entry Level

To override the parameters to a mapping function at panel or report level, you use the
Screen Field Mapping Parameters panel.

1. From the Edit Screen Entry Details panel, press F9 to obtain the Screen Field
Mapping Parameters panel.

2. From the device design editor for a function panel, use F5 to get to the Edit Device
Format panel. From here, Z (Zoom) into the panel entry.

This will take you to the Edit Screen Entry Details panel.

For a field of the currency data type, the No. of decimals parameter could be overridden
since the parameter value was not protected at the file level. Note that the context FIL,
specified at the file entry level, is resolved into an appropriate screen context; for
example, for an EDTFIL function, RCD is the screen context.

Screen Field Mapping Parameters Panel

Creating User-Defined Field Types

214 Defining a Data Model

Example: Defining a Currency Field Type (CUR)

User-defined field types are useful where data requires some conversion before being
displayed, or where a standard conversion is required prior to storage.

The conversion process does not have to be two-way. For example, a user-defined type
could be used to allow an automobile registration number to be processed to convert all
zeros to the letter O and all ones to the letter I to ensure against confusion on inquiry
screens. The original data could be stored in another field if necessary.

In the automobile registration number example there is no conversion from internal to
external format since they are both the same. The only parameter to the external to
internal conversion function is the field to be converted.

The following example is somewhat more complicated to illustrate the power of
user-defined field types. In it we will define a currency field type. A company dealing
with international customers who are charged and who pay in their own currency would
want to define a value field only once for a particular data item, rather than various
fields or even separate files to store the data.

The solution is to store the data in a neutral format and then convert it before display
with the correct number of decimal places and any other desired editing. Rather than
require the developers to remember to call these conversion routines, a user-defined
data type allows the definition to be made once and is then automatically generated by
CA 2E when required.

The following panels describe the definition process step by step.

1. First define the functions used for the field type on the *Field attribute types file.
From the Edit Database Relations panel, enter *F in the object positioner field to
position on the CA 2E *Field attribute types file. Enter F next to the *Field attribute
types file name to display the functions that have been defined for this file.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 215

2. Create the four following mapping functions that will be used by the currency field
type as shown below. The access path for each function type should be *NONE.

3. For the purposes of this example, the following new fields are required. You can
create them as part of the function creation process.

Creating User-Defined Field Types

216 Defining a Data Model

4. Press Enter to define the fields and return to the Display Fields panel. Zoom into
each field to display the Edit Field Details panel.

Enter details for the *external currency field as follows.

Enter details for the *internal currency field as follows.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 217

Enter details for the no. of decimals field as follows.

Note the assigned DDS field names for the fields you just defined. In this case,
XBCD, ZZNB, and QHNB. You will need these when you define the user source for
the ext –> int src and the int –> ext src functions.

5. Define parameters to the Currency ext –> int EXCINTFUN function as shown below
using the fields you just defined. Be sure to define the *external currency field first.
You can use a sequence number to ensure this.

Zoom into each parameter to display the Edit Function Parameter Details panel.
Assign the usage and role for the Currency ext –> int function parameters as
follows.

Parameter Usage Role

*external currency I MAP

*internal currency O MAP

Creating User-Defined Field Types

218 Defining a Data Model

6. Define parameters to the Currency ext –> int src EXCUSRSRC function as shown
below. Be sure to define the *external currency field first. You can use a sequence
number to ensure this.

Zoom into each parameter to display the Edit Function Parameter Details panel.
Assign the usage and role for the Currency ext –> int src function parameters as
follows.

Parameter Usage Role

*external currency I MAP

*internal currency O MAP

7. Define parameters to the Currency int –> ext EXCINTFUN function as shown below.
Be sure to define the *external currency field first. You can use a sequence number
to ensure this.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 219

Zoom into each parameter to display the Edit Function Parameter Details panel.
Assign the usage and role for the Currency int –> ext function parameters as
follows.

Parameter Usage Role

*external currency O MAP

*internal currency I MAP

no. of decimals I MAP

8. Define parameters to the Currency int –> ext src EXCUSRSRC function as shown. Be
sure to define the *external currency field first. You can use a sequence number to
ensure this.

Zoom into each parameter to display the Edit Function Parameter Details panel.
Assign the usage and role for the Currency int –> ext src function parameters as
follows.

Parameter Usage Role

*external currency O MAP

*internal currency I MAP

no. of decimals I MAP

Creating User-Defined Field Types

220 Defining a Data Model

9. Edit the action diagram for the Currency ext –> int EXCINTFUN to call the
EXCUSRSRC function for the external to internal conversion.

10. Specify the details of the parameter interface.

11. The RPG source for the Currency ext –> int src EXCUSRSRC function is as follows.
The process involves the removal of any decimal point found in the data. Note that
to reduce the complexity of the example no validation has been included.

*CURRENCY EXT –> INT SRC

*CONVERT TO INTERNAL FORMAT

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 221

C

C

C

*

*

Z-ADD15

Z-ADD14

MOVEA

#IXBCD X

Y

OUT

2
0

2
0

 *STRIP OUT

DECIMAL
POINT

C

C

C

C

C

C

C

C

C

 X

 OUT,X

*

DOUEQ1

IFNE

MOVE

SUB

END

SUB

END

MOVEA

MOV

’.’

OUT,X

1

1

INP

WRK14

INP,Y

Y

X

WRK14

#OZZNB

1
4

1. Edit the action diagram for the Currency int –> ext EXCINTFUN to call the
EXCUSRSRC function for the internal to external conversion.

Creating User-Defined Field Types

222 Defining a Data Model

2. Specify the details of the parameter interface.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 223

3. Following is the RPG source for the Currency int –> ext src EXCUSRSRC function.

*CURRENCY INT –> EXT SRC

E

E

C

C

C

C

C

C

C

C

C

C

C

C

C

C

*

*

 #IQHNB

*

 #IQHNB

INP

OUT

MOVE

MOVE

Z-ADD

MOVEA

MOVEA

IFEQ

MOVE

MOVEA

ELSE

IFEQ

MOVE

MOVEA

MOVEA

ELSE

 14

 15

’ ’

#IZZNB

#IQHNB

WRK14

INP

1

’.’

INP,14

2

’.’

INP,13

INP,14

1

1

OUT

WRK14

WRK2N

INP

OUT

OUT,14

OUT,15

OUT,13

OUT,14

OUT,15

1
4

2
0

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

 #IQHNB

 #IQHNB

IFEQ

MOVE

MOVEA

MOVEA

MOVEA

ELSE

IFEQ

MOVE

MOVEA

MOVEA

MOVEA

MOVEA

END

END

END

END

3

’.’

INP,12

INP,13

INP,14

4

’.’

INP,11

INP,12

INP,13

INP,14

OUT,12

OUT,13

OUT,14

OUT,15

OUT,11

OUT,12

OUT,13

OUT,14

OUT,15

Creating User-Defined Field Types

224 Defining a Data Model

 *CHANGE

LEADING
ZEROES TO
BLANKS

C

C

C

C

C

C

 OUT,X

*

*

Z-ADD1

DOUNE

MOVE

ADD

END

MOVEA

’0’

’ ’

1

OUT

X

OUT,X

X

#OXBCD

2
0

1. Zoom into the *Field attribute types file from the Edit Database Relations panel to
display a list of the currently defined field types.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 225

2. Press F9 from the Display Field Types panel to add the new field type CUR. Specify
attributes for the CUR field type on the Edit Field Type panel as follows. Be sure to
enter Y for the initial Allow value mapping value.

3. Press Enter to confirm the values you entered. Press F3 to specify additional
attributes for the CUR field type on the Edit Field Type Defaults panel as follows.

Creating User-Defined Field Types

226 Defining a Data Model

4. In order to use the CUR field type, you need a Currency file as shown below. The
records on this file will reflect the number of decimal places required by the various
currency types.

Any files that actually use the CUR field type must reference the Currency file. The
no. of decimals field must be virtualized across the Refers to relation.

5. In order to map the value of the no. of decimals to the field type, display the entries
on the file by entering E on the Edit Database Relations panel as shown above.
Enter M against the entry defined using the currency field type to define the
additional parameter to the mapped user-defined field type function.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 227

6. This panel allows the designer to define from which context the actual parameters
may be selected.

For more information on this process, refer to this topic, the Supplying Parameters to
Mapping Functions subtopic, the Mapping Function Parameters: Panel/Report Entry
Level subtopic, and the online help.

Creating User-Defined Field Types

228 Defining a Data Model

Example: Defining a Real Percentage Field (PCX)

Following is an example that illustrates the creation of the real percentage field type
(PCX) with external field length calculation.

The example shows the steps required and all the panels involved in the order you
would follow to create a user-defined field type in CA 2E.

The percentage data type has different internal and external field lengths, the external
field length being determined from the length assigned to the internal version of the
field. If the external field length is 5.2, the internal length becomes 5.4 to account for
automatic division by 100. A percentage entered or displayed as 45.55, will be stored
internally as 0.4555.

The external length calculation is performed by a program which derives its name from
the data type. For a data type PCX, a program YPCXLENR1C must exist for this length
calculation. Several parameters are required on this function. The figure below shows a
generic STR type file in CA 2E, defining what fields are required as parameters to the
length calculation program. This STR file should be defined on the Edit Database
Relations panel as shown below. The file name contains XXX indicating the values to be
substituted for the data type mnemonic.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 229

Once you have entered the relations, press F10 to define the file and fields as indicated
in the figure that follows.

The external fields that are referenced fields are referenced to their internal
counterparts.

The function to perform the external field length calculation can be attached to the
*Field attribute types file. Position the Edit Database Relations panel at this file and go
into the functions. Add one of the correct names, in this case YPCXLENR1C, making it of
type EXCEXTFUN, as below.

Creating User-Defined Field Types

230 Defining a Data Model

Zoom into the function and change the source member name to that of the desired
length calculation program (YPCXLENR1C).

Attach parameters as defined by the structure file below, and give them the usage as
indicated.

Attach parameters as defined by the structure file, shown below, and give the usage as
indicated.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 231

The parameters should all have a usage of I except the External length, External no. of
integers and External no. of decimals. These are the parameters that the CA 2E calling
function is expecting to be returned.

In this simple example, all the length conversion program will do is ensure that the
number of decimal places externally is two less than the number internally. Set up the
action diagram for the function as below. Then exit and save the function.

Create the Int/Ext and Ext/Int mapping functions now. These should be of type
EXCINTFUN. In this case 'PCX Divide PCT by 100' and 'PCX Multiply PCT by 100' have
been created for the mapping functions (see previous figure for Edit functions over
*Field Attribute type file). Attach parameters to the functions, as indicated below.
Defines both the PCX_External field and the PCX_Internal field as NBR type fields. Their
lengths are arbitrary.CA 2E will create fields of the appropriate length at function
generation time.

Creating User-Defined Field Types

232 Defining a Data Model

Ext/Int mapping function parameters:

The Ext/Int mapping function should contain action diagram statements to divide the
percentage by 100. Set the statement as below.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 233

Int/Ext mapping function parameters:

The Int/Ext mapping function should contain action diagram statements to multiply the
percentage by 100. Set the statement as below.

Creating User-Defined Field Types

234 Defining a Data Model

Finally, create the data type. Zoom into the *Field Attributes types file and press F9 to
add an object attribute.

Enter Z against the PCX field type to display the Edit Field Type panel.

Create the data type as defined below, ensuring that the Int/Ext len conv field is set to C
and that the correct mapping functions are specified.

Creating User-Defined Field Types

Chapter 5: Maintaining Your Data Model 235

Note: The YPCXLENR1C program must exist before you confirm this step; otherwise you
will receive an error message.

Press Enter to display the summary panel. Change the Mnemonic code to PCX. Fill the
field exit options and edit codes to complete the data type.

Chapter 6: Documenting Your Data Model 237

Chapter 6: Documenting Your Data Model

This chapter covers the CA 2E documentation commands you can use to produce hard
copy documentation of your data model.

A document produced in this manner consists of details of the specific model's design
objects that you want. The documentation provides a historical record of the
development of your data model.

This section contains the following topics:

Related Information (see page 237)
Documenting Files, Fields, Relations, and Application Areas (see page 237)
CA 2E Documentation Commands (see page 238)
Viewing the Documentation (see page 240)
Documentation Commands Output Listings (see page 241)

Related Information

This section covers only documentation of files, fields, relations, and application areas.
For more information about documentation commands and how to use them to
document access paths, functions, model library files, and messages, refer to the
following modules:

■ Implementation Guide

■ Command Reference

■ Building Access Paths

■ Building Applications

Documenting Files, Fields, Relations, and Application Areas

Use the following procedures to document your model's files, fields, relations, and
application areas. You must use the appropriate documentation command.

■ Document Model Files (YDOCMDLF) command for files

■ Document Model Fields (YDOCMDLFLD) command for fields

■ Document Model Relations (YDOCMDLREL) command for relations

■ Document Model Application Areas (YDOCMDLAPP) command for application areas

You can access these commands via the CA 2E Services Menu or by typing the command
name directly from a command line on your screen.

CA 2E Documentation Commands

238 Defining a Data Model

CA 2E Documentation Commands

These are CA 2E documentation commands that you can use to document your data
model's objects:

YDOCMDLREL model relations

YDOCMDLF model files

YDOCMDLFLD model fields

YDOCMDLAPP model application areas

All CA 2E documentation commands have several selection parameters and print
options which allow you to:

■ Select the type of information you want to be documented for the selected objects.
For example, you can list files by a specific application area code, list the relations
by the desired level, or print relation entries.

■ Decide whether to include user-defined text in the documentation for each selected
object. For example, you can use the PRTTEXT parameter to specify whether you
wish narrative text to be included in the documentation listing, and if so, which type
of text (functional or operational).

For more information:

■ On narrative text, see the chapter "Using Your Model" in the Administration Guide

■ On how to add narrative text at file, field, or relation level, see the chapter
"Maintaining Your Data Model"

CA 2E Documentation Commands

Chapter 6: Documenting Your Data Model 239

Using Documentation Commands via Display Services Menu

1. On the Edit Database Relations panel, press F17 to go to the Display Services Menu.

2. Select the Documentation menu option and press Enter.

The Display Documentation Menu panel displays.

3. Select the appropriate option to document your model objects from this panel.

Depending on the option you selected, CA 2E displays one of the following panels:

■ Document Model Files (YDOCMDLF)

■ Document Model Fields (YDOCMDLFLD)

■ Document Model Relations (YDOCMDLREL)

■ Document Application Areas (YDOCMDLAPP)

4. Change any of the default parameters as you wish and press Enter.

A message displays indicating that the documentation is created.

Note: If you press Enter without changing the defaults, CA 2E assumes that you
want all of these options for your documentation.

You will be returned to the Display Documentation Menu.

To view the documentation online, see Viewing the Documentation procedure that
follows.

5. Send your files to the printer according to your system configuration to obtain
printouts.

Using Documentation Commands from a Command Line

1. Type YDOCMDLF (or YDOCMDLFLD, YDOCMDLREL, YDOCMDLAPP) and press F4.
This will print the document using the default values.

F4 shows parameter values.

2. Follow steps 3 through 4 of the procedure for using documentation commands via
the Display Services Menu above.

3. From the Display Documentation Menu panel, type the option, and press F4 or
Enter.

Note: F4 allows you to change the default parameters on this panel. If you press
Enter, CA 2E assumes that you want all of the default options for your
documentation.

A message displays indicating that the documentation is created.

You will be returned to the Display Documentation Menu.

Send your files to the printer according to your system configuration to obtain
printouts.

Viewing the Documentation

240 Defining a Data Model

Viewing the Documentation
1. From the Display Documentation Menu panel, press F8 to obtain a command line.

2. On the command line, enter the i OS Work with Job (WRKJOB) command. Select
option 4 to display spool files created. Documentation is in spool file YDOCMDLxxx,
where xxx identifies the type of report.

3. Type 5 next to the file you want to view and press Enter.

The following pages give examples of documentation listings.

Documentation Commands Output Listings

Chapter 6: Documenting Your Data Model 241

Documentation Commands Output Listings

These are examples of the documentation produced from using the documentation
commands.

YDOCMDLF (Docudel FilOCMDLFLD (Document Model Fields)

Documentation Commands Output Listings

242 Defining a Data Model

YDOCMDLREL (Document Model Relations)

Documentation Commands Output Listings

Chapter 6: Documenting Your Data Model 243

YDOCMDLAPP (Document Model Application Areas)

Chapter 7: Assimilation 245

Chapter 7: Assimilation

This chapter describes assimilation and provides instructions for assimilating i OS
database files using the Retrieve Physical Files into Model (YRTVPFMDL) command. It
also lists the considerations and restrictions associated with this process.

This section contains the following topics:

Understanding Assimilation (see page 245)
Using the YRTVPFMDL Command (see page 246)
Adding Extra Information to Assimilated Files (see page 247)
Editing i OS Physical File Format Entries (see page 248)
Considerations (see page 249)
Changing Field Name and Attribute Type (see page 249)
Inconsistent Implicit Data Model (see page 250)
Date Formats (see page 250)
Using Extended by Relations in Assimilated Files (see page 251)
Assimilation Procedure (see page 252)

Understanding Assimilation

Assimilation is the technique of retrieving and using file definitions from existing i OS
physical files to create CA 2E files. The assimilated files then can be used in a CA 2E data
model. You can add extra relations and define access paths and functions for assimilated
files the same as you would with other modeled files.

Assimilating database files allows you to develop new functions and access paths over
an existing database defined outside of CA 2E.

Using the YRTVPFMDL Command

246 Defining a Data Model

Degrees of Assimilation

Depending on your objectives, you can choose to carry out assimilation to these
different degrees:

■ Assimilation as is

The existing database is preserved exactly as is. Field, format and file names remain
the same. You will be able to use the files with all your existing programs without a
need for change or recompilation.

This degree of assimilation, however, may lead to restrictions in certain cases,
particularly if the data model implied by the existing database is incorrect or
inconsistent.

■ Assimilation with limited modifications

The existing database is preserved but model data structures can be rationalized or
corrected where appropriate. You will still be able to use most of your existing
programs with only minor modifications.

You can take full advantage of CA 2E capabilities now because your files have been
fully defined in the model and can be used as any other modeled files. The greater
the degree of assimilation that can be achieved, the greater the use that can be
made of CA 2E capabilities when generating programs.

For more information on normalization and considerations regarding normalized
databases, see the chapter "Developing a Conceptual Model."

Using the YRTVPFMDL Command

You use the Retrieve Physical Files into Model (YRTVPFMDL) command to perform
assimilation. Confirm that all developers and programmers are out of the model.
Execute the YRTVPFMDL command before entering the model.

The YRTVPFMDL command retrieves into a CA 2E design model all file and field
definitions not already present in the model. It creates a CA 2E file for each i OS physical
file retrieved and a CA 2E field for each of the retrieved fields found with a unique DDS
name. The fields are connected to the file with Has relations.

The YRTVPFMDL command has several parameters that allow you to perform functions
such as removing the DDS prefix from field names, amending a retrieved field, and
nominating a file that you want CA 2E to treat as a field reference file.

Note: You can retrieve an i OS SQL table into your model by specifying the name of the
associated i OS physical file in the library for the SQL collection.

Adding Extra Information to Assimilated Files

Chapter 7: Assimilation 247

Parameters/Functions

Parameters for the YRTVPFMDL command are as follows:

■ FILE specifies qualified generic name of the i OS physical file from which the
description is to be retrieved.

■ RMVFLDPFX specifies whether a prefix will be removed from the implementation
field names in the retrieved file.

■ REFFILE specifies the name of the file to be treated as the field reference file. No
Has relations will be created for the file. All fields will be added to the field
dictionary.

For more information refer to the YRTVPFMDL command, the CA 2E Command
Reference.

Adding Extra Information to Assimilated Files

A file created through assimilation may not contain as much information as one of your
normally modeled files. You may have to add extra information to each of the
assimilated files. For example, because the YRTVPFMDL command does not identify the
key fields of a file that it assimilates, you may have to identify the key fields of that file
to CA 2E by changing some of its relations from Has to Known by. Be aware that if the
relations are not sequenced, the Known by relations are placed before the Has relations.
This changes the file format, making it different than the existing physical file. To keep
the same field sequence, you must resequence the physical file format entries as
detailed in the next topic.

Editing i OS Physical File Format Entries

248 Defining a Data Model

Editing i OS Physical File Format Entries

CA 2E stores default file format entries for fields on an assimilated file, including:

■ sequence of the field

■ implementation name of the field on the physical file or the SQL column name on
the table

■ i OS data type of the field

■ length of the field

You can view and change all of these defaults using the Edit Physical File Format Entry
panel, which is available only for assimilated files. To access this panel:

1. Zoom into the assimilated file from the Edit Database Relations panel. The Edit File
Details panel displays.

2. Zoom into the PHY access path of the file. The Edit Access Path Details displays.

3. Zoom into the access path format entries. The Edit Access Path Format Entries
panel displays.

4. Press F8 to get the physical file entries. The Edit Physical File Format Entry panel
displays.

This panel enables you to enter and maintain details about the fields that belong to the
format of an assimilated physical file. It shows the name and type of format. If adding a
relation causes a mismatch between the sequence of fields defined to CA 2E and the
existing physical file, change the sequence number defined on the Edit Physical File
Format Entry panel. For example, if a Known by relation causes the field to be defined as
one of the first fields in the file, change the sequence number defined on the Edit
Physical File Format Entry panel.

Considerations

Chapter 7: Assimilation 249

Considerations

There are some considerations associated with assimilation. Resulting from the way CA
2E implements a data model, considerations involve

■ i OS field names and field naming in CA 2E

■ Inconsistent implicit data model

■ Date formats

Whether these considerations will prove restrictive depends on

■ The extent to which you wish to preserve the existing database

■ Names used in the existing database

■ The extent of the "correctness" of the model as implied by the assimilated set of i
OS files

In making this implied model explicit, assimilation tends to highlight any inconsistencies
such as missing keys, redundancy, conflicting field lengths, or the association of an
attribute with the wrong entity.

Changing Field Name and Attribute Type

Prefix

If the names of your fields in each file already contain a prefix, you can tell CA 2E to
remove the prefix by specifying a value of *YES for the RMVFLDPFX parameter on the
YRTVPFMDL command.

Duplicate Field Names

Existing i OS physical files may contain the same field name in several different files. For
example, you may find a field named Order Date that could well mean Customer,
Purchase, or Shop Order Date. If you have this problem, you should either:

■ Use the REF field attribute to base the definition of one of the fields on that of the
other, or

■ Use the Edit Physical File Format Entry panel to establish a different field name for
the field on the file.

Inconsistent Implicit Data Model

250 Defining a Data Model

Inconsistent Implicit Data Model

If the data model implied by your existing database is incomplete or inconsistent, you
may want to rationalize and correct it before you can take advantage of using 's CA 2E's
capabilities.

Examples of Inconsistency

 Examples of inconsistency are:

■ Different field definitions. If you have used different attributes for a same field in
different files, then you must standardize the field definitions before you can
establish a CA 2E relationship. For instance, if Customer code is defined as five
characters in one file and six in another, then you must make the length the same
for both instances of this field.

■ Missing field entries. You may have omitted a field from a file that is necessary to
resolve a relation, either by mistake or because the omitted field is to be supplied
procedurally.

In particular, you may have omitted key fields if you have used either relative
record processing or purely arrival sequence processing, neither of which are
supported by CA 2E data modeling.

Date Formats

If you wish to use the CA 2E date field type (DTE), you may need to convert the date
field's data and length to match the internal stored format described by CA 2E. Dates of
this field type are always stored on file in CYYMMDD format. CA 2E provides automatic
date validation and mapping into the local display format.

CA 2E assimilates i OS DATE fields as field type DT#.

For more information on date field types, see the chapter "Understanding Your Data
Model" and IBM IBM i Programming: Data Description Specifications Reference.

Using Extended by Relations in Assimilated Files

Chapter 7: Assimilation 251

Using Extended by Relations in Assimilated Files

You can use the Extended by relation to add more data to an assimilated file without
actually changing the file. The Extended by relation allows you to specify a one-to-one
relationship between the existing file and a new, extended file that contains the
additional fields you want to add. You will get automatic validation and existence
checking and be able to define virtual fields from either file into the other.

Using Extended by relations also helps you save disk space because you can choose only
to create records in the extended file when and if the data is needed.

Example of Using Extended by Relations

You have assimilated your Customer master file and do not want to change it, but you
want to add some credit history data for those customers who finance their purchases.

In your data model, add the new relations as shown below:

Customer

Customer Credit History

Customer Credit History

Customer Credit History

Customer Credit History

Extended by

Owned by

Has

Has

Has

Customer Credit History

Customer Master

Avg Payment Days

Avg Payment Amount

Last Payment Date

The Extended by relation does not generate new fields in the Customer file so you do
not have to change your programs. You have to maintain only the Customer Credit
History records associated with the Customer file.

Assimilation Procedure

252 Defining a Data Model

Assimilation Procedure

Use the following procedure to perform assimilation.

1. Retrieve existing i OS physical files using the YRTVPFMDL command. This command
allows you to retrieve (the definitions of) one, several, or all i OS physical files in the
database.

You can specify a value for the RMVFLDPFX parameter of the command to indicate
whether or not you want CA 2E to drop the prefix from the DDS field names in the
retrieved file. The purpose of using this parameter is to make sure the DDS names
match those of your existing programs.

For more information, see the section Changing Field Name and Attribute Type.

2. Identify key fields. You identify key fields to CA 2E by changing the relevant Has
relations into Known by relations since all fields are assimilated as Has relations.

3. Adding file-to-file relationships. You change or add new relations to explicitly
indicate file relationships to include the processing logic for the keys arising from Owned
by or Refers to relations, and for referential integrity checking.

If adding a relation causes a mismatch between the sequence of the fields you defined
to CA 2E and those of the existing i OS physical file, you can change the sequence
number using the Edit Physical File Format Entry panel. For example, if a Known by
relation causes the field to be defined as one of the first fields in the file, change the
sequence number using the Edit Physical File Format Entry panel.

4. Lock the physical file. You lock the physical file in your model to prevent
inadvertently selecting the existing file definitions for recompilation.

For more information on:

■ Physical files, see the Building Access Paths chapters "Adding Access Paths" and
"Tailoring For Performance"

■ How to lock files, see the chapter "Using Your Model" in the Administration Guide

■

■

■

Index 253

Index

*

*Field Attribute Types • 54

1

1NF (first normal form) • 36

2

2NF (second normal form) • 36

3

3NF (third normal form) • 36

4

4-digit year • 73

A

about • 18
accessing Field Attribute types file • 57
adding field types to newly defined fields • 158
adding information to assimilated files • 247
adding narrative text to • 197
adding to relations • 197
adding virtual fields to • 141
adding/modifying • 183
adding/modifying conditions • 183
adding/modifying information • 178
advantages • 13
allow lower case • 62
application areas • 148, 237
application development • 13
as file entry • 161
assimilating • 245
assimilation • 245, 246, 247, 249, 250, 251
assimilation of DBF files • 245
attribute • 14, 19, 23, 25, 29, 35
attributes • 19, 202, 208
attributes of • 23

B

basic attributes of • 199

C

capture file (CPT) • 51, 152

cardinality • 26
CDE (code) field type • 84
changing • 154, 197
changing field name and attribute type • 249
changing relation on • 197
chart of types • 161
check condition • 64, 188
circularity • 143
CNT • 98
CNT (count) function field • 98
code (CDE) • 67
code field type (CDE) • 84
column headings • 61
commands • 237
compare (CMP) • 107
compare (CMP) condition • 107
composite • 36
conceptual • 18
conceptual data model • 18, 19, 22, 23, 25, 26, 45,

48
condition • 63, 64, 102, 103, 105, 107, 183, 187, 188,

196
condition name • 63, 64
conditions • 102
considerations • 249
considerations when developing • 45
Count function field (CNT) • 98
CPT • 52
creating with design tools • 45

D

D8# • 68
D8# (date) field type • 68
data area • 57, 63
data model • 14, 18, 19, 22, 25, 26, 35, 47, 48, 177,

237
data modelling • 12, 13, 14
data modelling in • 12
data relationship connections • 26
data type • 60
database • 55
database field • 55
data-driven • 13
data-driven approach • 13
date • 64, 68, 71, 73, 75, 92

254 Defining a Data Model

date (D8#) • 68
date (DT#) • 71
date (DTE) • 75
date formats • 250
decimal places • 61
default condition • 63, 189
default functions • 51, 52
defined • 14, 22, 25, 29, 35, 51, 52, 53, 56, 97, 102,

103, 105, 107, 108, 115, 135, 141, 152, 155, 161,
200, 245

Defined as • 115
Defined as relation • 115, 117, 195
defining • 49, 151, 152, 155, 158, 210
defining as data area • 57
defining new field types • 201
defining parameters for • 210
degrees of • 246
delete • 195, 196
deleting • 117, 195, 196, 198
deleting a file • 195
Derived (DRV) function field • 98
described • 148
design elements • 47
determining file entry classification • 164
differentiation • 22
differentiation of entities • 22
display relation entries • 174
display/redirect relation entries • 173
displaying • 117, 172
displaying entries • 177
displaying existing • 58
documentation • 237, 241
documenting • 237
domain • 25, 86
DRV • 98
DRV (derived) function field • 98
DT# (ISO date) • 71
DT# (ISO date) field type • 71
DTE • 75
DTE (date) field type • 75

E

edit codes • 64, 66, 73
Edit Database Relations panel • 57, 114, 148, 161,

195, 197
Edit Field Conditions panel • 184
Edit Field Details panel • 179
Edit Field Type panel • 201

Edit File Entries panel • 172, 177
Edit Functions panel • 206
Edit Model Object List panel • 148, 150
Edit Redirected Fields panel • 174
entering • 161
entering relations • 161
entity • 14, 19, 22, 23, 29, 30, 35, 36
entity-relationship • 14
entity-relationship (E-R) • 25
Entity-Relationship diagram (ERD) • 25
entries • 161
entry • 49
equivalent terms in conceptual model • 48
equivalent terms in data model • 48
example • 14, 209, 214, 228
examples • 110, 241
existing files • 245
expanding • 143
expanding relations • 143
expansion • 143
Extended by • 124
Extended by relation • 124
external length • 60, 199

F

field • 53, 54, 55, 57, 60, 61, 62, 63, 64, 86, 97, 102,
141, 155, 156, 158, 161, 178, 183, 187, 188, 196,
198, 199, 200, 201, 237

field exit option • 64
Field Mapping Function Parameters panel • 211
field type • 50, 58, 67, 68, 71, 75, 78, 79, 80, 81, 82,

84, 86, 87, 88, 89, 91, 92, 94, 95, 96, 198
file • 49, 50, 143, 151, 152, 154, 161, 177, 195, 237,

245
file entry • 161, 164, 166, 167, 168, 172
file name • 152
file-to-field • 115
file-to-field relationship • 43, 115
file-to-file • 114
file-to-file relationship • 44, 114, 141
first normal form (1NF) • 38
First normal form (1NF) • 36, 38
foreign key • 29
full • 36
function • 97
function field • 56, 97, 98, 99, 100, 101
functional dependence • 35, 36

Index 255

G

generalization • 22
generalization of entities • 22

H

Has • 128
Has relation • 128

I

identifying • 19, 23, 25
identifying attributes for • 23
identifying data relationship types • 26
identifying entities • 19
identifying entity attributes for • 23
identifying relations • 25
ideographic character text (IGC) • 78
ideographic text character (IGC) • 78
IGC (ideographic text character) • 78
implementation name • 60
implementing • 30
in implementing relationships • 30
in project life cycle • 12
Includes • 130
Includes relation • 130
inconsistent implicit data model • 250
inquiries • 105
internal and external • 104
internal and external length • 199
internal length • 61, 199
involution • 26
ISO • 71, 89, 92
ISO date (DT#) • 71
ISO time (TM#) • 89
ISO timestamp • 92
ISO timestamp (TS#) • 92

K

key • 35, 36
key attribute • 35
key redirection • 168
keyboard shift • 62
Known by • 120
Known by relation • 120

L

last used file prefix (YFILPFX) • 154
length of • 199

levels • 164
LHS (Left hand side) text • 61
life cycle of application development • 12
list (LST) • 105
list (LST) condition • 105
LST (list) condition • 105

M

maintaining • 177
mandatory • 26, 52
mandatory fill • 62
mandatory relations • 52
many-to-many • 27
many-to-many relationship • 27
mapping functions • 200, 206, 209, 210, 211, 212,

213, 228
mapping functions for • 200
MAX • 99
MAX (maximum) function field • 99
Maximum (MAX) function field • 99
maximum number • 154
member name prefix (YOBJPFX) • 154
messages • 195
MIN • 100
MIN (minimum) function field • 100
Minimum (MIN) function field • 100
mnemonic code • 199
model object lists • 148, 150
model values • 154
modelling method • 25
Modulus 10/11 • 63

N

name • 53, 63, 64, 152, 155
NAR (narrative text) field type • 79
narrative text (NAR) • 79
narrative text (NAR) field type • 79, 197
NBR (number) field type • 80
non-key • 35
normalization • 35, 36
normalizing • 35
number (NBR) • 80
number (NBR) field type • 80

O

object • 151
object/referenced object • 151
object/referenced object file • 151

256 Defining a Data Model

one-to-many • 27
one-to-many relationship • 27
one-to-none • 124
one-to-none relationship • 124
one-to-one • 27
one-to-one relationship • 27
optional • 26, 52
Owned by • 117
Owned by relation • 117

P

PCT (percentage) field type • 81
percentage (PCT) field type • 81
percentage(PCT) • 81
PRC (price) • 82
price (PRC) • 82
primary entity • 23
primary key • 29, 30, 38
process-driven • 13
process-driven approach • 13
project life cycle • 12
properties • 50, 53, 102

Q

QTY (quantity) field type • 67
Qualified by • 122
Qualified by relation • 122, 168
quantity (QTY) • 84
quantity field type (QTY) • 67

R

range (RNG) • 107
range (RNG) condition • 107
redirecting a relation entry • 168
redirection • 168
REF • 51
reference (REF) • 50, 86, 156
reference (REF) field • 86, 156
reference (REF) file • 51, 152
Refers to • 127
Refers to relation • 127
relation • 25, 26, 52, 108, 109, 110, 114, 115, 117,

120, 122, 124, 127, 128, 130, 131, 135, 143, 161,
197, 198

relation statements • 110
relations • 195
relationship • 26, 27, 29, 30, 35, 52, 124, 164, 168,

173, 237

replacing • 166, 172
resynchronize • 143
Retrieve Physical Files into Model command

(YRTVPFMDL) • 246
RHS (Right hand side) text • 61
right to left support • 64
RNG (range) condition • 107
rules of • 36

S

Screen Field Mapping Function Parameters panel •
213

screen/report entry level • 213
Second normal form (2NF) • 36, 40
sequencing • 131
SGT (surrogate) • 87
sharing • 167
sharing entries • 135
sharing parameter • 135
specify default values for • 199
specifying • 114, 152
specifying additional parameters for • 212
specifying relations • 114
statements/extended • 131
status (STS) • 88
Status (STS) • 88
structure file (STR) • 52, 153
STS (status) • 88
SUM • 101
SUM (summation function) field • 101
Summation (SUM) function field • 101
surrogate (SGT) • 87
Surrogate (SGT) • 87
synchronizing a model • 143
Synon/2E • 103
Synon/2E approach • 14
Synon/2E vs OS/400 • 151

T

text (TXT) • 94
Third normal form (3NF) • 36, 42
three-character mnemonic for type • 199
time • 89, 91, 92
time (TM#) • 89
time (TME) • 91
timestamp (TS#) • 92
TM# (ISO time) • 89
TM# (time) field type • 89

Index 257

TME • 91
TME (time) field type • 91
TS# (ISO timestamp) field type • 92
TXT (text) field type • 94
type • 50, 152
types • 54, 103, 109, 164, 183

U

unique identifier (primary key) • 29
usage groups • 109
user-defined • 198
User-defined (USR) function field • 101
user-defined field types • 198, 199, 200, 202, 206,

208, 209, 210, 211, 213, 214, 228
using • 66, 102, 114, 189, 192
using Extended by relations • 251
using For text and Sharing with • 135
using VAL and LST • 187
using VAL and LST conditions • 187
using with REF field • 86
using YRTVPFMDL command • 246
USR • 101
USR (user-defined) function field • 101

V

valid operators for • 107
valid system name (VNM) • 62, 96, 182
validating entries for field • 188
validating field entries using conditions • 188
value (VAL) • 95, 103
value condition (VAL) • 103, 104
viewing • 150
virtual • 141
virtual fields • 141, 192, 193
virtualizing • 193
VNM (valid system name) • 62, 182

W

working with • 161

Y

YDOCMDLAPP • 237
YDOCMDLF • 237
YDOCMDLFLD • 237
YDOCMDLREL • 237
YFILPFX • 154
YFILPFX (Last Used File Prefix) model value • 154
YOBJPFX • 154

YOBJPFX (Object Prefix) model value • 154
YRTVPFMDL • 246
YXXXLENR1C • 228

	CA 2E Defining a Data Model
	Contents
	1: Introducing Data Modeling
	Understanding Data Modeling
	What is a Data Model?

	The Life Cycle of Application Development
	Advantages of a Data-Driven Approach
	The CA 2E Approach to Data Modeling
	Example of a CA 2E Data Model

	2: Developing a Conceptual Model
	Before You Begin
	Overview
	Goals of Your Conceptual Model
	Identifying Entities and Attributes
	Step 1: Identifying Primary Entities
	Generalization and Differentiation of Entities
	Step 2: Identifying Entity Attributes

	Domains
	Identifying Relations
	Data Relationship Connections
	Step 1: Identifying Relations Between Entities
	Examples of Relationships

	Step 2: Selecting Primary Key (Unique Identifier) for an Entity
	Implementing Entity To Entity Relationships
	One-to-One Relationship
	One-to-Many Relationship
	Many-to-Many Relationship

	Normalizing Your Data Model
	Functional Dependence
	Full Functional Dependence
	Step 1: Creating First Normal Form (1NF)
	Step 2: Creating Second Normal Form (2NF)
	Step 3: Creating Third Normal Form (3NF)
	CA 2E Basic Relations
	File-to-field Relationships
	File-to-file Relationships
	Considerations
	Performance
	Existing Database
	Using Design Tools

	3: Understanding Your Data Model
	CA 2E Data Model
	CA 2E Data Model Objects
	From Your Conceptual Model to a CA 2E Data Model

	Edit Database Relations Panel
	Using Files
	CA 2E Files
	Properties of CA 2E Files
	File Name
	File Type
	Reference (REF) Files
	Capture (CPT) Files

	Default Functions for REF and CPT Files
	Default Functions for REF Files
	Default Functions for CPT Files
	STR Files

	CA 2E File versus i OS File

	Using Fields
	CA 2E Fields
	Properties of CA 2E Fields
	Field Name
	Field Type
	Field Attribute Values

	Overriding CA 2E Default Field Attributes
	Field Usages
	Database Fields
	Database Field Usages
	Function Fields

	Defining a Field as a Data Area
	Shipped CA 2E Field Types
	Displaying Existing Field Types
	Field Type Default Characteristics
	Implementation name
	System data type
	External length
	Internal length
	Decimal places
	LHS text
	RHS text
	Column headings
	Keyboard shift
	Allow lowercase
	Mandatory fill
	Valid system name
	Modulus 10/11 check
	Default condition
	Check condition
	Translate values
	Field exit option
	Edit codes

	Using Field Edit Codes
	Description and Usage of Field Types
	Code (CDE)
	Eight-digit Date
	Internal Format
	External Format
	Validation

	ISO Date
	Internal Format
	External Format
	Validation
	Date (DTE)
	Internal Format
	External Format
	Validation

	Ideographic Character Text
	Narrative Text
	Number (NBR)
	Percentage (PCT)
	Price (PRC)
	Quantity (QTY)
	Reference Field (REF)

	Defining Function Fields as REF Fields
	Surrogate (SGT)
	Status (STS)
	ISO Time (TM#)
	Time (TME)
	ISO Timestamp (TS#)
	Text (TXT)
	Value (VAL)
	Valid System name

	Using Function Fields
	Function Field Usages
	Count (CNT)
	Derived (DRV)
	Maximum (MAX)
	Minimum (MIN)
	Summation (SUM)
	User-Defined (USR)

	Using Conditions
	Properties of Conditions
	Condition Types
	Status Field Conditions
	Value (VAL) Condition
	Internal and External Values

	List (LST) Condition
	Condition List Inquiries
	Examples of LST Conditions

	Non-Status Field Conditions
	Compare (CMP) Condition
	Range (RNG) Condition

	Using Relations
	CA 2E Relations
	Relation Types
	Relation Usage Groups
	CA 2E Relations
	Example of Relations Used in a Data Model

	Specifying Relations
	File-to-file Relationships
	File-to-field Relationships
	Describing and Using CA 2E Relations
	Defined as Relation
	Examples of Using Defined as Relation
	Displaying Defined as Relations
	Deleting Defined as Relations

	Owned by Relation
	Examples of Using Owned by Relations

	Known by Relation
	Examples of Using Known by Relation
	Qualified by Relation
	Examples of Using Qualified by Relations
	Extended by Relation
	Example of Using Extended by Relations
	Refers to Relation
	Example of Using Refers to Relations
	Has Relation
	Example of Using Has Relations
	Includes Relation
	Examples of Using Includes Relations
	Relation Sequencing
	Using For Text and Sharing with Relations
	For Text
	Examples of Using For Text
	Sharing
	Example of Sharing
	Use of For Text for a Parts Assembly
	Adding Virtual Fields to File-to-file Relations
	Circularity

	4: Creating/Defining Your Data Model
	Before You Begin
	Using CA 2E Model Management Facilities
	Edit Database Relations Panel
	Edit Model Object List Panel

	Defining Your Data Model
	Step 1: Defining Files
	Object/Referenced Object File
	File Name
	File Type
	Capture Files
	Reference Files
	Structure Files
	Adding Files
	Step 2: Defining Fields
	Field Name
	Field Types
	Reference Field
	Field Types for Referenced Objects
	Specifying Field Types
	Step 3: Entering Relations
	Relation Sequencing
	CA 2E Relation Types Charts
	Levels of Entry
	Entry Types
	Key Field Entries
	Attribute Field Entries
	Virtual Field Entries
	Overriding Entries
	Replacing Entries
	Sharing Entries
	Redirection
	Redirecting Entries
	Redirection of Qualifier Fields
	Example of Redirecting Qualifier Fields
	Example of Redirecting a Reference to a Qualified File
	Procedures for Working with Entries
	Display File Entries
	The Edit File Entries Panel
	Replace File Entries
	Display Referenced Field Details Panel
	Display/Redirect Relation Entries
	Display Relation Entries Panel
	Edit Redirected Fields Panel
	Modifying For Text and Sharing Entries

	5: Maintaining Your Data Model
	Displaying File Entries
	Edit File Entries Panel
	Display File Entries

	Adding/Modifying Field Information
	Using the Edit Field Details Panel
	Change Field Name and/or Type
	Change Field Length
	Add Narrative Text
	Change Field Text and Headings
	Change Valid System Name (VNM)

	Adding/Modifying Conditions
	Condition Types
	Using the Edit Field Conditions Panel
	Add New Conditions
	To Modify Existing Conditions:
	Using VAL and LST Conditions
	Validating Field Entries Using Check Condition
	Changing Default Conditions
	Changing Translate Condition Values
	Converting Conditions to List of Values

	Adding/Modifying Virtual Fields
	Virtual Fields and Access Paths
	Example of Using Virtual Fields
	Virtualizing Virtual Fields

	Related Procedures for Maintaining Your Model
	Files
	Add Narrative Text
	Change a File Name
	Delete a File
	Fields
	Delete a Field
	Conditions
	Delete a Condition
	Relations
	Add Narrative Text
	Change a Relation
	Override Default Relations Sequence
	Delete a Relation

	Creating User-Defined Field Types
	Name and Text
	Basic Attributes
	Internal and External Length
	Mapping Functions
	Defining New Field Types
	Edit Field Type Panel
	Specifying Basic Attribute Values
	Specifying Mapping Functions
	Specifying Additional Attribute Values
	Example: Defining a Century date Field Type (DTX)
	Defining Parameters for the Mapping Functions
	Defining the Mapping Functions
	Supplying Parameters to Mapping Functions
	Field Mapping Function Parameters Panel
	Specifying Additional Parameters for Mapping Functions
	Mapping Function Parameters: Panel/Report Entry Level
	Screen Field Mapping Parameters Panel
	Example: Defining a Currency Field Type (CUR)
	Example: Defining a Real Percentage Field (PCX)
	Ext/Int mapping function parameters:
	Int/Ext mapping function parameters:

	6: Documenting Your Data Model
	Related Information
	Documenting Files, Fields, Relations, and Application Areas
	CA 2E Documentation Commands
	Using Documentation Commands via Display Services Menu
	Using Documentation Commands from a Command Line

	Viewing the Documentation
	Documentation Commands Output Listings

	7: Assimilation
	Understanding Assimilation
	Degrees of Assimilation

	Using the YRTVPFMDL Command
	Parameters/Functions

	Adding Extra Information to Assimilated Files
	Editing i OS Physical File Format Entries
	Considerations
	Changing Field Name and Attribute Type
	Prefix
	Duplicate Field Names

	Inconsistent Implicit Data Model
	Examples of Inconsistency

	Date Formats
	Using Extended by Relations in Assimilated Files
	Example of Using Extended by Relations

	Assimilation Procedure

	Index

