CA 2E

Administration Guide
Release 8.6.00

This documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as
the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2011 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following:

Online and telephone contact information for technical assistance and customer
services

Information about user communities and forums
Product and documentation downloads
CA Support policies and guidelines

Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

If you would like to provide feedback about CA Technologies product documentation,
complete our short customer survey, which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents

Chapter 1: Introduction 13
CA 2E ProdUCE LIDFariEs ..coueeeieiiiie ettt ettt sttt sttt st st e st e st e saae e sabe e sataesabeesabeesabaesbeesabeesnseesabaesnsaenane 13
MIOTE INFOIMATION Leueviiiiiiiiiecte sttt e s e e st e e sa b e e sae e e s b be e bt e e sae e e bee e sbeebeeesbeeenseeensaeenbeeessennsens 14
CA 2E Development ENVIFONMENTccociiiiiiiieeite ettt st sb e s bt e st esbee st esbee st e e sbeesabeesbeesabeesneesabeesneenane 15
(DAY 2] o o] g =T oLl] o = T =Y PR 15
B A oo 1= I] > P SSRSRN 15
[CTT QY= =TT o T T o = P 15
1Y@ LI o] | 1=T ot 4o [PPSR 16
Prototyping an APPIICATIONcoouuiiiiieiiiee ettt ettt b ettt e b e e bt e e he e e bt e nbbe s be e e nrnesnees 16
Creating ProtOtyPe PANEISoiiiiiiieiir e ceeeestee ettt e e e sttt e e et e e e s aae e e e sate e e e sasaeeesasaeaeestaeesanseeeesnaeeeensreeennnnns 17
N Ta a1l oY= e fe T (oY AV o <IN - [0 T= LS 18
CA2E--Using CA 2E Device Design ANIMATIONuiiiiiiiiiiiiiiiies e ceriireees e sttt e e e s e s seara e e e e e s ssaasraeeeesssesnnsaneeesens 18
Converting an CA 2E Device Design t0 TOOIKITccccviiiiiiiee ettt et e e tre e e s aae e e e sabeeeeeanes 19
Converting MUlti-SCre@N FUNCLIONS.c.ocuiiiiiiiiieetee ettt ettt sttt e bt e sab e s bt e st e e sbeesabeesneenane 20
Replacing Toolkit Navigation @nd Dataccccceccueiieiiiieeieiiee e siee e esteeeee et e e eetee e e steeeessaeeeesnaeeeesssaeesasstesesnssaaeesnseeanans 20
Replace Navigation and Replace ACHION Barcccueiiiciieieiiie e ceiee e ctee et ee e e s re e e e ate e e s eaee e e e sataeeeensraeesnnaeas 20
Clear Narrative and Clear TSt Data...cuiuciiicieriiieeieeerieesiee st esre e steeste e steeseteesbeesabeesbeessbeesseesatessseesssessnseesnne 20
Transferring CoNTrol 10 TOOIKIT........ccuiii ittt e et e e et e e e eete e e e s abeeesebbeeeessaaeeastaeeeenssseessseaesnsreseeansns 21
Working with @ TOOIKit PAN@I DESIZNeeiiuiiiiiiiiiieie ettt ettt ettt st e st e e sabeesaee e sabeesneeesaneennneens 21
Lo T = 4 AT o= o1 SR 22
DefiNiNg COMMANT KBYS ..ouiiiiiiiiiieecceee ettt et e e e et e e e e tae e e e s ttaeeeetbeeeessaeeasasaeeeasseeesssaaaessteaeaanstasesnssaaeesnsenenans 22
BUIIAING @ WINAOW PrOTOTYPEeviieeeiiiee ettt ettt ettt e e ettt e e ettt e e e ettt e e e etbeeeeeasaeaesabasaeesssseeessaaaesstsseaansbeseeassasaeanteeaaans 23
BUIlING @N ACTION Bar PrOtOtYPE .. .eeieiiieiiieiiieeste ettt ettt ettt et et sab e e bt e s bte e bt e e sbee e bt e e sbtesbeeenneesnnees 24
(D 1o Yo = o] Lo T TP P TP PPOPPTOPROP 26
[T o T= Y= Ya Y o] (S D | - PN 28
DiSPlaying ProtOtYPE PANEIS.....cccueiiiiiiiieceies ettt e ettt e e et e e e et e e e eatae e e sataeeeesseeesnsaaeesntaeeeanstaseensaeeesnsaeaaans 29
RetUINING T0 CA 2 ... a e e e ae s 30
Chapter 2: Creating and Managing Your Model 31
Creating @ CA 2E DESIZN IMOAENooo ittt e et e e et e e e et e e e e s tbe e e eeasaeeeeaseeeeasbaeeeensbaeeenraeas 31
21 (o] g Lo T N @l g F- | A== T 1Y, o o [PP 32
Y L= 1Y, FoTo LT MY 1N = PSR 32
(1Y T o [I oY= oV V=1 o TP 33
GENEration LIDrary NAME.......oci ittt eee e st e e e et e e e s aae e e e s tteeeseasaeeesssaaeeestaeesansaesessseesansseeennnses 33
(00 =] o [Vol ol 1SR 34
(DL F = g I =T g Lo T o T PP TP ST PP PPPTOPPO 35

Contents 5

SQL/DDS ..ttt ettt etttk b bt b e h e b h e b h e e b e E e e b e SR e R R e ke e btk et ea e b e e ene e b e nee st eb e st eneeren 35

IMPIEMENTING SQLtiiiiiiiitieetee ettt ettt et e e s h e e ettt e s ab e e bt e e sb e e e bt e e sbeeesbee e beeebeeessbeeseeeneeebeeenseenanees 36
Implementing SQL and DDS in the SAmMe MOloouiiiiiiiiieiee e 36
N T g LT = o =Y DL 37
F Y oY o] [Tor: 1A Te] s W@ o] [=Tot £ SR PRUUUU SRS 37
ValUES LISt OBJEEES ...eeueeiiiiiiiiieiieee ettt ettt e s ettt e st e st e s ab e e bt e e s s b e e eab e e sab e e e nbe e sabeeeneeenaneenneeens 37
IVIESSAEE DS ...ttt sttt sttt 88t s stk 8 888t 8ttt s b8t b st st et e b s nntnnnnnrnrnnn 38
IMESSAEE FIlE NAMIE . ..eiiiicieee et e et e et e e et e e e s aate e e sabeeeeasteee s sseeeeansaeeeansseeeeanseeeesnseeeeansseeesnnseens 38
Default Target High LeVEl LANGUAEE.uvii ettt e et e e et e e st ae e e et e e e s asa e e e sataeeeensraeesnnnneas 38
High Level Language Naming CONVENTIONciiciuiiiiiiiieeecieeeeeite e e ettee e e sttt e e eetreeestaeeeeareeesesseeeesasaeaeanssesesnnseeas 39
Advanced National LAaNGUAZE SUPPOIT ...ccc.uiiiuriiiiieiiieeiteeriteeeite et et ettt e st et e e sseeesate e sabeesseeesareesaeeesmneenneeens 39
Signing on With the Correct USer Profile.........iiuiie ittt e et eaee e e saee e e et e e e eaaae e e snaeeeens 40
Changing YOUT LIDIary LiST......eeiiuiieieiie et e e tee et e e et e e st e e e s ate e e e sateeeeeastaeessnaaeesstaeesanssesesnsaeesesssenennnsns 40
(@17 oT: 1 [T a= T 1Y, o o 1Y S SRSRN 41
Creating the Model in BatCh MOGE........cc.uuiii ittt e e e e tte e e e tte e e e e ata e e eesaeeeesbeeeensbeeesennes 42
Prompting YCRTIMIDLLIBcceiiiiiiiiiitie ettt s e s bt e s b e e e s b e e e s e nre e e snane s 43
Y Y a T Todl o = 7 N0 A o 1V o T =1 LSRN 44
MIOTE INFOIMATION Leveiiiiieiiie et ettt e e st e e bt e e sb b e e bt e e sbteebaeebbe e beeebbeebeesbeesbaesssesnseas 44
Executing the Commands in BatCh MOTEooieeiiiiiieeee et e e e eate e e s ba e e e etbee e eaaaeas 44
Re0organizing an CA 2E IMOAE!oocuiiiiieiee ettt ettt e et e e et e e e e s tte e e e abaeeeeabaeeeensbaeeeesbaeeeaataeaeanssesesnsaeas 45
Checking an CA 2E IMOTEL......eiiiiiiiieeiee ettt ettt ettt et sttt st e st e st e s bt e sbeesabeesabeesabeesbeenane 45
Clearing @n CA 2E IMOUE]uii ettt e st e e st e e e st e e e s steeesnaeeeesteeessnsseeessaeesannseeennnsns 46
Prompting the YCLRMDL COMMANGcuviiiiiiiiiieeeiiie e cieeeeteeeeetee e e staeeeestte e e seasaeeesasaeeeanssasssnseseesnsseeessssesesnnseens 46
SaVINE @ CA 2E MOAEI LIDIaryeeee ettt e et e e et e e e et e e e e eata e e e stteeeesabeeeeessaeaeeataeaanns 46
(00T 01 o (=T = 14 [0 o -3 PSPPSRI 47
USING the SAVLIB COMMEANT....uttiiiiiiiiiiiiiiiiieerite et ettt ettt e et e sbe e e bt e e sbbeesae e e sbee e bt e e sbeeebeeesbbesneeenneesseeenneennnees 47
Deleting an CA 2E MOE| LiDrary........ui oo ueeee ettt e et e ste e e e e e e e e e st ae e s snnte e e snsaeeesnseeeeensseeesnnnens 47
(6e] Yo [T 14 o] o 13T PPPRUPRNE 48
Deleting @ IMOEI LIDIaryouieeeeiee ettt ettt e e et e e et e e e e s tbe e e eeabaeeeeataeeeesbeeaeensaeeesataeaeansbeeeenseeas 48
Deleting @ GeNeration LIDIaryoo oottt ettt et be e e saeeenees 48
Deleting Journal Receivers and JOUMNAIS........uiiiiiiii ittt e e e e et e e s enee e e e snte e e eenreeesnnneas 48
Deleting the GEeNEration LIDIaryoiieee ettt e e e e e ee e e st e e e e ste e e seneaeeesnsaeeeennreeesnnneas 51
(DL o] Y= T B @ L o] | 1Yot o [P 51
Deleting Journal Receivers and Journals from the SQL Collection..........ccccvveeeiiiiiiciiiececieee e 51
Deleting the SQL COlECTION.iiiiiiieete ettt ettt e st bt e e bt e e s bt e s ne e e snbeebeeesnneeanees 52
RENAMING @N CA 2E IMIOUEI ... ittt e e et e s e e et e e s aeae e e sasaeesanseeeeenseaeesnsaeesansreeesnsnens 53
Chapter 3: Using Your Model 55
1YL= 01O ST PRSP 55
MIOTE INFOIMATION Leouiiiiiieiieeete et sa e e s at e e bt e e s b be e bt e e sbteesbee e bteesbeeebeeenbeesstesnbeesssesnsens 55
1Y T Y/ =1 o 1O DT U PP PP PPPTRRON 56

6 Administration Guide

DI Fe{a WAV, FoTe [I @ 4 To] o U SUPTS 57

USEI-TYPE SUDIMENUS ...ttt ettt e sh ettt e s bt e bt e e s bt e e bt e e s bt e e bt e e bt e e bt e e sbee e bt e ebeeebeeeneennnees 58
ACCESSING YOUN CA 2E IMOTE ...ttt ettt e sa e ae e e s a b e s ae e e s et e e s st e e sabeesateesabeennneesnreennneens 63
Access Your Model Using the YSTRY2 COMMANG...ccccuuiiiiiiiieiiiiieecciiee e eeeee e stteeeestteeeseaere e e satreesessaeesnnsaesesnnanenns 64
Accessing Your Model Using the YEDTMDL COMMANG.......ooiiiiiiieeeiiieeeiiieeeciieeeesiteeeeeteeeesvreeeenareeeenasaeaessseaens 65
Setting and Editing the Library List for YOUr MOdelcoouiiiiiiiiiiieeeeeee et 66
Setting the Library List with the Change Library List Commandcocoiiiiiiieieiiie e 66
o [T T=ad YT N o =YV I S 66
YLIBLST MOGEI VAlUE c...eiiiieeiieeieee ettt ettt ettt et e s e e sate e sa b e e sate e sateesabeesabeesseeesabeenaaeesnteennneens 67
Edit Database REIAtIONS PANEL......cccuiiiiiiiiiiiiiisiieiieeste sttt ettt sa e e saa e e s bt e e sae e e s bteebeeesbeeeaaeensaesnbeeeseesnsens 67
(1Y TeT g =l (2] o140 T 14 e o NP PRSPPI 68
o LN Lo PP PP P TP PPPPPTOPRP 68
N A== YT o T =T 1 LTSS 68
Subsidiary Facilities of Edit Database Relations PAnel..........cocuuiieeiiieiicies et sree et e 69
GrOUPING FACHTIES. ..eeieiiii ettt e ettt e et e e e e et e e e e etbe e e eeabeeeesabaeaeesaaeesssaaeaastasesanssasesssaeeanstesananses 69
Branching t0 Other FACilitiescc.uii it ettt e sbre b e snaeenees 69
Exiting Edit Database Relations PAn€l.........cocuiiiieiiiiiiiieee st e e et e et e e e are e e sneee s 70
o JL 1Y, FoTo L=l @] o T =Tl S ol - 1= ISR 70
Edit DEVICE DESIGN PANEI ..c.eeiiiiiiiieeetee ettt e e ettt e e ettt e e e e be e e e ebbe e e e asaaeesabasaeanseseeessasaesstaseeansbaseeassaaessntseaaans 71
Edit DeVICe DESIGN FACHTIES ..ec.uvieeeeiiie et ettt ee ittt e et e e et e e e st e e e e s tbe e e e abaeeeeabaeeeessaeeeassaeeesataeaeansraeesnsaeas 71
Exiting the Edit Device DeSIZN PaN@........coiiiiiiiiieieee ettt et et be e e 72
[=e Ty A Voru o oW DT d o T o T - T 1= USRS 72
o [y VoruTo Y oW BT ed T g I =T 1 L 4= 73
Exiting the Edit ACtion DIagram Pan@l...........cueeieiiiiiiiie ettt e e et e e et e e e e s ata e e eeabee e enneeas 73
Action Diagram Line Commands and FUNCLION KEYS.......coiiiiiiiiiiiiiieiieeste ettt 74
USING APPHCATION AFAS ...eeneiieieiiieitecet ettt ettt e s bt e st e s at e e b et e s bt e e bt e e s abeebe e e abbe e bt e e sbee e st e eaneesbeeeneesneas 77
MIOTE INFOIMATION Lottt ettt e st e e bt e e s bt e e bt e e s bt e e bt e e bte e beeesbbe e beeestesbeessaesnneas 77
SYSEEM APPIICAtION AT ..eiieeiiie ittt ee et e e e e e e st e e e e tte e e esabaeeesasaeeeessaeesansaaeesasaeeeassesesnssaeeesnranaanns 77
APPIICATION ArEA COUBS ...uiiieeiieiectiee ettt ettt e ettt e e ettt e e eett e e e e eteeeeestbeeeeaasaeaessseaeastesesassseaesasseeeenssesesassaeaearananns 77
Application Areas as SeIECtION ValUES.........ooiiiiiiiiieieeieee ettt ettt e s e e st e saee e 78
Application Areas as SElECtiON ParameEters.cuiiiecuiiieiciee e ciee e ertee e eree e s e e e sete e e seere e e sntreeeessseeesnnsaeeesnsenanans 78
Displaying/Editing APPlICATION ATEESccvveivieireeireieeieeiteesteeeteeereeee et e eteeete e beebeebestaesaeesreesseeseensesssesssenseeseensens 79
(DL eyl Y= T ol Vo] o] [Tor= N o T o I T PSS 79
Creating/Editing an APPlICAtiON Ala.....cceiiiueiiieeeirieeeieeeteeeetee et e eeteeeeteeeetee e teeeeteesbeeeeseeebeeenseesteseseeebesenseesnns 79
DiISPIAYING FIlES ..ttt ettt e b e e a et e s bt e e bt e e bt e e bt e e s bt e e bt e e bee e bt e e ahee e bt e e nbeebeeennaeeneas 80
Creating an APPIICATION AIBauviiieiii e et ee e e ee e e et e e e s te e e e sateeeessaeeessseeeestaeesanseeeesnaeeeannreeenannes 80
(o [T=de Yo WY o o] [Tor- o] o 1. Y =T PSS 81
(U] Y = W TR = [=Yo a To T W @]] 4 o[- U SPN 81
(1Y [T g e e T4 a4 =1 o T APPSR 83
LOCKING OBJECES ..ttt ettt h ettt e b e e s ae e e sbt e e bt e e bt e e bt e e ss b e e bee e bteeabeeeabeeeneeeanbesbeeeneeennees 84
(0] o 1ot fl e Yol <SSR 85
(D11 o] 1 VA g Y= @] o] =Tt ol o Yol PSS 85

Contents 7

AddiNg/REMOVING OBJECE LOCKS ..veecvviiivrieeieeeitreeeeeeiteeeeeectveeeteeestreeeseeestveeesseesbeeesseesaseessseesaseeesseesaseesseeesareessreess 86

1T o Yol <3PS 86
SEULING FIlE LOCKS .. vteeneeeetteeette ettt ettt et s e e s ae e e s at e e s ae e e sabeesae e e saseesaeeesateesseeesabeesneeesnneenneeens 86
KREAD FlE LOCKS 1.veeutieeiteiriieesiee st et site sttt et site sttt e sat e e sa e e sateesabe e bt e e sbteenbeeesbteebaeesbeebeeebteebeessbeenbaesnssesnseas 87
[Ta g o] el il =5 O I ST =3 e Yo < UER S PESURUUP SR 87
EXPHCIE ¥EXCL FIlE LOCKS ..ttt ettt et sttt sb e bttt et satesateshe e sbeenbe et e eabesaeesbeenbeenbeentens 88
R € Ol T L= o T RS STRTR 88
[T 1= o =T Yo =T o ol [P 88
(D T1Y o] =3 VA LY ST TR o Yol < 89
REMOVING FIlE LOCKS «..vtiiiiiee ettt e e e e e et e e e e ba e e e e s abe e e e abaaeeeabaeeeensbaeesensaeeeaataeaeanssaeesnsaeas 89
Considerations fOr USING File LOCKS.......coouiiiiiiiieeie ettt sttt 89
(U Lo T N T4 & LY = PP PPPTRN 94
TYPES OF NAITALIVE TEXE .euutiieeeiiiiiiiiieeeiieeeeette e e s te e e et e e e setreeesaeeeeeataeeeaasseeesssseeeassseeeeanssesessssesasseeesassesesnnseeas 94
Creating/Editing NArTatiVe TEXEcviiciiiecieecieeceteeetee et e st e e eteeebeesbeesateesbaesateeebeesabaeasaesasesenseesasassnseesnsesenseesnns 94
ACCESSING NATAtiVe TOXE .iiiiiiiiiiiiiiii e aeeaeaaaens 94
USEI INTEITACE IMANAZET ..ciniiiiitieiiieeete ettt ettt b e a et e st e e bt e s bt e e bt e e sbe e e bt e e bbe e bt e e sbbe e st e eanneebeeeanbesaneas 95
ENteriNg/EdITING The TEXE..ecouiiciiiii ettt ste et et e et eeteeebe e be e beeabesaaesaaesaeesbeebeenbeensesasessseseenseensens 95
Displaying Model ObjJect Cross REFEIENCES.......cuuiii ettt e e e et e e e eaae e e e sataeeeesteeeensaaeesnrreeaans 97
MIOTE INFOIMATION Leiuiiiiiiiiiiieete ettt s e e st e e e s et e e sae e e s b te e bt e e sbee e aeeesaeesbeeeseeensaeesaeenbaeesseensens 97
Accessing the Cross ReferenCes ULIILYcc.ueiiiiiiiieiiie ettt eetre e e st e e e esab e e e eeaaae e e s ataeaens 97
USING the Display SEIVICES IMBINUcouiiiiiiiiiieee ettt ettt ettt et be e e s bt e e bt e e sbbe s bt e e sbbe e bt e e sbbesbeeennesanees 98
Accessing/Exiting the Display SEIVICES MENUcoueeiiieiiiieiceeereeete ettt ste e teeeteereereeteeebe e beebeeaesaaesraeeas 99
Invoking Documentation Commands from the Documentation MenUcccceveviieeeeciieeccieee e, 99
Displaying CA 2E System and MOl VAlUEScc.uuiiieuiiee ettt ee e e eette e e e e te e e e e ate e e earaeeesateeeeennes 100
Viewing/Editing Panel Default AtIrIDULESccecviriirerireeietete ettt sttt e e e et b saeeneeneen 101
USING ONEINE HEIP ..ttt ettt b e et e b e e e bt e e bee e bt e e sate e bt e e sbeeebeeesateesneeesabeennneens 101
(DI Yoo A (ol 1Y [T Y Y == LU PPPPN 101
Y] =Tt d oY g T D1 o] = 1Y AR 101
HEID Xt et ettt ettt e e ettt e e e ettt e e e etae e e eeataeeeeabeeeeeasbeeeaasaaaeaabaeeeansbaeesasseaeeantaeeeasteeeesnaaeeaareeeeantes 102
Lo Te [UTor a1V =T o RO OO TP PO PP TP P PO PSUPUTOPRRTPN 103
Chapter 4: Using Your Development Environment 105
Managing the MOdel LIDrary LiStSc.c.eiiieiiiiiiieeie ettt ettt et et e et sate s aee e sateesateesaneesnneens 105
MIOTE INFOIMATION Lottt et b et e b e e sbe e e bb e e bt e e sb b e e bt e e ssbeesbteessbeensseesasaennneens 105
Setting Up the MOodel LIDrary LiSt........cueeeceiii et stee et e e e etre e e stae e e e sata e e sesaeeesnbeaeesataeesenssesesnnsnens 106
Setting Up the Library List for RPG, COBOL, OF RPG/COBOL......cccueeeuiieiiieectieeiireecieeeseeeeteeesiveeeteeesrveeeteeesaneennas 107
Setting Up the Library List for Other National LANgUAZES.c.ueeeeciiieieiiee et ettt ee e eetee e e svee e e v e e e 107
Using the Change Library List (YCHGLIBL) COMMANG.......cciriiriieriiiiinienieniesite sttt st et eseeesieebesneesanesaeesnes 107
Invoking YCHGLIBL from the Main IMENU.........uiiiieiiieciieeeceeeeeiee st e e e see e s s aee e e sneeesesntaeeesnnaeessnnnnassnnseeesnnnns 108
Invoking YCHGLIBL from @ Command LiNE........ccoccuiiiiiiiiieeciiee ettt eetee et e e tte e e stte e e e sata e e esanaee s snnaaeesnnsaeesnnnns 109
CA 2E Commands and the Model LIBrary LiSt.........cueeioiiei ittt e e e eave e e e aa e e e eavaeaen 109

8 Administration Guide

EdIting the LIDrary LiSt........ueeeei ittt e ettt e e e e ettt e e e e e e e ettt e e e e e e e eeaaataeeeeassenasstaeseaaseaannstanneaaeannnns 110

Invoking the YEDTLIBLST COMMANG....cciiutiiiiiiiieiiieeite ettt ettt sttt e bt sbe e e sateesneeesaeeesaeeesnseesnneesnneennneens 111
Editing LIDrary LISt ENTIIEScoouieiieieeieeee ettt ettt ettt ettt ettt ettt e bt e e sat e e bt e e s bt e e bt e e saseesneeesnneennneens 112
Editing the Current Library for the LiSt........coeeee ittt e e et e e e eete e e s naae e esnraeeennns 112
Editing the List for the Model JOb DeSCIiPLIONiiiiiiee ettt e e et e e e eare e e eareeeesareeeeenees 113
Retrieving a Library List from ANOthEr SOUICEuiiuiiiiiiiii et 113
(0o Y Ao [Tg T T Yool Ty RS 113
THhrough MOl OWNEISNIP ..ccuvieiieiiee ettt e st e et e e e st e e e s ate e e seasaeeesnseeeeassteeesassteeessaeesensseeesnnnes 114
Changing MOl OWNEISHIP ...cci et e et e e e et e e e st e e e e stee e s nsaeeesatseaeasseeesnnseeeesnsaeaaans 114
TREOUGN AULNOTTTY ... et e et e e e e tte e e e ta e e e sbaeeeeabeeeeeasaeeesabseaaansbaeesassaeeesssaaaesteeeaanses 115
TYPES OF USBI .ttt ettt et s et e et esa bt e st e e sab e e s bt e s a bt e s bt e sab e e eabeesabeesabeesabeesabeesabeesneenane 115
(D F e g =T VLYY o Y/ o T TSP PPPPRN 116
[o4 - Ta o LT G0 LY =T G IV o 1= TS TO OO PP TRPRPRPRPRPPPON 117
B LT ol U Y=Y G Vo PSPPSRt 117
USEr AULNOIITY AQVANTAEE. . .iiiiiiieieiie ettt e ettt e ettt e e e st e e e etbe e e e eabeeeesabeeeeetbseessssaaasstaseeasseeesssaaeaasteeenanses 118
Granting Authority
Granting Authority 10 Update ObJECESccuiii ittt e e e e eee e e s e e e sate e e esnaeaeesnrnneeans 119
Granting AULhOrity 10 GENEIATE SOUICEciiiiiieecciee et e ctee e et e e e etee e e st e e e e ate e e s asaeeesatseaessseeesnsssaeesnsaeeaans 120
Granting Authority 10 COMPIE SOUICE........uiiiiiiee ettt e e e et e e e e stte e e e baee e sbaeaeesbeeeeessaeeesasaeaans 120
Editing AULhOrity tO ACCESS DAt AFBaS.....ccciiuiieeeiiiiieeiiieeeciteeeeitte e e eeteeeesteeeeetbeeesatseaeesataeeeasseeesssaaesasreeesanses 121
REVOKING AUTNOTITYeiieieeee ettt ettt et e bt e s bt e e bt e e sbb e e s bt e e s bb e e bt e e ssbeenneeesmbeennneens 124
Compiling Objects in @ Multi-Programmer ENVIFONMENT.........ueiiiiiiieiiiieeecteeeesieeeeeeree e svreeesseeee e eseeesessaeeeens 125
Setting Up the USEr ENVIFONMENToiiiiiiiiecciieeecieeeetee e etee e sttt e e e eeae s e saaeeeasateeeeesssaeesssaseeessaeeaanssssesssaeessssenesnnnns 126
1Y oY g oY e T4 2o - o] o JP PSRN 126
LT 01 1Y, o o =Y TP UPURRPSRNY 126
ShIPPEA SYSTEM FIlES (F) ettt et ettt e st e bt et e e ate s e tesaeesbeesbeeteeatesatesaeenbeenseentens 127
DEfaUIt MOAEI PrOfil@..c..eiieieieieeiee ettt et ettt b et e sa b e e sbt e e s bt e e bt e e sbteesaseesateesaneens 127
SYStEM AN MOAEI VAIUESoeieeeeeeeee et e e et e e e st e e e et e e e eetae e e ssbeaeessteeeeensraeesnsaeens 128
NAMING CONTIOL ...ttt et e e e ettt e e et e e e e stbeeeeetbeeeeeaseeaeabeseeassseesasssaeeasteseeanstesesssaeeeasreeenanses 128
Automatic Naming Of GENerated CO......uiimiiiiiiiiiiii ettt ettt b e e sbee e b e snneenees 129
Automatic Naming AIZOTITNM ... e e e e s e e et e e e e eae e e s naeeeesnteeeeennreeesnnnens 131
Presetting Automatic Naming Identifiers..........eeooieiieceee et e e e e e enees 133
Reserved FOrmMat [dENTIFIErS. ... ittt sae e et e e sba e e sateesaseesateesaneens 135
Yo 10 ol o L=l =T o 1= PP 135
High Level Language Naming RESTICTIONSccc.eiiiiiiiiiiiiiiieiie ettt e 136
DEVICE FIBIA INGMESeiieieeieeette ettt ettt ettt ettt e bt e e be e e bt e e bt e e s bt e e bt e e sabe e bt e essbeesaeeessteensseesasaesnneens 137
Adopting Naming Conventions for File and FUNCLION DESIZNccccviieiciieiicieee et 138
1= Lo LR PP UUSTOPPN 139
[0 a Yot T o T 1= o [T PSSR 140
1= PRSPPIt 140
REIAEIONS. ¢ttt ettt ettt e b e et s bt e e bt bt e e bt e e bt e e bt e e eh b e e nht e e hteenheeeshteenabeenateenaneens 140
ACCESS PathS ..ottt b e bt e h e e e bt bt e b et e bt e e be e e nbaeebaeenbeeebes 141

Contents 9

Database MainteNanCe FUNCHIONSciiciieeiiiee et ettt e sttt e e e st e e e s aee e e sneeeeesnteeeesnsteeesnnaeeesnsseeesnnnes 141
Versions Of FUNCLIONS @Nd IMIESSAEEScccuuieiuiiiiiiieiiieeite ettt ettt ettt sit e sit e sie e sbe e e bt e s bt e e bt e sbeeesbeeebeeesneesnees 141
LYo L] I [T PP SUPRTOPPTPN 142
(0o g Yo [4o T o N\ =11t T=T USSR 142
IMIESSAZE INAIMES ..oeiiiiiiiiiiii et r e e e bbb et e e e s s s bbb st e e e e s s bbb e e e e e s s bbb e e e e e s e saan 142
(D L=TY =48 T o T o1 o | PSSR USN: 143
(DR 1 ={ g @] o) {[o] o 3PP PPPPRN 144
SEANAAIA USEI INTEITACES ..veiiiiiiieiiie ettt ettt ettt et e ettt e s bt e e bt e e sbeeebee s bee e bt e s bbeebeesbtesbeesnseesnseas 144
STANAArd FUNCLION KBYS...uiiiiiiiiieciiee ettt ettt e e ettt e e et e e e et e e e e s tbeeeeeabbeeeetbeseesstaeeeessaeessbaaeeastasasanssasesssnens 145
StanNdard Line SEIECTION VAlUBScoiiiiiiiiiiie ettt ettt st e e st e e e s bte e e s aae e e s sabaee s asteeessnaens 146
Standard HEaders @nd FOOLEISc.uiiiiiiiiiiieete ettt ettt ettt et sae e e be e s bt e e sbeesbe e e bt e ebeeennnesnnees 146
Specifying the Default Standard HEAETccuuiee ittt e e be e e et e e e e e e e snneeas 146
Panel/Report DiSPlay AtErIOULESc.eeicii ettt et e et e e ete e e s tbeesaaeesabeeeaeeesebeessseesabaennaeens 147
ENVIFONMENT. ...ttt ettt e e ettt e e e e e sttt e et e e e e e s n bbbt e e e e e e aannbb et eeeeeaaansseeeaeeeaaannnbeeeeeeeaannns 147
Setting Up Common Routings/ULility FUNCLIONSevuiriiririeieriee ettt sttt st s s 148
Chapter 5: Setting Up a Multi-Modeling Environment 149
BEFOIE YOU BEEIN ...ttt ettt ettt et e b e bt e be e e bt e b e e e bt e e sbb e e bt e e sbee e be e e sare e neeesnreennneens 149
MUIEI-IMOE] SEIUCTUIES ...ttt ettt et ettt e s bt e e bt e bt e e bt e e sate e beeesabeesateesateesneeesaneennneens 150
(6e] 1o [T 4 14 o] o 13O TP SRRUUTOTSIN 151
CA 2E Change ManagemENT (CIM)uiiieiiee e ciieeeeeiiee e eeite e e st e e e et e e e eeataeeesbaeeeesteeesessaeeesabaeaeassseeesassassessanaans 152
Shared Name Environment
(1Y T Yo <l [o] o7 2 =14 (o o U PSPPSRt
Setting Up a Shared Name ENVIFONMENTcooiciieeiiiieeceiee e seee e e stte e ee e e s tae e e e sateeessnae e e snseeeesntaeesennsesesnnnnens 153
Creating a Separate Shared Name LIDrary ...ttt et e st e e e e sare e s e enaae e e saraeeens 153
Advanced National Language Support in a Shared Name ENVironment........cccceeeccveeeeeiieeeccieee e 153
Library List CONSIAEIatiONS ...cccviiiiiiiiieiiee ettt ettt ettt ettt e sbe e s bt e sat e e bt e e s et e e bt e e sabeesneeesaneesnneens 153
(0] o [=Tot fl o =Y £ =3P 154
Common Multi-Model CONFIUIAtIONScuuieiiiiiei et ee e s e e e e r e e e snaeeeesntaeesennteeesnneeas 154
Database Administrator CONFIGUIAtioNcc.uieiiiiiiieeee e e re e e st e e et e e e sate e e saaeeeesareeeennnns 155
Development/Test/Production CONFIGUITIONc..eccuiiiieeeiiie ettt et et etreeeare e sreeeaeeesabeeeareesaveeeaneeas 156
Split Application CONTFIGUIAtIONcccueiiiiiiii ettt et sbee e b e sbeeenees 157
(0707 03 Y7 oY== T 1Y/ T Yo 11 S 158
(0fo] o VA - T e =T 1Y o e 1Y SRS 159
COPYINE AN ENEIFE MOUEL.....ueiii ettt e s e e e et e e e et e e e s ta e e e esteeeessaeeesasaeaeassaeeeasseeeesssanaaans 160
Understanding Model OB ECE LIStS.......ccciuiieiiiiieeeeiiie e eciee ettt e eette e e ettt e e e sttt e e eetbeeesetbeeeesateeeeesteseessaeessareeesannes 160
Model Object List Commands Used for COpYiNg ODJECLScccvuerruiiiiieriiiiiieeee ettt 161
L2 T= o I o U I o o V2SSt 161
[0 =T =T aTo=Yo I @ o [Tt £ PSSRSOt 162
Conflicting Object Names ACroSS IMOTEISueiieeiiieieee ettt et e e e et e e e ete e e e eeabe e e eeataeeesaraeaenns 163

10 Administration Guide

BUilding the Model OBJECT LiSt........uuiiiiiiieiiiiiie et e e et e e e e e e et e e e e e e sesaastaeeeeeeeesanstaneeaaeeenns 164

Editing the Model ObJect List fOr COPY ...eiiruiiiiiiiiiieeiee ettt ettt ettt ettt et e sie e e s et e e sae e e sabeesaneesmneesneeens 165
Renaming Objects fOr PUIPOSES Of COPY ..ciiiiiiiiiiiiiiiiieiie ettt ettt et e e sae e e sebeesaeeesaneesaeeens 166
(0] o}V g Yo oY=l [e [@ o [Tt £ N 167
Using the Prepass CheCk OPtioN ettt e et e e et e e e et e e e stteeeesabaeeeeasteeeeassaaesaateeesanses 168
USING The COPY OPLION ...ttt ettt e sbe e e be e e sbb e e bt e e sbb e e bt e e s bb e e bt e e ssbeenneeesmneennneens 168
Merging IMplemMeNntation NAMESoiiciiie ettt e et e et e e et e e e s teeeessteeeessteeeessteeesssneeensseeesnnens 169
The YCPYIMDLOBJ COMMENT ..ttiiuiiiritiiiieeniteeeteesiteesteesiteesteesateesuseesateesseesabeessseesabeessseesabeesnseesaseesseesseesnseesane 169
Appendix A: SQL Implementation 171
EXEENAEA SQL NAMING .etiiitiiiiieiiit ettt ettt ettt e st e bt e bt e s bt e s s bee e bteesbbeebee e steesbaeesbteeseeesateesaeesateessseesateensneens 171
Example of Pre-Release 5.2 SOL NAMINE ...ccuiiiiiiiieriiteiie et esiteesiteesitessiteesiteestteesateessaeesaseesaeeessseessseesssasssenens 172
Understanding Extended SQL NaMINEoceiiiiieiiiiieceiiie e st e eecte e et e e e sttt e e eetree e ssteeeesataeeeeasseeesssseessssesesanees 173
YSQLYNM MOGEI VAlUB....eiiiiiiiieiieeeete ettt ettt e s e e st e e s sbte e e sbae e e sabeeessasaeeessabaeesnsbaeesnnsteeessnnens 174
YSQLLEN MOGEI VAU ...ttt ettt et ettt et e bt e sa e e bt e e bt e e bt e e bee e bt e ebteebeeeneesnnees 174
SQL NAME CONTICES weeiitieiiieiiie ettt ettt st e e bt e e sb b e e sbe e s bt e e beesbaeebeesbaeebeesnstesnsees 175
Examples of EXtended SQL NAMINEcccuiiiiiiiiieeciiee et eeette e e erte e e estteeeeetbeeesatbaeeesateeeessseseessaeesssreeesanses 175
Example of Extended SQL DDL NAMINE......ccciiiieiiiiiieeiiieeecieeeeeiteeeeeteeeesbeeeeestreeesesseseesstaseesssseeessssseesssseeesases 176
Example of Extended SQL DIMIL NAMING.....ccutiiitiiiiiiiiteiieeiee ettt ettt et et e seb e sie e e sibeesaee e saneesneeesmneennneens 177
Impact on Other Areas Of the ProdUCT.........ocuiieiiiii et e e et e e e sate e e s aaeeeesnteeeeenees 177
Separate View and INAEX CrEatiONcccciiiiiiiiieicieeeeiee e eee ettt eeeette e e s aaeeeesateeeseasseeessaeeeastaeeaassseeesssaeessssenennnnns 178
SUPPrESSING INAEX GENEIATIONviiieeiiiee ettt ettt e e e tte e e et e e e s be e e eetbee e e tbeeeesstaeeeasbeeeessaaeesstesasanssaeesnssnens 178
Edit Access Path AUXIlTAries PANEl.......ooouiiiiiiieeecier ettt et e st saee e e e be e e e satee s snaeeesnsteeesnnnes 179
GEeNErating an INAEX ONIY c...eei ittt et e st e sa bt e s bt e sa bt e s bt e sab e e sabeesabeesaseesabeesaneens 179
Reducing the NUMBEr Of SQL SELECTSccuutiiitiiiieeriieteiiteesitessiteesteessitessieeesbeessbeessstessseeesatessseeesasessseessasesssseesnsesssneens 180
200 VYA LYY I oYl 4] = SR 181
YSQLLCK MOGEI VAIUE ..ttt ettt ettt et te et e s ate et e e s bt e e ba e e sateeaae s baeesbeeesaeenbeeesaeenseeeseeensens 181
Implementing Restrictor and Positioner FUNCEIONAIITYcc.eiiiiiiiiiiiieeeeee e 181
Example of WHERE Clause Containing OR LOZICccccuiiiiiiiieeiiieeesiiieeesieeeseeeeesneeesesateeessnnneeesnsnesssnseessnnnns 181
Example of WHERE Clause Containing NOT LOZIC....uicucuutriiiiieeeiiieeeceeeeesieeessteeesneeesesateeeesnnnesssnnneessssseessnnnns 182
YSQLWHR MOGEI VAIUEviiiiiiiieeiie ettt sttt sttt et e e ba e e sb b e e ba e s sbeesbaesnbaeebeesnbaeenbeesnseesnsens 182
(D =Tt I o < Yol ol TSRS 183
YDBFACC MOUEI VAIUE ...ttt ettt sttt ettt e sttt e e st e e e s bte e e satae e e eabaeeenssaeeesnssaeesasseeesnnsteeessnnens 183
(D 1 I A Yol ol |V, 1= d g Yo @ o (o o PSRt 184
LOIT g oY\ F=Ta TR =T o= o o TSR 184
SQL SELECT iN CRTOBJeiiiiiiiiieeitie ettt ettt site ettt siteesteeesbeeebeessbaeebeeesbeeebeeesbeeenbeeesteenbaeensbeebesesaeensaeenssesbeeenseesnsens 185
SQL SELECT BEfOre REIEASE 5.2 ...eiiueiiiiiiiiieiiieesiteesiteesieeesiteestesestaessteesssaeesseeesseeesseeesseeesseeensseesseeensseensessnsseenses 185
Current SQL SELECT IMpPlementationcooieiiieeiiiiieene ettt ettt st e st st e san e sareesanee s 185
Index 187

Contents 11

Chapter 1: Introduction

This chapter describes the libraries that represent CA 2E and the development
environment. A description of the installation and upgrade process is also provided as
well as an introduction to the Toolkit prototyping facilities.

This section contains the following topics:

CA 2E Product Libraries (see page 13)

CA 2E Development Environment (see page 15)
The Model Library (see page 15)

Generation Library (see page 15)

SQL Collection (see page 16)

Prototyping an Application (see page 16)
Replacing Toolkit Navigation and Data (see page 20)
Transferring Control to Toolkit (see page 21)
Working with a Toolkit Panel Design (see page 21)
Editing the Panel (see page 22)

Defining Command Keys (see page 22)

Building a Window Prototype (see page 23)
Building an Action Bar Prototype (see page 24)
Defining Color (see page 26)

Entering Sample Data (see page 28)

Displaying Prototype Panels (see page 29)
Returning to CA 2E (see page 30)

CA 2E Product Libraries

The CA 2E product libraries contain the files and objects you need to use products. The
product libraries include the CA 2E base product library (Y2SY) and the Toolkit base
product library (Y1SY).

Note: All object names begin with the letter "Y."
In addition to Y2SY and Y1SY, CA 2E ships base product libraries that contain appropriate

default national language libraries, the High Level Language (HLL) source generators, the
CA 2E null model, and a library containing some source.

Chapter 1: Introduction 13

CA 2E Product Libraries

More Information

Note: At many sites, you will see only Y1SY, Y2SY, Y2SYMDL, and Y2SYSRC listed on your
machine. The remaining libraries were merged into the base product libraries during
installation.

The following table provides a complete list of the CA 2E product libraries:

Ship Name Library or Folder Suggested Restore Library or Folder
Y1SY Toolkit base Y1SY

Y1SYVnll1 Toolkit LDOs Y1SY

Y2SY base Y2SY

Y2SYVnll1 LDOs Y2SY

Y2SYMDL null model Y2SYMDL

Y2SYCBL COBOL generators Y2SYCBL

Y2SYRPG RPG generators Y2SY

Y2SYSRC source Y2SYSRC

YLUSLIBO Security Library YLUSLIBO2

Notes "nll" refers to the national language; for example, ENG for

English or JPN for Japanese.
The Security Library must be restored to the YLUSLIBO library.

The supplied source for CA 2E resides in source files in the Y2SYSRC library. The source
for Toolkit resides in the YLUSRSRC file in the Y1SY library. You can obtain a list of these
members with the i OS Work with Members Using PDM (WRKMBRPDM) command.

The YCRTLUSLIB command that runs during product installation automatically updates
or creates the YLUSLIB library.

For more information about the WRKMBRPDM command, see Volume 5 of the i OS CL
Reference.

14 Administration Guide

CA 2€E Development Environment

CA 2E Development Environment

The CA 2E development environment is the model within which:
m The development team creates the application objects.
m The objects are generated.

m The objects are tested individually to determine whether they function correctly
and efficiently.

Development Libraries

Each CA 2E model must reside in a single library called the "model library." Each model
must also have a generation library associated with it. The model and generation library
are also, when necessary, associated with a Structured Query Language (SQL) collection.
The collection is a separate library similar to the generation library.

The Model Library

Each model library holds the database files that make up the model. The associated
generation library contains the sourceCA 2E generates for the model and the compiled
objects from that source. Think of the model library and the generation library as a pair.
The model library also contains other necessary i OS objects and a CA 2E job
description. If the developer generates SQL, the model library also refers to an SQL
collection.

The Create Model Library (YCRTMDLLIB) command creates the libraries that comprise a
model.

Generation Library

The generation library holdsCA 2E generated source, compiled objects, and help text.
You can move generated objects from the generation library to any other library. And
you can move the generation library to an environment that does not contain CA 2E
product libraries.

Chapter 1: Introduction 15

SQL Collection

SQL Collection

CA 2E lets you use SQL in place of or along with DDS in data definition statements. You
use SQL to define tables, views, rows, and columns, rather than IBM i physical files,
logical files, records, and fields.

You can implement SQL at both the system level and the model level. If you:
® Implement SQL at the system level, all new models default to SQL.

® |Implement SQL at the model level, all access paths and functions default to SQL.
Within a model, you can also specify SQL for individual access paths and functions.

The i OS operating system contains the execution objects necessary to execute
applications you generate with SQL. However, if you want to generate and compile
applications that use SQL, you must have:

m |BM’s SQL/400 program products installed.
m The QSQL library loaded on your IBM i.

To use SQL in a model environment, an SQL collection, equivalent to an IBM i library,
must be associated with the model library. The YCRTMDLLIB command can
automatically create the SQL collection. This command includes the SQLLIB parameter
which lets you create the collection for a particular model.

You can create an SQL collection for an existing model with the Create SQL Library
(YCRTSQLLIB) command. This command updates the YSQLLIB model value for the
associated model. You then use the Change Model Value (YCHGMDLVAL) command to
update the YDBFGEN model value to SQL.

For more information about:

m The YCRTSQLLIB and YCHGMDLVAL commands, see the CA 2E Command Reference
Guide.

m For differences between earlier versions of CA 2E SQL implementations and current
implementations, see the appendix SQL Implementation (see page 171).

m |BM'’s Structured Query Language, see your IBM documentation.

Prototyping an Application

Toolkit prototyping facilities let you interactively present a simulated system design.
End-users can preview the prototyped system at a workstation.

Toolkit prototyping includes:

m Realistic display attributes.

m Specification of sample data values for fields.

16 Administration Guide

Prototyping an Application

® Function key and value-dependent branching between panels.

Direct attachment of panels to Toolkit or CL menus.

m No compilation.

A link with CA 2E that lets you return to CA 2E after prototyping.

The prototyping facilities use the following Toolkit commands:

m YDSPPNL—Display Panel Design command displays prototype panel values and sets
up sample data.

= YWRKMNU—Work with Menus command creates menus to display prototype
panels
Note: Specify the YDSPPNL command as the menu action, with the desired Toolkit panel

design as the option.

® YGO—Go to Menu command displays menus.

Creating Prototype Panels
You can create prototype panels in the following ways. Each method converts CA 2E
function device designs from an CA 2E design model into Toolkit panel designs.
m Use the CA 2E Convert Model Panel Designs (YCVTMDLPNL) command.
m Use the CA 2E animate options.
CA 2E Animation provides a direct link between CA 2E and Toolkit. This includes

converting device designs to Toolkit, full access to all Toolkit panel editing and
simulation functions, and the ability to return directly to your model.

Toolkit panel designs reside in a panel design file in a nominated library. The default is

your model library. You create panel design files using one of the following:

m The Toolkit Create Design File (YCRTDSNF) command.

m The CA 2E animate options. If the panel design file does not exist when you
convert a model panel, it is created for you.

For more information about:

m Toolkit commands, see the Toolkit Reference.

m Details of Toolkit prototyping, see the "Design Aids" chapter in the Toolkit Concepts
guide.

Chapter 1: Introduction 17

Prototyping an Application

Naming Prototype Panels

The YCVTMDLPNL command and the animate options create one or more prototype
panel designs for each function with a device design. Each prototype panel is given the
name of the source member for the program object, as specified in the Edit Function
Details panel. For multiple panel designs, each design name includes a numeric suffix.
For example,

® An EDTFIL function with a source member name UUJQEFR results in UUJQEFR1 as
the name of the prototype panel.

m An EDTRCD function with a source member name UUJQE1R results in UUJQE1R1 for
the key panel and UUJQE1R2 for the detail panel.

CAZ2E--Using CA 2E Device Design Animation

CA 2E animation provides a direct link between CA 2E and Toolkit prototyping facilities.
This lets you interactively simulate your CA 2E system design using Toolkit and easily
return to your CA 2E design model.
You animate a CA 2E device design in the following ways:
m Press F2 from the CA 2E device design editor.
m Enter A to animate a selected function from the following CA 2E panels:

- Open Functions

— Edit Function Devices.

The CA 2E Animate Function Panels panel displays.

Animate Function Panels SYMDL
Convert Model Panel. : Y (Y-Yes, N-No) Convert all panels : Y (Y-Yes, N-No)
Replace Navigation : N (Y-Yes, N-No)
Replace Action Bar : N (Y-Yes, N-No)
Clear Narrative. . : N (Y-Yes, N-No)
Clear Test Data. . : N (Y-Yes, N-No)
Panel Name(s). . . . : *SRCMBR *SRCMBR, *SELECT, *panel, name
File : YDSNPNL Name
Library. : *MDLLIB *MDLLIB, *GENLIB, *LIBL, name
Member : *FILE *FILE, name
Display. : Y (Y-Yes, N-No)
Display Option . . : 1 1-DSPDTA, 2-DSPATR, 3-CHGDTA, 4-WRKPNL
Return to this device design : N (Y-Yes, N-No)

Enter=Execute F3=Exit

18 Administration Guide

Prototyping an Application

This panel, the Animate panel, is the bridge between CA 2E and Toolkit. Use it to specify:
m Whether to convert the CA 2E device design to a Toolkit panel design.
® Animation of CUA panels, action bars, and window definitions.

m Whether to keep or replace information associated with the Toolkit panel design,
such as test data and command key and action bar definitions.

m The name and location of the Toolkit panel design.
m Whether to transfer control to Toolkit.
m Where to return within CA 2E .

The following sections discuss these actions and alternative ways to achieve them using
Toolkit commands.

Converting an CA 2E Device Design to Toolkit

You can convert a CA 2E device design into one or more Toolkit panel designs. By
default, this process retains the existing Toolkit panel design’s command key and action
bar navigation, narrative, and data even when you download a new version of the panel
design.

You convert a CA 2E device design in either of the following ways:

m Use the CA 2E Convert Model Panel (YCVTMDLPNL) command.

m Enter Y for the Convert Model Panel option on the CA 2E Animate Function Panels
panel.

If you enter N for the Convert Model Panel option, control is transferred to Toolkit

without converting the CA 2E device design.
Note: Use the YCVTMDLPNL command to convert multiple CA 2E device designs to
Toolkit panel designs in one step in batch.

Conversion is needed in the following cases:

m A panel design corresponding to your CA 2E device design does not exist in Toolkit.

®m You changed the CA 2E device design and need to update the Toolkit panel design
to reflect the changes. It is good practice to synchronize the Toolkit panel design
with the corresponding CA 2E device design.

® You want to replace the command key or action bar navigation, narrative, or test
data you previously defined for the Toolkit panel design.

Chapter 1: Introduction 19

Replacing Toolkit Navigation and Data

Converting Multi-Screen Functions

By default, if you convert a multi-screen function, such as Edit Record, all panels are
converted. The panels are automatically linked together so that you can scroll among
them within Toolkit.

If you animate from a CA 2E device design by pressing F2, you can choose to convert
only the panel displayed by setting the Convert All Panels option to N.

Replacing Toolkit Navidation and Data

By default, the conversion retains any command key, action bar, narrative, and data
entered for the Toolkit panel. The Replace and Clear options let you replace this
information. If you are using the CA 2E Animate Function Panels panel, these options
are effective only when the Convert Model Panel option is Y.

Replace Navigation and Replace Action Bar

Use these options to specify whether to keep or replace the command key or action bar
navigation you defined for the Toolkit panel design. The default is N (keep the Toolkit
navigation).

If you enter Y, the navigation you defined in Toolkit is replaced with the standard CA 2E
command key functionality; for example, F3=*EXIT, F12=*PRV. Any function-to-function
navigation you defined in the action diagram creates a Toolkit navigation with the value
*SAME.

Note: If you have not assigned a function key for exit on your Toolkit panel design and
you do not enter Y to replace navigation, CA 2E automatically assigns the default, F3, for
exit.

Clear Narrative and Clear Test Data

Use these options to keep or clear any narrative or test data you entered for the Toolkit
panel design. The default is N, retain the Toolkit information

For more information about the YCVTMDLPNL command, see the CA 2E Command
Reference Guide.

20 Administration Guide

Transferring Control to Toolkit

Transferring Control to Toolkit

You transfer control to Toolkit in the following ways:

Working with a Toolkit Panel Design

Enter Y for the Display option on the CA 2E Animate Function Panels panel.

If you simply want to convert your CA 2E device design to Toolkit and do not need
to display the prototype, enter N to return to CA 2E. This is useful to keep your
Toolkit panel design and CA 2E device design synchronized.

Use the Toolkit Work with Panel Design (YWRKPNL) or the Display Panel (YDSPPNL)
utilities. You cannot return directly to CA 2E using this method.

You can work with your Toolkit panel design in one of the following ways:

The Toolkit Work with Panel Title Details panel displays.

Enter 4 for the Display Option on the Animate Function Panels panel.

From the Toolkit YWRKPNL utility, specify the panel you want to edit. For example,
specify *SELECT for the panel name and enter 1 next to the appropriate panel

name.

Work with Panel Title Details

YDSCTLR
Panel. : UUAJEFR1
Title. : Edit Customer

Print Sequence. :

Fixed Header. . : (Y, blank)
Fixed Footer. . : (Y, blank)
Window. : (Y, blank)
Action Bar. (Y, blank)
Option. : 1 1-Panel, 2-Narrative, 3-Command keys,

5-Window, 6-Action Bar

Synon/2E related program name

F3=Exit

: UUAJEFR

You can use this panel to:

Edit the panel design.

Enter or edit narrative.

Chapter 1: Introduction 21

Editing the Panel

m Define command key and action bar navigation.

m Define a window.

The Related Program Name option is the source member name of the device design that
created this Toolkit panel. It is the link that allows control to be transferred back to CA
2E. This option is blank if the panel was not converted from CA 2E or was converted
before CA 2E r5.0.

Note: More than one Toolkit panel can refer to the same source member

Editing the Panel

To edit your Toolkit panel design enter 1 from the Work with Panel Title Details panel.
Your Toolkit panel design displays in monochrome. If you want to edit your design in
color use the CA 2E device design editor.

Defining Command Keys

To define command key navigation for your Toolkit panel design enter 3 from the Work
with Panel Title Details panel. The Work with Panel Command Key Usage panel displays.

Note: If you are working with an action bar design, assign *ABAR to the function key
that is to activate the action bar.

22 Administration Guide

Building a Window Prototype

Building a Window Prototype

The Window option is automatically set to Y on the Work with Panel Title Details panel
when you convert a CA 2E window device design. Press 5 to edit or display the window
definition.

F2=Exit F12=Titles screen

e +
I I
| Default Location . *CALC (*‘,*CALC) |
| Row. : 1 |
| Column . . . : 2 |
| Window Size : |
| Height . . . : 22 |
| Width. . . . : 76 |
I I
| I
I I

You can specify the location of the window in either of the two following ways:
m Enter specific values for Row and Column.

m Enter *CALC for the Default Location. This causes the upper left-hand corner of the
window to display wherever the cursor is located at the time the window is
requested. The Row and Column options are ignored.

Define the size of the window by entering values for the Height (in lines) and Width (in
characters) options.

Press F12 to continue working with the panel design; press F3 to exit.

Chapter 1: Introduction 23

Building an Action Bar Prototype

Building an Action Bar Prototype

The Action Bar option is automatically set to Y on the Work with Panel Title Details
panel when you convert a CA 2E action bar device design.

Enter 6 to edit the action bar definition. The Toolkit Edit Choices panel displays.

YDSCABC CHANGE MM/DD/YY HH:MM:ss
Edit Choices
Panel Name : UUAGEFR1
File : YDSNPNL
Library. : SYMDL
Member : YDSNPNL
Choice Sequence . (position)

Type options, press Enter.
A=Actions D=Delete

? Sequence Mnemonic Text

1 E File
4 U Function
99 H Help

F3=Exit F4=Prompt F9=Go to ‘Add’ mode F12=Titles screen

The action bar menu choices that currently have actions defined display. Press F9 to add
new choices. Enter A to edit the actions for an existing menu choice. The Toolkit Edit
Actions panel displays.

YDSCABA CHANGE MM/DD/YY HH:MM:ss
Edit Actions

Panel Name. . . . : UUAGEFR1

Choice Sequence . : 3

Choice Text . . . : Work with spool files

Action Number . (position)

Type options, press Enter.
C=Command String D=Delete

? Number Text Next Panel
2 Open *SAME
c 3 Work with spool files *EXEC
920 Exit *EXIT

F3=Exit F4=Prompt F9=Go to ‘Add’ mode

24 Administration Guide

Building an Action Bar Prototype

The Next Panel column indicates the result of selecting the corresponding action. For
example, Next Panel can contain:

m The name of the CA 2E panel to call when the action is selected.
m *EXIT, which means to exit the panel when the action is selected.

m *EXEC, which lets you execute a command when the action is selected. To edit the
command string for *EXEC, enter C for the subfile selector; the following screen
displays:

Edit Command String

Panel name. . . . : UUAGEFR1
Choice. : File

Command string ...
WRKSPLF

F3=Exit F1l1l=Delete

Note: When defining command key navigation, assign *ABAR to the function key that is
to activate the action bar. If you converted a action bar device design, the command
key assigned to *ACTIONS is automatically assigned *ABAR for the Toolkit command key
navigation.

Chapter 1: Introduction 25

Defining Color

Defining Color

Toolkit panel designs display in full color. Any color assignments you make within CA 2E
are automatically converted to Toolkit. This is the recommended method for assigning
color to Toolkit panel designs.

Note: Constants separated by a single space are treated as the same constant; as a
result, constants share the color assignment given to the leftmost constant.

Alternatively, you can assign colors as you edit your panel design within Toolkit. To do
so, position the cursor on the blank before the field to which you want to assign a color

and press F16.

The following screen listing the available colors and attributes displays:

£ Blue g Highlight

£ Green g Reverse Image

£ Pink g Underline

£ Red q Blink

£ Turquoise g Column Separator
£ White g nondisplay

£ Yellow

F3=Exit F12=Titles screen

On some terminals this screen will appear as shown below.

1 1. Blue Highlight
2. Green Reverse Image
3. Pink Underline
4. Red Blink
5. Turquoise Column Separator
6. White nondisplay
7. Yellow

F3=Exit F12=Titles screen

Note: The mono display attributes display with an input field instead of a check box to
the left of the attribute. You select attributes by entering a slash (/) in the
corresponding input field. The slash is the default selection character; it is contained in
the IBM i message, CPX5A0C, in the QCPFMSG file in the QSYS library.

Not all attributes are available for each color. The following table lists the valid
combinations supported by DDS.

Color CLR (&) BL UL HI RI ND

26 Administration Guide

Defining Color

Color CLR cs BL UL HI RI ND
Green GRN
X
X1
X1 X
X
X X
X X1
X
White WHT
X
X
Red RED
X
X
X X
X
X X
X X
X
Turquoise TRQ X
X X
X
X X X
Yellow YLW X
X X
X X
Pink PNK
X
X

Chapter 1: Introduction 27

Entering Sample Data

Color CLR (& BL UL HI RI ND
X X
Blue BLU
X
X
X

"X1" indicates that the green highlight is white.

Note: Highlight is only allowed for green, Blink is only allowed for red, and column

separators are required for turquoise and yellow.

Entering Sample Data

To display your Toolkit panel design in order to enter sample demonstration data, use

one of the following:

m Enter 3 for the Display Option on the CA 2E Animate Function Panels panel. You can
return to CA 2E by pressing the Home key from any Toolkit panel design. See the

Returning to CA 2E section in this chapter for details.

m Use the Toolkit YDSPPNL command and specify *CHGDTA for the Option parameter.

All fields of your panel design will be available for input and the data you enter is

retained on exit.

28 Administration Guide

Displaying Prototype Panels

Displaying Prototype Panels

To display Toolkit panel designs to demonstrate your system design, use one of the
following:

m Enter 1 for the Display Option on the CA 2E Animate Function Panels panel. You can
return to CA 2E by pressing the Home key from any Toolkit panel design. See the
Returning to CA 2E section in this chapter for details.

m Use the Toolkit Display Panel Design (YDSPPNL) command and specify *DSPDTA for
the Option parameter.

m Use the Toolkit YWRKPNL utility and select option 8.

Any sample data you entered previously is displayed. You can enter data in all input
fields; however, any data you enter is not retained on exit.

Chapter 1: Introduction 29

Returning to CA 2E

Returning to CA 2E

If you used CA 2E animation to transfer to Toolkit, you can return directly to the CA 2E
panel or device design from which you started the animation. You return from Toolkit in
one of the following ways:

m [f you are editing your Toolkit panel design, press F3 to return to . You will be given
an opportunity to save any changes you made.

m [f you are simulating your application and have defined navigation, press the key
you assigned as an exit key (usually F3) to return to CA 2E.

m [fyou are using Toolkit to work with your panel design, for example, viewing it,
simulating it, or entering data, press the function key assigned for exit or Home to
return to CA 2E.

Note: See the documentation for your terminal or computer to learn which is the Home
key on your system. In addition, the Home key is designed to position the cursor on the
first input-capable field on the screen. As a result, if the cursor is elsewhere on the
screen, you need to press Home twice to return to .

The function to which you return depends on the value specified for the Return to this
Device Design option on the Animate Function Panels panel when you transferred
control to Toolkit:

m [f the value was N, the default, you return to the function corresponding to the last
Toolkit panel design you accessed. As a result, the corresponding function is loaded
automatically into Open Functions.

m The function loaded is the function whose implementation name appears in the
related program name field on the Work with Panel Title Details panel. You can edit
the implementation name using this panel. This name automatically defaults when
you convert a panel.

m [fthe value was Y, you return to the function from which you invoked the
animation.

Note: If you invoked Toolkit using Toolkit commands, you cannot return directly to .

30 Administration Guide

Chapter 2: Creating and Managing Your
Model

This chapter describes the tasks associated with creating a model and provides
procedures to use the Create Model Library (YCRTMDLLIB) command. It also describes
how to use some of the CA 2E commands and i OS commands to manage models.

The tasks described in this chapter are usually assigned to a system administrator.

This section contains the following topics:

Creating a CA 2E Design Model (see page 31)
Managing CA 2E Models (see page 44)

Creating a CA 2E Design Model

Each CA 2E design model is held in a set of i OS database files that must reside in a single
library. A machine can hold many models, each in a different library. The YCRTMDLLIB
command creates:

® A model library.

m The model library’s objects.

m A Toolkit library list for the model.

®m An associated library (the generation library).

Note: The generation library holds the source CA 2E generates from the model and
other i OS objects.

Each model library you create and its associated generation library are a pair. The model
library contains a model value, YGENLIB, that names the associated generation library.
The design model can also have an SQL collection.

The YCRTMDLLIB command also contains parameters that set some of the model values
for the new model.

Chapter 2: Creating and Managing Your Model 31

Creating a CA 2E Design Model

Before You Create a Model

More Information

Before you create a model, make sure you:
m Understand how YCRTMDLLIB command parameters affect model values.
m Place the Toolkit and CA 2E libraries in your library list.

m Sign on with the correct user profile.

For more information about:

m The function of some model values, see the Setting Model Values section in this
chapter.

m Adding these libraries to your library list, see the Changing Your Library List section
in this chapter.

®m The authority levels a user profile must have to create a model and about how the
user profile affects model ownership, see the Signing on with the Correct User
Profile section in this chapter.

Setting Model Values

The YCRTMDLLIB command includes parameters that specify certain model values for
the new model, such as the HLL in which programs will generate. The parameters define
other model values, such as the prefix for object names. You can accept the default
values for these parameters or you can change the default to customize the model for a
particular environment.

Before you change a model value default, make sure you understand its purpose and
identify the impact that your change will have on the model environment. This section
describes the following model values:

m Default target HLL

m Model library name

m Design standard

m Naming prefixes

m Generation library name m National language

m HLL naming convention m Open access

m Message file name

m SQL/DDS generation

32 Administration Guide

Creating a CA 2E Design Model

More Information

For more information about YCRTMDLLIB model values, see the CA 2E Command
Reference Guide.

Model Library Name

The model library contains the CA 2E design model and application design.

You define the name of the model library with the MDLLIB parameter. You must include
this parameter when you execute YCRTMDLLIB.

Select the name for the model carefully. Other parameters, such as GENLIB and SQLLIB,
default to options that allow CA 2E to build the names for libraries from the prefix of the
model library.

Use the following conventions:
®m Begin the model library name with an identifying prefix of up to seven characters.
m Follow the prefix with the characters "MDL."

Identifying prefixes might include the owner of the model, the application, or
application level. For example, you might use INVMDL for an inventory model.

Generation Library Name
The model generation library contains CA 2E generated source and compiled objects.

You specify the name for the generation library with the GENLIB parameter. You can
create the name yourself or you can accept the default and allow to create the name
from the model library name according to the following rules:

m |f the model library name contains the characters "MDL," CA 2E drops these
characters and replaces them with "GEN." For example, if you name the model
library "INVMDLR40," CA 2E creates the name "INVGENR40" for the generation
library.

m |f the model library name does not contain "MDL," CA 2E appends "GEN" to the
model name. For example, if the name of the model library is "INVNTRY," creates
the name "INVNTRYGEN" for the generation library.

m |f the model name is more than seven to nine characters in length,CA 2E truncates
the suffix. If the model name is ten characters or more,CA 2E sends an error
message on model creation.

Chapter 2: Creating and Managing Your Model 33

Creating a CA 2E Design Model

Open Access

More Information

When you enter a CA 2E model you specify one of the following three user types:
m *DSNR (Designer)

m *PGMR (Programmer)

m *USER (User)

The user type you specify determines when you can access the model and what types of
changes you can make.

The Open Access parameter OPNACC lets you specify whether multiple designers
(*DSNR) and programmers (*PGMR) can work in the model at the same time. This
parameter sets the YOPNACC model value. The values for this parameter and the
implications of each are as follows:

m *NO—Restricts access to the model to only one *DSNR at a time. If a designer is
working in the model, programmers and other designers are denied access to the
model.

m *YES—Allows multiple designers and programmers to work in the model
concurrently. enables file and field locking to prevent two designers from updating
the same file or field at the same time.

For more information about:

m Designer and programmer user types, see the Controlling User Access section in the
"Using Your Development Environment" chapter in this guide.

m File and field locking, see the Locking Objects section in the "Using Your Model"
chapter in this guide.

34 Administration Guide

Creating a CA 2E Design Model

Design Standard

SQL/DDS

More Information

The Design Standard is the default set of values a model uses for CA 2E panel design
requirements, such as function key usage and field display attributes.

Parameter DSNSTD sets the default values for all features that affect design standards.
These include:
m The default standard headers and footers for primary and secondary panels.

m The default function keys.

m The initial value for the YLHSFLL model value. This value controls the appearance of
field text leaders on panel designs.

m The YCUAPMT model value. This value controls whether CUA Prompt—F4 (Display a
list of allowed values)—is enabled.

m The YCUAEXT model value. This value provides additional CUA device design

compliance.

You can set DSNSTD to one of the following:

m *CUATEXT—Sets the defaults to IBM Systems Application Architecture (SAA)
Common User Access (CUA) Text Subset of the Graphical Model

m *CUAENTRY—Sets the defaults to IBM SAA CUA Entry model standard

m *S$38—Sets the defaults to System/38 design standard

CA 2E provides two methods for generating files:

= SQL, IBM’s SAA common programming interface for database access on all SAA
platforms.

m DDS, the database access method native to the IBM i platform.
The YSYSDBF system value sets the default database access method. Model value

YDBFGEN defaults to the system value. Parameter DBFGEN lets you override the value
for YDBFGEN to *DDS or *SQL for a particular model.

For more information about SQL and DDS, see the following IBM manuals:
®m 5QL/400 Programming Guide

®m SQL/400 Reference

®m Database Guide

m DDS Reference

Chapter 2: Creating and Managing Your Model 35

Creating a CA 2€ Design Mo

del

Implementing SQL

Implementing SQL

If you implement SQL, each model library list and associated job description must
reference an SQL collection. Parameter SQLLIB creates and sets the name of the SQL
collection.

If you accept the default option *DBFGEN, CA 2E looks at the value for the DBFGEN
parameter and, if it is set to *SQL, creates the collection and builds a name from the
model library name according to the following rules:

m |f the model library name contains the characters "MDL," CA 2E drops these
characters and replaces them with the "SQL." For example, if you name the model
library "INVMDLR40,"CA 2E creates the name "INVSQLR40" for the SQL collection.

m |f the model library name does not contain "MDL," CA 2E appends the characters
"SQL" to the model name. For example, if the name of the model library is
"INVNTRY," CA 2E creates the name "INVNTRYSQL" for the SQL collection.

m [f the model name is seven to nine characters in length,CA 2E truncates the suffix. If
the model name is ten characters or more in length,CA 2E sends an error message.

and DDS in the Same Model

CA 2E lets you implement both SQL and DDS within a design model. For example, if you
normally use DDS but want to create a model that uses both DDS and SQL, you would
create the model as follows:

1. Setthe SQLLIB parameter value of the YCRTMDLLIB command to *GEN. CA 2E
generates the SQL collection library and builds a name according to the rules
described in the previous section.

2. Ensure that the value for the parameter DBFGEN is set to *DDS.

3. Set other model parameters as needed and create the model.

The model library list contains the SQL collection library, listed below the generation
library. If you want to use SQL to implement certain CA 2E access paths in the model:
1. Setthe access path details to SQL.

2. Edit the model library list so that the SQL library is listed above the generation
library.

3. Update the related job description.
Note: When you use both DDS and SQL in the same model, CA 2E imposes restrictions.

For more information about using SQL and DDS, see the chapter "Setting Default
Options for Your Access Paths” in the Building Access Paths guide.

36 Administration Guide

Creating a CA 2E Design Model

More Information

For more information about using SQL and DDS, see the chapter "Setting Default
Options for Your Access Paths" in Building Access Paths.

Naming Prefixes

Unless you specify otherwise,CA 2E automatically allocates names for all field and object
names you define.CA 2E uses naming prefixes for the names of application objects,
values list objects, and message IDs. These prefixes are derived from model values.
Parameters in the YCRTMDLLIB command let you set these model values explicitly.

Application Objects

CA 2E requires that an application object prefix be added to the beginning of all member
names that contain source generated by CA 2E.

Parameter OBJPFX sets the model value for the application object prefix. CA 2E uses this
parameter only if autonaming is used. The default prefix is “UU.” If you define another
prefix:

m Use characters that identify the user system, such as “IM” for inventory
management system.

m Do not use the following characters. CA 2E reserves them for specific types of
application objects:

- Q(IBM objects)
- (IBM S/36 environment objects)
- Y (CA 2E and CA Xtras objects)

Values List Objects

The condition value file, accessed at program execution, stores status field values. The
values list object prefix defines the first two characters of the names in the condition
value file and the value selection program, called when the user enters a question mark
(?) or uses F4 to prompt a status field.

The parameter VLSPFX sets the prefix for the objects in the values list file.

Chapter 2: Creating and Managing Your Model 37

Creating a CA 2E Design Model

Messade IDs

The message identifier prefix defines the first three characters of message names
generated by CA 2E .

Parameter MSGPFX sets the value of the message prefix. You can set this value to *USR
or *NONE:

m |f you accept the default value, *USR, CA 2E prefixes each message name with the
characters "USR."

m |f you set the value at *NONE, you must manually prefix message IDs.

Messade File Name

The message file contains message descriptions that generates. The message file name
indicates where CA 2E stores messages for execution time access.

Parameter MSGVNM sets the name for the message file. This name is based on the
value of the MSGPFX parameter:

m |f you specify the value *USR or *NONE for the message prefix,CA 2E assigns the
name QUSRMSG to the message file.

m |f you specify another value for the message prefix, creates the message file name
using the value of the object prefix and the message prefix, and the characters
"MSG," as follows:

object prefix + message prefix + MSG

For example:

IM + CTL + MSG = IMCTLMSG

Default Target High Level Language

The YSYSHLL system parameter sets the default for the high level language (HLL) in
which to create program source. The HLLGEN parameter sets YHLLGEN, the model value
for the HLL in which to create program source for the model you are creating. When you
create a model,CA 2E sets the default for HLLGEN to the YSYSHLL value. You can
explicitly set this parameter to generate source code for this model in RPG or COBOL.
You can override the default for any specific function.

Note: CA 2E supplies RPG and COBOL separately. You will be able to generate only the
languages for which your site is licensed.

38 Administration Guide

Creating a CA 2E Design Model

High Level Languadge Naming Convention

The HLL you use for the model determines the naming restrictions that apply to names
generated by CA 2E.

Parameter HLLVNM sets the YHLLVNM model value, which dictates naming conventions
for names generated by CA 2E. You can accept the default value of *RPGCBL or you can
set this value for the model.

Advanced National Languade Support

More Information

Advanced National Language Support (NLS) lets you implement panel literals using
external message IDs. These messages are stored in an i OS message file. By
externalizing messages, you can maintain several language versions of the same
application.

You can implement Advanced National Language Support at the model, function, or
field level. The field level overrides the function level. The function level overrides the
model level.

The device prompt generation option, PMTGEN, controls the model value YPMTGEN,
which sets the externalized panel constants feature. If you implement Advanced
National Language Support at the model level, you need to set this parameter to
*MSGID (implement using external message IDs). The default for this parameter is *OFF
(do not implement using external message IDs).

If you want to partially implement Advanced National Language Support, you can set
the default to *LITERAL. You can then choose to externalize some model text at the
function or field level.

For more information about implementing Advanced National Language Support at the
function and field levels, see the "National Language Support" chapter in the Generating
and Implementing Applications guide.

Chapter 2: Creating and Managing Your Model 39

Creating a CA 2E Design Model

Signing on with the Correct User Profile

The user profile you sign on with to create a model must be authorized to use CA 2E and
the following i OS commands:

m CRTLIB—Create a library

m CRTPF—Create a physical file

m CRTLIB—Create library

m CRTPF—Create physical file

m CRTDTAARA—Create data area

m CRTSRCPF—Create source file

m CRTJOBD—Create job description

m CRTDUPOBJ—Create duplicate object
m CRTJRN—Create journal

m CRTJRNRCV—Create journal receiver
m CRTDTADCT—Create data dictionary
The user profile used to create the model owns the model. This user can transfer

ownership of the model to another user profile and can grant another user profile the
authority to use the model.

More Information
For more information about model ownership, see the "Using Your Development
Environment" chapter in this guide.

Changing Your Library List
The library list of the profile you are using to create the model must include the CA 2E
and Toolkit libraries. You can add them to your interactive library list with the i OS Add
Library List Entry (ADDLIBLE) command.

More Information

For more information about the ADDLIBLE command, see Volume 2 of the i OS CL
Reference.

40 Administration Guide

Creating a CA 2E Design Model

Creating a Model

You create a model library by entering the YCRTMDLLIB command and its required
parameter, MDLLIB, followed by any optional parameters for model values you want to
set explicitly. If you do not set a model value explicitly, the system uses the default
parameter value to create the model library.

For example, to create a model (INVMDL) for an inventory control system that uses SQL
to define CA 2E access paths and explicitly defines the descriptive text for the model,
the object prefix, and the values list prefix:

1. Enter the command with the appropriate parameters:

YCRTMDLLIB MDLLIB(INVMDL) +
GENLIB(INVGEN) SQLLIB(INVSQL) +
SYSTEXT(inventory-control-system) +
OBJPFX(IN) VLSPFX(IN) DBFGEN(*SQL)

This example includes the following optional parameters:

m SQLLIB(INVSQL)—Sets the name of the library into which the SQL collection for
database implementation is to be placed.

m SYSTEXT(‘Inventory Control System’)—Sets the model text value (YMDLTXT).

m OBIJPFX(IN)—Sets the application object prefix for all member names that
contain source generated by CA 2E from the model.

m VLSPFX(IN)—Sets the values list object prefix added to names for all objects
used to implement the CA 2E values list facility.

m DBFGEN(*SQL)—Sets the default method for implementing CA 2E access paths
as database objects to SQL.

1. When you complete the parameters, execute the command by pressing Enter.CA 2E
builds the model library using the parameters you specified. When the command
finishes, the panel displays the following message:

Model library (INVMDL) created

Chapter 2: Creating and Managing Your Model 41

Creating a CA 2E Design Model

Creating the Model in Batch Mode

More Information

Creating a model generally requires at least 20 minutes. You may want to execute the
YCRTMDLLIB command in batch mode using the i OS SBMJOB command. Creating the
model in batch mode causes minimum impact on interactive jobs running on the
system. When you submit the job, you can specify that you want the job log to provide
you with a complete report when the job finishes.

For example, to create a model in batch mode and specify that messages and loggable
CLP commands be logged in the job log, you would enter the following:

SBMJOB CMD(YCRTMDLLIB MDLLIB(MYMDL)) + LOG(4 00 *SECLVL) LOGCLPGM(*YES)

This example includes the following optional parameters:

m LOG(4 00 *SECLVL)—Specifies the message logging values that determine the
number and type of messages logged in the job log.

m LOGCLPGM(*YES)—Specifies that loggable CLP commands are to be logged to the
job log.

You can also prompt this command by entering the command and pressing F4. For
example:

SBMJOB CMD(YCRTMDLLIB MDLLIB(MYMDL))

For more information about the SBMJOB command, see Volume 5 of the i OS CL
Reference.

42 Administration Guide

Creating a CA 2E Design Model

Prompting YCRTMDLLIB

You can also create a model by letting the system prompt you for the model values you
want to use.

1. Enter YCRTMDLLIB and press F4. A prompt asks you to enter a name for the model.

2. Enter the name for the model and press Enter. The Create Model Library
(YCRTMDLLIB) panel displays the parameters with their default settings.

Create Model Library (YCRTMDLLIB)

Type choices, press Enter.

Library for data model MYMDL Name, *NONE

Library for generation *GEN Name, *NONE, *GEN

Library for SQL collection *DBFGEN__ Name, *DBFGEN, *NONE, *GEN
System text or *SYSTEXT *MDLLIB

Design standard *SYys *SYS, *CUAENTRY, *CUATEXT...
Prefix for app. objects w_ Name

Prefix for value list objects Y2 = Name, *OBJPFX

Prefix for new message id’s USR Name, *NONE

Workstation implementation NPT *NPT, *GUI, *JVA, *VB
Application folder for GUI *NONE Character value, *MDL, *NONE
Library partitioning for GUI *AUTO Character value, *AUTO
Device prompt implementation *SYS *SYS, *LITERAL, *MSGID, *OFF
Database implementation *SYs *SYS, *DDS, *SQL

Default target HLL language *SYSHLL *GYSHLL, *RPG, *CBL, *RPGIV
HLL naming convention *RPGCBL *RPGCBL, *RPG, *CBL

Binding Directory YBNDDIR Name, *NONE

MORE. ..

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

1. Change the displayed parameters as necessary or accept the defaults. Use these
function keys to display:

m Additional parameters (F10).
m All parameters (F9).
2. Press Enter. The system builds the model library. When the command finishes, the

panel displays the following message:

Model library (model-library-name) created

Chapter 2: Creating and Managing Your Model 43

Managing CA 2E Models

Managing CA 2E Models

CA 2E commands help you manage the models in your work environment. This section
describes how to use CA 2E commands to:

m Reorganize a model
m Clear a model
m Rename a model

For some model management tasks, you use i OS commands. This section describes how
to use i OS commands to save (SAVLIB) and delete (DLTLIB) a library.

More Information

For more information about these CA 2E commands, see the CA 2E Command Reference
Guide.

Executing the Commands in Batch Mode

You can execute commands in batch mode. Submitting the job to batch causes
minimum impact on interactive jobs running on the system. When you submit the job,
you can specify that you want the job log to provide you with a complete report when
the job finishes.

For example, to delete a model in batch mode and specify that messages and loggable
CLP commands be logged in the job log, you would enter the following:

SBMJOB CMD(DLTLIB LIB(MYMDL)) LOG(4 00 + *SECLVL) LOGCLPGM(*YES)

This example includes the following optional parameters:

m LOG(4 00 *SECLVL)—Specifies the message logging values that determine the
number and type of messages logged in the job log.

m LOGCLPGM(*YES)—Specifies that loggable CLP commands are to be logged to the
job log.

You can also prompt this command by entering the command and pressing F4. For
example:

SBMJOB CMD(DLTLIB LIB(MYMDL))
More Information

For more information about the SBMJOB command, see Volume 5 of the i OS CL
Reference.

44 Administration Guide

Managing CA 2E Models

Reordanizing an CA 2E Model

More Information

The Reorganize Model (YRGZMDL) command is a housekeeping function that recovers
disk space used by deleted records and may help improve performance. The YRGZMDL
command executes the i OS Reorganize Physical File Member (RGZPFM) command.

Note: You cannot use a model while it is being reorganized.

To reorganize a model, enter the following and press Enter.

YRGZMDL MDLLIB(model-name)

CA 2E sends messages as the command rebuilds access paths. When the model is
reorganized, CA 2E sends the following message:

Model library (model-library-name) reorganized.

For more information about the RGZPFM command, see Volume 4 of the i OS CL
Reference.

Checking an CA 2E Model

The Check Model (YCHKMDL) command is a housekeeping function that checks your
model for inactive internal records and un-resolvable model object references.

In CA 2E, whenever you create an object in the model, a corresponding model object
reference called a surrogate number is created that the product uses to recognize the
object. When the object is deleted, the surrogate number should also be deleted. At
times the surrogate number may not be deleted. When this happens the condition
which occurs is known as a dangling surrogate. This condition can be caused by such
events as a power outage which results in an incomplete update; a developer makes an
error when using YWRKF to change model file data; a session is closed without exiting
the model properly by a developer or by network security; a model relation name is
typed over or field exit is used rather than deleting the relation.

Work can be performed in a model for months without this condition being detected. It
most likely manifests itself when generating, coping or editing an object that references
the deleted object surrogate number.

Consequently it is very important to use the YCHKMDL *Update action periodically to
maintain a healthy model. The YCHKMDL *UPDATE cleans up dangling references and
produces a report of objects it was able to delete. For large models it is recommended
to incorporate it with weekly backup procedures. Using YCHKMDL *UPDATE once a
month on smaller models will be sufficient. For details about the YCHKMDL command,
see the Command Reference Guide.

Chapter 2: Creating and Managing Your Model 45

Managing CA 2E Models

Clearing an CA 2E Model

The Clear Model (YCLRMDL) command drops all user-defined data in the specified
model library. You can also clear the generation library and, if it exists, the SQL
collection of user objects.

The YCLRMDL command is often used during training to allow new users to create and
use a model and then clear it to use for production.

To clear a model library and its generation library, enter the following and press Enter:
YCLRMDL MDLLIB(model-library-name) + GENLIB(generation-library-name)

As CA 2E clears the model, messages display. When the process is complete, CA 2E
sends the following message:

Model library (model-library-name) for (model) has been cleared.

Prompting the YCLRMDL Command

You can also clear a model by allowing the system to prompt you for the libraries you
want to clear.

1. Enter YCLRMDL and press F4. The Clear Model (YCLRMDL) panel displays with the
selection prompts.

2. Enter the names for the libraries you want to clear and press Enter. As CA 2E clears

the model, messages display. When the process is complete, the system sends the
message:

Model library (model-library-name) for (model) has been cleared.

Saving an CA 2E Model Library

The i OS Save Library (SAVLIB) command saves a copy of up to fifty specified libraries or
all libraries. This command saves the entire library, including the library description, the
object descriptions, and the contents of the objects in the library. To protect changes to
your models, use SAVLIB regularly as part of your batch job process.

Note: Always save libraries before upgrading to a new version.

You can save to an off-line storage medium, such as a cartridge, or to an online save file
using DEV(*SAVF) on the SAVLIB command.

46 Administration Guide

Managing CA 2E Models

Considerations

To save libraries, you must have either the *SAVSYS special authority in your user profile
or you must have read authority or ownership of each library specified and object
existence authority for each object in the library. If you do not have this authority, the
command saves only those libraries and objects for which you do have authority.

Using the SAVLIB Command

More Information

To save a model library and its generation library to a tape in a specified device, enter
the following and press Enter:

SAVLIB LIB(model-library-name/generation- + library-name) DEV(device).

For example, to save a model library named INVMDL and its generation library INVGEN
to tape device TAPO1, you would enter the following and press Enter:

SAVLIB LIB(INVMDL INVGEN) DEV(TAPO1)

You can also save libraries by allowing the system to prompt you for the libraries you
want to save and the parameters you want to specify. Enter the command and press F4.

For more information about the SAVLIB command, see Volume 5 of the j OS CL
Reference.

Deleting an CA 2E Model Library

The i OS Delete Library (DLTLIB) command deletes all objects in the specified library and
then deletes the library.

Before you use the DLTLIB command to delete either a generation or an SQL library, you
first need to ensure the library does not have journals or journal receivers.

This section describes how to check for and delete journals and journal receivers and
provides examples of how you might delete model, generation, and SQL libraries.

Chapter 2: Creating and Managing Your Model 47

Managing CA 2E Models

Considerations

To delete a library, you must have use and object existence authority for the library and
object existence authority for all objects in the library:

m |f you do not have object existence authority for the library, the command does not
delete the library or its objects.

m [f you do not have object existence authority for one or more objects in the library,
the command does not delete those objects or the library.

You cannot delete a library while it is on the library list of any job active on the system.

Deleting a Model Library

To delete a CA 2E model library, enter the following and press Enter.

DLTLIB LIB(model-library-name)

Deleting a Generation Library

You can use the DLTLIB command to delete the generation library associated with a
model library. Deleting a generation library requires that you first delete any journal
receivers and journals within the generation library before you delete the generation
library.

Deleting Journal Receivers and Journals

If the generation library contains a journal, the DLTLIB command will not complete.
Before you delete a generation library, make sure it does not contain journals. You
delete journals by first deleting the journals and then deleting the journal receivers.

48 Administration Guide

Managing CA 2E Models

Checking for Journals

End Journaling

To find out if the generation library contains journals, perform the following steps:

1.

To access the Programming Development Manager (PDM), enter STRPDM and press
Enter. The IBM i Programming Development Manager (PDM) panel displays.

Select the Work with objects option. The Specify Objects to Work With panel
displays.

Specify that you want to work with journals in the generation library you are
deleting:

a. a. Inthe Library field, enter the name of the generation library you are
deleting.

b. b. Inthe Type field, enter *JRN and press Enter. The Work With Objects
Using PDM panel displays.

c. C Record the name of the journal in your generation library.

Return to a command line. Press F3 until a command line displays.

You must end journaling for access paths and physical files before you delete the journal
receivers and journals. Perform these steps:

1.

End journaling for access paths. Enter the following and press Enter.

ENDJRNAP FILE(*ALL) + JRN(GEN-library-name/(your-journal-name)

1.

End journaling for physical files. Enter the following and press Enter.

ENDJRNPF FILE(*ALL) + JRN(GEN-library-name/(your-journal-name)

1.

When you have ended journaling for access paths and physical files, return to the
Work with Objects Using PDM panel.

Mark the journals for deletion. Enter 4 to the left of all of the journals and press
Enter. The system asks you to confirm the deletions. Press Enter to confirm.

When you finish deleting the journals, return to the Specify Objects to Work With
panel. Press F3. You are ready to delete the journal receivers.

Chapter 2: Creating and Managing Your Model 49

Managing CA 2E Models

Delete the Journal Receivers

End Journaling

To delete journal receivers, perform the following steps:

1. Specify that you want to work with journal receivers in the generation library you
are deleting:

a. Inthe Library field, enter the name of the generation library you are deleting.

b. Inthe Type field, enter *JRNRCV and press Enter. The Work with Objects Using
PDM panel displays.

2. Make sure the generation library does not contain journal receivers:

m If nojournal receivers are listed, delete the generation library. Continue with
the Deleting a Generation Library section.

m If journal receivers are listed, continue with the next step.

3. Delete the journal receivers. Enter 4 to the left of all receivers and press Enter. The
system asks you to confirm the deletions. Press Enter to confirm.

4. If a break message displays, indicating the journal receiver has not been saved,
enter | (Ignore) and press Enter.

5. When the process finishes, delete the generation library.

You must end journaling for access paths and physical files before you delete the journal
receivers and journals.

1. End journaling for access paths. Enter the following and press Enter.

ENDJRNAP FILE(*ALL) + JRN(SQL-library-name/your-journal-name)

1. Endjournaling for physical files. Enter the following and press Enter.

ENDJRNPF FILE(*ALL) + JRN(SQL-library-name/your-journal-name)

1. When you have ended journaling for access paths and physical files, return to the
Work with Objects Using PDM panel.

2. Delete the journals. Enter 4 to the left of all journals and press Enter. The system
asks you to confirm the deletions. Press Enter to confirm.

3. When you finish deleting the journals, return to the Specify Objects to Work With

screen. Press F3. You are ready to delete the journal receivers.

50 Administration Guide

Managing CA 2E Models

Delete Journal Receivers

To delete journal receivers, perform the following steps:

1. Specify that you want to work with journal receivers in the SQL collection you are
deleting:

a. Inthe Library field, enter the name of the SQL collection you are deleting.

b. Inthe Type field, enter *JRNRCV and press Enter. The Work with Objects Using
PDM panel displays.

2. Check to make sure the library does not contain journal receivers.

m If nojournal receivers are listed, you can delete the SQL collection. Continue
with the next section, Deleting the SQL Collection.

m If journal receivers are listed, continue with the next step.

3. Delete the journal receivers. Enter 4 to the left of all receivers and press Enter. The
system asks you to confirm the deletions. Press Enter to confirm.

4. If a break message displays, indicating the journal receiver has not been saved,
enter | (Ignore) and press Enter.

5. When the process finishes, delete the SQL collection.

Deleting the Generation Library

To delete the generation library, enter the following and press Enter.

DLTLIB LIB(generation-library-name)

Deleting an SQL Collection

You can use the DLTLIB command to delete an SQL collection associated with the model
library. Deleting an SQL collection requires that you delete any journal receivers and
journals, including access paths and physical files, within the SQL collection before you
delete the collection.

Deleting Journal Receivers and Journals from the SQL Collection

If the SQL collection contains a journal, the DLTLIB command will not complete. Before
you delete an SQL collection, make sure it does not contain a journal.

Chapter 2: Creating and Managing Your Model 51

Managing CA 2E Models

Checking for Journals

To check for journals in an SQL collection, perform the following steps:

1. To access the Programming Development Manager (PDM), enter STRPDM and press
Enter. The IBM i Programming Development Manager (PDM) panel displays.

2. Select the Work with objects option. The Specify Objects to Work With panel
displays.

3. Specify that you want to work with journals in the SQL library you are deleting:
a. Inthe Library field, enter the name of the SQL collection you are deleting.

b. Inthe Type field, enter *JRN and press Enter. The Work With Objects Using
PDM panel displays.

c. Record the name of the journal in your SQL collection.

4. Return to a command line. Press F3 until a command line displays.

Deleting the SQL Collection

More Information

To delete the SQL collection, enter the following and press Enter.

DLTLIB LIB(SQL-library-name)

For more information about the DLTLIB command, see Volume 3 of the i OS CL
Reference.

52 Administration Guide

Managing CA 2E Models

Renaming an CA 2€ Model

The Rename Model (YRNMMDL) command lets you change the model name. This
command also updates the generation library and any library list or model values that
use the model or generation library name. This command does not rename an SQL
collection or change the YMHPLBA data area (location of Help text).

You can use the YRNMMDL command to rename a model as it progresses through its
life cycle.

Use the YRNMMDL command to rename a model rather than the i OS Rename Library
(RNMLIB) command. If you use RNMLIB, the internal model values will be inaccurate.

Note: You cannot use a library while it is being renamed.

For example, to rename a model and its generation library, enter the following and
press Enter.

YRNMMDL MDLLIB(current-model-library-name) +
NEWMDLLIB(new-model-library-name) +
GENLIB(current-generation-library-name) +
NEWGENLIB (new-generation-library-name)

CA 2E sends messages as the command updates the library lists. When the model has
been renamed,CA 2E sends the following message:

Model (model-library-name) renamed to (new-model-library-name).

You can also prompt this command by entering the command and pressing F4

Chapter 2: Creating and Managing Your Model 53

Chapter 3: Using Your Model

Menus

More Information

This chapter describes the CA 2E Main Menu; how to access your model; features
common to CA 2E programs, such as narrative text, online help, and the Display Services
Menu; and features invoked with line selection values.

This section contains the following topics:

Menus (see page 55)

Accessing Your CA 2E Model (see page 63)
Edit Database Relations Panel (see page 67)
Edit Device Design Panel (see page 71)

Edit Action Diagram Panel (see page 72)

Using Application Areas (see page 77)

Using Line Selection Options (see page 81)
Locking Objects (see page 84)

Using Narrative Text (see page 94)

Displaying Model Object Cross References (see page 97)
Using the Display Services Menu (see page 98)
Using Online Help (see page 101)

The CA 2E menu system uses the Toolkit menu facility. This facility lets you execute
programs or CLP commands, or to display other menus and panels by selecting menu
options.

For more information about the Toolkit menu facility, see the Toolkit Concepts guide.

For more information about the Toolkit menu facility, see the Toolkit Concepts guide.

Chapter 3: Using Your Model 55

Menus

Main Menu

The CA 2E Main Menu is the product menu from which you access your model, change
the library list to work with another model, invoke all CA 2E commands, and access CA
2E and various related CA Xtras products.

To start CA 2E and display the Main Menu, enter the following Toolkit command and
press Enter:

YGO *Y2

Or, if you intend to work with a model:

YSTRY2 model -name

The Main Menu displays.

MAIN CA 2E Main Menu
Level . : 1
System: SYNONDV1
Select one of the following:
Design Model 1. Display Designer (*DSNR) menu
2. Display Programmer (*PGMR) menu
3. Display User (*USER) menu

8. Work with Model Object Lists
9. Change to work with another model

Commands 50. CA 2E commands in alphabetical order

51. Commands to set up or alter a model
52. Commands to copy a model
53. Commands to create an application
54. Commands to document a model
More...
Selection or command

==>
F3=Exit F6=Messages F8=Rev retrieve F9=Retrieve F10=Cmd Entry F14=Sbm jobs

Maximum capability to access model MYMDL is *DSLK.

The first panel of the Main Menu provides a set of Design Model options and access to
commands grouped according to function.

Scroll to view the second panel of the Main Menu for access to more commands and
various CA Xtras products.

56 Administration Guide

Menus

MAIN
Level . : 1

Other Products

Selection or command

=

F3=Exit F6=Messages

F8=Rev retrieve F9=Retrieve F10=Cmd Entry F14=Sbm jobs

CA 2E Main Menu

System:
Select one of the following:

. Commands to work with Model Objects

. Commands to work with Model Object Lists

. Change Control Facilities commands

. Change Management (CM)
. 400 Toolkit

. Model Investigator (MI)
. Gateway

. Performance Expert (PE)
. Translator

. Signoff
. Endpasthr

Maximum capability to access model MYMDL is *DSLK.

SYNONDV1

Bottom

More Information

For more information about Design Model options, see the next section, Design Model

Options, in this chapter.

Design Model Options

Although the function of most of the options listed on the Main Menu is clear from the

name of the option, the first set of options, Design Model, require additional

explanation. These options provide the following capabilities:

m Aset of submenus listing the common tasks for each of the three user types:
designer, programmer, and user. Your user type determines when you can access
the model and what types of modifications you can effect. These submenus are
described in the following sections.

m Access to the Work with Model Lists utility.

m The ability to change to work with another model by invoking the Change Library
List (YCHGLIBL) command.

Chapter 3: Using Your Model 57

Menus

More Information

For more information about:

m User types and their related authorities, see Controlling User Access in the chapter
"Using Your Development Environment."

m Model object lists and the Work with Model Lists utility, see the chapter "Managing
Model Objects" in the Generating and Implementing Applications guide.

m Library lists, see Managing Model Lists in the chapter "Using Your Development
Environment."

User-Type Submenus

Following are descriptions of the three submenus listing the tasks available for each of
the three user types: designer, programmer, and user. Your user type determines when
you can access the model and what types of modifications you can effect.

58 Administration Guide

Menus

Designer (*DSNR) Menu

The CA 2E Designer (*DSNR) Menu provides a list of tasks available to users with *DSNR
authority. Use either of the following methods to access this menu.

m Select the Display Designer (*DSNR) menu option from the CA 2E Main Menu.

m Enter the following YSTRY2 command at a command line:
YSTRY2 model-library-list name MENU(DSNR)

The first panel of the Designer (*DSNR) Menu displays.

DSNR CA 2E Designer (*DSNR) Menu
Level . : 1 System: SYNONDV1

Select one of the following:

Edit Database Relations

Services Menu

Edit Default Model Object List

Edit Session List (changed objects)
Work with Model Objects

Load model and display command line

Enter Model

OV WN

Work with Model Object Lists
Change to work with another model

O 00

Open Access: ? 10. Change Open Access Model Value
enter with *NO 11. Edit Database Relations
12. Services Menu More...

Selection or command

==>
F3=Exit F6=Messages F8=Rev retrieve F9=Retrieve F10=Cmd Entry F14=Sbm jobs

Maximum capability to access model MYMDL is *DSLK.

Scroll down to display the second panel of the Designer (*DSNR) Menu.

Chapter 3: Using Your Model 59

Menus

DSNR CA 2E Designer (*DSNR) Menu
Level . : 2

Select one of the following:
13. Edit Default Model Object List
14. Work with Model Objects
15. Load model and display command line

19. Synchronise model

Model Profile 20. Edit Model Profile for Model

21. Edit Default Model Profile for Model
Authority 30. Edit Model Authority (access to model)
Library list ? 40. Change name of library list for model

41. Edit library list for model

Selection or command

=

Maximum capability to access model HTSD7IMDL is *DSLK.

System:

MARVINS

More..

F3=Major menu F6=Msg F8=Rev retrieve F9=Retrieve F10=Cmd entry F24=More

Scroll down once again to see the third panel.

DSNR CA 2E Designer (*DSNR) Menu
Level . : 2

Select one of the following:

Auto naming
YEDTNXTMNC ? 50. Edit Next Mnemonic

Selection or command

=

Maximum capability to access model HTSD7IMDL is *DSLK.

System:

MARVINS

Bottom

F3=Major menu F6=Msg F8=Rev retrieve F9=Retrieve F10=Cmd entry F24=More

The *DSNR tasks shown on this menu are grouped functionally as follows:

60 Administration Guide

Menus

Enter Model Options

The Enter Model options let you choose which of several panels to display first when
you enter your model. The following panels and options are described in this chapter.

m Edit Database Relations—This option is the same as specifying *EDTDBREL on the
YEDTMDL command.

m (Display) Services Menu—This option is the same as specifying *SERVICES as the
entry point on the YEDTMDL command.

m Load model and display command line—This option loads the model and displays a
command line. Use it to execute a series of commands without needing to reload
the model for each command. It is the same as specifying *NONE as the entry point
on the YEDTMDL command.

m Change (the library list) to work with another model—This option invokes the

Change Library List (YCHGLIBL) command.

The options that display panels that let you work with model objects and model object
lists are described in the Generating and Implementing Applications guide.

More Information

For more information about:

m The YEDTMDL command, see the Accessing Your CA 2E Model section in this
chapter.

m The YCHGLIBL command, see the Managing the Model Library Lists section in the
"Using Your Development Environment" chapter in this guide.

m Model object list panels, see the "Managing Model Objects" chapter in the
Generating and Implementing Applications guide.

Open Access: Enter with *NO Options

These options give you exclusive access to the model; in other words, they let you
temporarily override the Open Access (YOPNACC) model value. If other designers or
programmers are working in the model when you try to use these options, you will be
denied access. Most of the options are the same as the Enter Model options and let you
choose which of several panels to display first when you enter the model.

In addition, there are two options for tasks that can only be performed by a designer
(*DSNR) with exclusive access to the model.

m Change Open Access Model Value—The YOPNACC model value controls whether
programmers and designers can use the model at the same time.

m Synchronize Model—Synchronizing the model ensures that any changes a designer
makes to the relations in a model are reflected in all CA 2E file entries of the model.

Chapter 3: Using Your Model 61

Menus

More Information

Model Profile Options

Authority Option

Library List Options

For more information about:

m Open access and the YOPNACC model value, see the Creating a CA 2E Design Model
section in the "Creating and Managing Your Model" chapter in this guide.

m Synchronizing your model, see the File Locks section in this chapter.

Each user in a model has an associated model profile that defines defaults for various
processes and file specifications for an interactive session. The default model profile is
shipped with CA 2E and is usually the source for creating model profiles for individual
users. The Model Profile options let you modify both the default and user model profiles
in order to tailor the development environment. However, note that only a designer can
change the default model profile.

This option lets you edit authority to i OS objects that CA 2E uses to control user access
to the model.

The Library List options include:

m Change name of library list for model—This option lets you reset the name of the
model’s library list stored in the YLIBLST model value.

m Edit library list for model—This command invokes the Toolkit Edit Library List
(YEDTLIBLST) command and displays the Edit Library List Entries panel where you
can edit the current library list.

62 Administration Guide

Accessing Your CA 2E Model

Programmer (*PGMR) Menu
The CA 2E Programmer (¥*PGMR) Menu provides a list of tasks available to users with
*PGMR authority. Use either of the following methods to access this menu.
m Select the Display Programmer (*PGMR) menu option from the CA 2E Main Menu.

m Enter the following YSTRY2 command at a command line:
YSTRY2 model-library-list name MENU(PGMR)

This menu contains a subset of the options available to designers (*DSNR). The Enter
Model options let you choose which of several panels to display first when you enter
your model. However, note that a programmer cannot create or maintain files, fields,
relations, or entries. As a result, the Edit Database Relations panel will be view only.

This menu also lets you change the current library list to work with another model and
to edit your own model profile.

User (*USER) Menu
The CA 2E User (*USER) Menu provides a list of tasks available to users with *USER
authority. Use either of the following methods to access this menu.
m Select the Display User (*USER) menu option from the CA 2E Main Menu.

m Enter the following YSTRY2 command at a command line:
YSTRY2 model-library-list name MENU(USER)

This menu provides a restricted set of the options available to a programmer (*PGMR).
Note that all options on this menu provide view-only access to a model.

Accessing Your CA 2E Model

In addition to using the Toolkit menu facility described in the previous section, you can
access a model with the following CA 2E commands:

m The Start CA 2E (YSTRY2) command lets you set the library list you want to work
with and to display a CA 2E menu. The default is the CA 2E Main Menu.

m The Edit Model (YEDTMDL) command lets you access the model. You can invoke
this command from the CA 2E Main Menu.

The remainder of this section describes these two commands in detail and explains how
to set and edit your model library list.

Chapter 3: Using Your Model 63

Accessing Your CA 2€ Model

Access Your Model Using the YSTRY2 Command

Access your model by entering the Start CA 2E (YSTRY2) command at a command line, as
is shown in the following examples:

m |f you know the name of the model library list, enter the following and press Enter:

YSTRY2 (model-library-list-name)

For example:

YSTRY2 MYMDL

The command changes the current library list to the library list for the model and
displays the CA 2E Main Menu.

m |f you do not know the name of the model library list, you can select from a list.
Enter the following and press Enter:

YSTRY2 *SELECT

A panel displays a list from which you can select the library list you want. When you
select a list, the command changes the current library list to the list you selected
and displays the CA 2E Main Menu.

m [f you want to display a menu other than the CA 2E Main Menu, you can use the
Menu option either to select from a list of existing menus or specify another menu.
For example, to display the CA 2E Designer (*DSNR) Menu, enter the following:

YSTRY2 MYMDL MENU(DSNR)

To select from a list of menus enter:

YSTRY2 MYMDL MENU(*SELECT)

64 Administration Guide

Accessing Your CA 2E Model

Accessing Your Model Using the YEDTMDL Command

Access your model by entering the Edit Model (YEDTMDL) command at a command line.
The following describes the options available on this command:

User Type—The user designation determines when you can access the model and
what types of modifications you can effect. Designer is the default user designation
for YEDTMDL. To invoke the YEDTMDL command as a:

- Designer, enter *DSNR for the User option and press Enter.
- Programmer, enter ¥*PGMR for the User option and press Enter.

- User, accessing the model in a view-only mode, enter *USER for the User
option and press Enter.

Note: After entering a model as either *DSNR or *PGMR, do not attempt to enter
another model without exiting the current model. Always exit and save your changes
before changing to another model’s library list.

In addition to user type, you can also specify the following when invoking the YEDTMDL
command:

Job List—This is the name of the job list containing the names of source members
to be generated and/or compiled. *MDLPRF defaults to the job list name specified
in your model profile.

Model entry point—This specifies which of the following panels to display on entry
to the model:

- *EDTDBREL (Edit Database Relations, the default)
— *EDTMDLLST (Edit Model Object List)
- *SERVICES (Display Services Menu)

- *NONE (This option loads the model and displays a command line. Use it to
execute a series of commands without needing to reload the model for each
command. In addition, this option can be used to lock a user into the model
based on a user designation.)

Session List—This specifies the model object list that is to be the target for model
objects that are changed during the editing session. *MDLPRF defaults to the
session list specified in your model profile.

Open Access to the Model—This option allows a *DSNR exclusive access to the
model. The option displays only if the YOPNACC model value is set to *YES and can
be overridden only by a *DSNR with *LOCK authority.

Model Object List—This is the name of the model object list to edit on the Edit
Model Object List panel when the model entry point is *EDTMDLLST. *MDLPRF
defaults to the list specified in your model profile. Specify *ALLOBJ to edit model
objects rather than model object list entries.

Chapter 3: Using Your Model 65

Accessing Your CA 2€ Model

When you select the options you want, the CA 2E logo window displays with the user
type you selected displayed in a window in the center of the panel. Following the CA 2E
logo, the panel corresponding to the entry point you selected displays. You are ready to
edit the model.

More Information

For more information about:

m User access and control, see the "Using Your Development Environment" chapter in
this guide.

m Open access, see the Open Access section in the "Creating and Managing Your
Model" chapter in this guide.

m Model object lists and the model profile, see the "Managing Model Objects"
chapter in the CA 2E Generating and Implementing Applications guide.

Setting and Editing the Library List for Your Model

The YEDTMDL command defaults to the library list of the current job. If you use the
YSTRY2 command to access your model, the list is changed to the specified library list as
YSTRY2 executes.

Setting the Library List with the Change Library List Command

You can change your library list with the Change Library List (YCHGLIBL) command. This
command replaces the current library list with the list you select. You can invoke the
YCHGLIBL command either from a command line or from the CA 2E Main Menu with the
option Change to work with another model.

Editing the Library List
You can edit the current library list using the CA 2E Designer (*DSNR) Menu.

To access the *DSNR Menu:

1. Enter the following from any command line:

YSTRY2 model-library-list-name MENU(DSNR)

1. Select the Edit library list for model option.

66 Administration Guide

Edit Database Relations Panel

YLIBLST Model Value

More Information

Edit Database

The Create Model Library (YCRTMDLLIB) command sets the YLIBLST model value to the
library list specified by the LIBLST parameter when a model is created.

When you invoke a command that loads a model,CA 2E checks the current job’s library
list for the specified model library. If it cannot find the specified model library,CA 2E
automatically replaces the current job’s library list with the library list specified by the
YLIBLST model value for the requested model. When the command completes,CA 2E
resets the current library list back to the original library list.

For more information about changing and editing library lists, see the Managing the
Model Library Lists section in the "Using Your Development Environment" chapter in
this guide.

Relations Panel

The Edit Database Relations panel is the center of CA 2E.This panel enables the designer
to enter relation statements that define a model. Each statement uses file and field
names that assert a declaration about your model or application; for example, Order
Known by Order Code.

EDIT DATABASE RELATIONS SYMDL
= Rel Lvl:
? Typ Object Relation Seq Typ Referenced object
FIL Order Known by 10 FLD Order code
FIL Order Has 20 FLD Order date
FIL Order Has 30 FLD Order status
FIL Order Refers to 40 FIL Customer
FIL Order Refers to 50 FIL Employee
FIL Order Refers to 60 FIL Product
FIL Order Detail Owned by 10 FIL Order
FIL Order Detail Known by 20 FLD Order line number
FIL Order Detail Has 30 FLD Order quantity
FIL Order Detail Has 40 FLD Line total
FIL Order Detail Refers to 50 FIL Product
More...
Z(n)=Details F=Functions E(n)=Entries S(n)=Select F23=More options
F3=Exit F5=Reload F6=Hide/Show F7=Fields F9=Add/Change F24=More keys

The Edit Database Relations panel has a number of edit and navigation aids that
expedite model design and maintenance.

Chapter 3: Using Your Model 67

Edit Database Relations Panel

More Information

For information about a utility that serves as an alternate entry point to your model, see
the Edit Model Object List Panel section in this chapter.

Edit Aids

Edit aids include:

m Multi-line full screen entry—You enter data from a subfile display that lets you
enter many relations at one time.

m [nteractive validation—The program carries out a number of checks to ensure that
you used the correct syntax.

® Unordered entry—You can enter relations as they occur to you.CA 2E sorts them in
alphabetical order by file and into default order of relations within the file.

m Abbreviated entry of keywords—You can use a single letter abbreviation for
relations.

= Duplication and reference functions—By using selection facilities, you can
duplicate values from the previous line or select from a list of existing values.

Navigation Facilities

Navigation facilities include:
m Reordering—The system displays the relations in alphabetical order by subject line.

m Repositioning—You can position the display to show relations starting at a
particular name or partial name.

m Grouping—You can control which relations display.
m Selection—You can determine the allowed values for controlling the display.

m Explosion—The system helps you visualize what the implemented database will
look like by resolving the relations for a file into entries for that file.

68 Administration Guide

Edit Database Relations Panel

Subsidiary Facilities of Edit Database Relations Panel

Grouping Facilities

Entering the relation statements is the top level activity of using CA 2E. The top level
panel is concerned with only the names of the CA 2E objects in the model and the
relations between them. From the Edit Database Relations panel, you can branch to a
number of supporting functions to add the details of your design.

For example, you can:

m Add explanatory text.

m Create new CA 2E objects.

m Add details about CA 2E objects.

m Add virtual fields to relations.

m Display all entries on a file.

m Define additional CA 2E functions to operate on the objects.

m Examine the field data dictionary.

m Display existing CA 2E objects and valid code types.

From the Edit Database Relations panel, you can also specify selection criteria to control
which part of the model displays to you for editing. You can use any of the following
criteria:

m Application area

CA 2E object name or partial name

Relation usage group

m Referenced CA 2E object type

Referenced CA 2E object name or partial name

Branching to Other Facilities

More Information

From the Edit Database Relations panel, you can branch to all other CA 2E facilities:
m Function keys let you branch to general facilities, such as the Display Services Menu.

m Selection values let you invoke facilities that apply to a particular relation or object.

For more information about this feature, see the Using Line Selection Values section in
this chapter.

Chapter 3: Using Your Model 69

Edit Database Relations Panel

Exiting Edit Database Relations Panel

When you are ready to exit from Edit Database Relations, press F3.

The Exit Edit Relations window displays with the exit options. If you updated the model,
the window displays the following message:

** Model 1is not synchronized **

Enter the number for the exit option you want and press Enter. The option you select
depends on whether you need to resynchronize the model. Synchronizing a model
ensures that the CA 2E file entries of the model reflect any changes to the relations in
the model.

If you:

m Do not want to resynchronize the model, select the option, Exit without
resynchronizing.

m Want to resynchronize the model, select the option Exit and resynchronize data
model. You can select this option only if you are a *DSNR with exclusive access to
the model.

m Want to return to editing, select the option Return to editing.

m Select an exit option, the Main Menu displays.
More Information

For more information about synchronizing a model, see the File Locks section in this
chapter.

Edit Model Object List Panel

The Edit Model Object List panel serves as an alternate entry point into your model. It
has a PDM-like interface which you can use to perform most functions available from
the Edit Database Relations panel, not including editing relations and creating model
objects.

You can temporarily transfer to the Edit Database Relations panel from the Edit Model

Object List panel by entering YEDTMDL or Y2 on the command line. When you finish
your editing, press F3 to return to the Edit Model Object List panel.

More Information

For more information about the Edit Model Object List panel, see the "Working with
Model Objects" chapter in the CA 2E Generating and Implementing Applications Guide.

70 Administration Guide

Edit Device Design Panel

Edit Device Design Panel

The Edit Device Design panel lets you design device formats; that is, panel and report
layouts, for your functions.CA 2E presents you with a full image of the panel you are
designing with the correct data attributes for each field type.

creates a default device layout as a starting point. The default layout provides a
placement of the fields according to function type and brings in all relevant field default

values.

*PROGRAM *PGMMOD
Branch code :

Type options, press Enter.

4=Delete
Opt Branch Branch Name
code
F3=Exit F4=Prompt F9=Change

Edit Branch

Branch Phone
number

DD/MM/YY HH:MM:SS

Edit Device Design Facilities

The Edit Device Design panel includes a number of facilities that let you design panels

and reports efficiently. You can:

m Vertically align fields with other fields.

m Split lines into two parts or combine two lines into one.

m Choose from three positions for the object text: Above the field, to the left of the
field, as a column heading. Moving a field moves the associated text.

m Hide fields on the panel.
m Move fields relative to one another within their format.

m Add function fields and/or constants to the panel. You can search the data
dictionary for existing fields.

m OQOverride and/or condition field display attributes.

Chapter 3: Using Your Model 71

Edit Action Diagram Panel

Exiting the Edit Device Design Panel

When you use the Edit Device Design panel to alter a panel or report,CA 2E does not
permanently store your changes until you exit from the editor.

1. When you are ready to exit from an Edit Device Design panel, press F3. The Edit
Function Devices panel displays.

2. Press F3 to display the exit options on the Exit Function Definition panel. Leave or
change the defaults.

3. When you finish, press Enter to exit the panel.

Edit Action Diagram Panel

The Edit Action Diagram panel lets you specify the processing steps for a CA 2E function.
For standard functions, a default action diagram displays. By using line commands, you
can insert additional actions at certain points, called user points.

EDIT ACTION DIAGRAM Edit SYMDL Customer
FIND=> Edit Customer
I(C,I,S)F=Insert construct I(X,0)F=Insert alternate case
I(A,E,Q,*,+,-,=,=A)F=Insert action IMF-Insert message

>Edit Customer

. ...Initialize <--

. .=REPEAT WHILE

-*ALWAYS
...Load first subfile page <--

I
| PGM *Reload subfile = CND.*NO
| > Conduct screen conversation
. | =REPEADT WHILE
. | |-PGM.*Reload subfile is *NO
| | Display screen

I

I

| ...Process response <--
. . -ENDWHILE
. . -ENDWHILE
. ...Closedown <--

F3=Prev block F5=User points F6=Cancel pending moves F23=More options
F7=Find F8=Bookmark F9=Parameters F24=More keys

72 Administration Guide

Edit Action Diagram Panel

Edit Action Diagram Facilities

The Edit Action Diagram panel includes a number of facilities that let you manipulate an
action diagram. You can:

Add, delete, copy, or move constructs.
Control which portions of the action diagram display.

Insert calls to other functions. Symbols on the right side of the panel indicate the
user points at which you can add your own processing.

In addition, function keys let you:

Display a pull-down menu that lists the user points. From the menu, you can
transfer to any user point.

Display the date a user point or function was updated.

Display the Action Diagram Services panel. This panel lets you search for any
occurrence of a function, field (including where the field is used as a parameter to a
function), or change date. From this panel, you can also reset change dates.

Note: The Usage field allows for | (Input), O (Output), B (Both), and U (Updated).
Display the Edit Device Design panel.

Display the Edit Function Parameters panel. This panel lets you update the
parameters associated with the function.

Exiting the Edit Action Diagram Panel

When you use the Edit Action Diagram panel to alter an action diagram,CA 2E does not
permanently store your changes until you exit from the editor.

1.

When you are ready, exit from the Edit Action Diagram panel. The Exit Function
Definition panel displays with the exit options.

Leave or change the defaults.

When you finish, exit the panel. Press Enter.

Chapter 3: Using Your Model 73

Edit Action Diagram Panel

Action Diagram Line Commands and Function Keys
Line Commands
The following table lists and describes the Edit Action Diagram Line Commands.

Note: Use the value in parentheses when you want the command to prompt you.

Line Command and

Command Prompt Description

IS (ISF) Insert sequence

1A (IAF) Insert action

IC (ICF) Insert case condition

10 (IOF) Insert *OTHERWISE condition

IX (IXF) Insert new condition within case

I (1F) Insert iteration

I* (I*F) Insert comment

I+ (1+F) Insert *ADD built-in function

- (I-F) Insert *SUB built-in function

I= (1=F) Insert *MOVE built-in function

I=A Insert *MOVE ALL built-in function

IE (IEF) Insert a *EXIT PROGRAM built-in function

Q (1QF) Insert *QUIT built-in function

IM (IMF) Insert message function

F Edit action or condition details for line

FF Edit action parameters line

C Copy this construct to a point indicated by ‘A’
or ‘B’

cC Block copy boundary
Bound by another CC

M Move this construct to a point indicated by ‘A’
or ‘B.

MM Block Move boundary
Bound by another MM

A Place copied or moved construct after this line

74 Administration Guide

Edit Action Diagram Panel

Line Command and

Command Prompt Description

D Delete this construct

DD Block Delete boundary
Bound by another DD

B Place copied or moved construct before this
line

H Hide construct

N Edit object narrative

PR Protect a block

R Display function/message references

U Display function/message usages

S Show construct

T Return to top level of action diagram

u Unzoom out of construct to previous construct

\Y View summary of selected block

z Zoom into construct

? Prompt line commands

* Activate/Deactivate construct

** Block activate/deactivate construct

NR Copy to notepad and replace existing notepad
contents

NRR Block copy Replace to notepad
Bound by another NRR

NA Copy to notepad and append to existing
notepad contents

NAA Block Copy Append to notepad
Bound by another NAA

NI Insert entire current notepad contents after

this line

Chapter 3: Using Your Model 75

Edit Action Diagram Panel

Function Keys

The following table lists and describes Edit Action Diagram Product Function Key

settings.

Function Key Description

F3 Return to place of previous zoom or exit

F5 Display user points

F6 Cancel pending moves

F7 Find

F8 Create a bookmark

F9 Edit parameters

F12 Unzoom, one block at a time

F13 Exit action diagram

F14 Display CA 2E Map

F15 Opens functions

F16 Display date user point or function was updated
F17 Display Action Diagram Services menu

F18 Access Notepad and exit Notepad

F19 Edit device design

F20 Display bookmarks

F21 Toggle implementation names and function types
F13 More line commands

F24 More keys

76 Administration Guide

Using Application Areas

Using Application Areas

The CA 2E application area feature lets you divide your model into groups of files. You
can display, edit, or operate on these groups in isolation from the rest of your model.
You can create many types of application areas. For example, you can create an
application area for your accounts payable files.

Note: Application areas apply only to files.CA 2E model objects lists and associated
panels and commands provide a method for grouping model objects that is independent
of object type. You can access this facility using the Edit Model Object List
(YEDTMDLLST) command.

You define application areas using a panel accessed from the Edit Database Relations
panel. Once you define an application area, you can use it to control the type of
information that displays on CA 2E interactive panels or prints when you invoke
documentation commands.

Each application area must have a valid name and a three-character code. The name
and code must be unique within the model. For example, you can represent orders by
ORD.

Each application area can contain one or more files. A file can be in more than one
application area.

More Information

For more information about model object lists and the YEDTMDLLST command, see the
"Managing Model Objects" chapter in the Generating and Implementing Applications
guide.

System Application Area

CA 2E automatically defines a special system application area. This area contains all CA
2E files in the model. Model value YMDLTXT specifies the text for the system application
area. You can attach narrative text to the system application area to describe the model.
You cannot delete the system application area.

Application Area Codes

You can use application area codes as:
m Selection values at the top of CA 2E interactive panels.

m Selection parameters for CA 2E documentation commands.

Chapter 3: Using Your Model 77

Using Application Areas

Application Areas as Selection Values

When an application area code is a selection value displayed at the top of a panel, only
CA 2E objects belonging to that area are displayed. For example:

The Edit Database Relations panel displays the relations for only those CA 2E files
that belong to that object.

The Display All Access Paths panel displays the access paths for only those files
within that application area.

The Display All Functions panel displays the functions for only those CA 2E functions
that belong to files within the application area.

Note: All of the functions that are available from the EDIT FUNCTIONS panel are
also available from this panel, to include C-Copy, Y=Y2CALL, U=Usages,
R=References, and O=0Open.

Application Areas as Selection Parameters

When an application area code is a selection parameter for CA 2E documentation or job
list commands, only objects that belong to the specified application area are included in
the result. For example:

Document Model Relations (YDOCMDLREL)
Document Model Files (YDOCMDLF)

Document Model Functions (YDOCMDLFUN)
Document Model Access Paths (YDOCMDLACP)
Document Model Application Areas (YDOCMDLAPP)
Build Job List (YBLDJOBLST)

78 Administration Guide

Using Application Areas

Displaying/Editing Application Areas

More Information

The application area feature includes a panel, Edit Application Areas, that lets you
display and update existing application areas. You can access this panel from the Edit
Database Relations panel by either of the following methods:

m Enter a question mark (?) in the application area code field and press Enter. This
field is located at the top of the panel, with an arrow to the left of the field.

m Access the Display Services Menu. Select either the Display all access paths or
Display all functions options. From the panel that displays, enter ? for the
Application area option at the upper left of the panel.

The Edit Application Areas panel displays. From this panel you can:

m Delete an application area.

m Create, display the details for, and edit an application area.

m Add narrative text.

You can begin the list with a particular application area by entering the code for the

application area in the Area field, identified by Position Display. When you press Enter,
the display begins with the selected application area.

For more information about:

m Deleting an application area, see the Deleting an Application Area section in this
chapter.

m Creating, displaying the details for, and editing an application area, see the
Creating/Editing an Application Area section in this chapter.

m Adding narrative text, see the Using Narrative Text section in this chapter.

Deleting an Application Area

You can delete an application area by entering D in the line selection field to the left of
the application area you want to delete and pressing Enter. The message *DELETED
displays in the descriptive text field for the application area you deleted.

Creating/Editing an Application Area

From the Edit Application Areas panel, you can access the Edit Application Details panel,
from which you can create an application area or edit an existing area.

Chapter 3: Using Your Model 79

Using Application Areas

Displaying Files

The Edit Application Details panel displays the CA 2E files currently in an existing
application area. To display:

Files beginning with a particular file, place the cursor in the File Name field,
identified as Position display, and enter the name of the file with which you wish to
begin. When you press Enter, the display begins with the selected file.

All files regardless of application area, press F9. To display only the files currently in
this application area, press F9 again. The message **SELECTED FILES** displays in
the upper right corner of the panel.

Creating an Application Area

To create an application area:

1.

From the Edit Application Areas panel, select the option to add an application area.
Press F9. The Edit Application Details panel displays.

Enter a three-character code and a name for the application area.

Select the files you want to include in the area. Enter a plus sign (+) in the selection
lines for the file names. If you are not sure you want to include a file, you can
display narrative text by entering N in the selection line for the file and pressing
Enter.

When you have defined the application area, accept your entries. Press Enter. The
selected files are highlighted and identified with an asterisk to the left of the file.

Exit the panel. Press F3. The Edit Application Areas panel displays with the
application area you created added to the list.

80 Administration Guide

Using Line Selection Options

Editing an Application Area

To edit an application area:

1. From the Edit Application Areas panel, select the application area you want to edit.
Enter Z in the selection line for the application area and press Enter. The Edit
Application Details panel displays.

2. Edit the panel as necessary:

m To change the code and/or name for the application area, press F8 and enter
over the information you want to change.

m To display or add narrative text for a file, enter N in the selection line for the
file and press Enter.

m Toselect or deselect a file, enter a plus sign (+) to select or a minus sign (-) to
deselect in the selection line for the file.

3. When you finish editing, press Enter.

4. When you are ready to return to the Edit Application Areas panel, press F3 (Exit).
Make sure you press Enter first to accept the changes you made.

More Information

For more information about narrative text, see the Using Narrative Text section in this
chapter.

Using Line Selection Options

Certain features common to CA 2E interactive programs let you perform tasks on the
objects listed on a particular panel. Some of these features—locked objects, narrative
text, and model object cross references—are discussed in detail in this chapter.

You can invoke these features where a panel of items includes a selection option
column to the left of the item column. A value, called a line selection value, attaches to
each feature. You invoke the feature by entering the line selection value next to the
item and pressing Enter.

The bottom of the panel displays a list of the line selection values available from that
panel. Each possible value represents an action. The following table lists the standard
line selection values.

Value Description

A Associated access path

Select access path for functions

Animate

Chapter 3: Using Your Model 81

Using Line Selection Options

Value Description
C Copy this item
D Delete this item
E Edit source for this item
Entries
EO Redirection
F Display functions for this item Action diagram Function
references
G Generate source interactively
H Hold or release this item
J Generate source in batch
L Display locks for this item Lock item
M Mapping field parameters
N Edit narrative text for this item
0 Prompt overrides for this item Add to open functions list
P Display parameters for this item
Q Resequence
R Relations
Redirect
Replace
File dependencies
S Device designs
send message
T Trim
Structure
Reset default for F4 function
Subset by referenced object
U Display usages for this item
\Y Edit virtual fields for this item
Virtualize
Xorl Select this item

82 Administration Guide

Using Line Selection Options

More Information

Value Description

z Show details for this item

Alternatively, the Edit Model Object List panel provides a set of numeric line selection
options for performing actions on your model objects.

For more information about the numeric line selection options, see the "Managing
Model Objects" chapter in the Generating and Implementing Applications guide.

Chapter 3: Using Your Model 83

Locking Objects

Locking Objects

Locks are used to prevent two developers from updating and/or accessing the same
object at the same time; they apply to both interactive and batch jobs. An object is
locked while it is in use.CA 2E provides the following categories of locks:

m Object locks—Object locks apply to functions and access paths and can be:

- Temporary—A developer is using or updating an access path or function.

- Permanent—A designer is preventing all changes to an access path or function.
m File locks—File locks apply only to files and can be:

- *READ—(Read Lock) A developer is using the file.

- *EXCL—(Exclusive Lock) A designer is updating the file.

— *SYNC—(Synchronize Lock) A designer has left the model without expanding an
updated file; the existing *EXCL lock is converted to a *SYNC lock.

m Field locks—Field locks are functionally similar to object locks and apply only to
fields. They can be:

- *READ—(Read Lock) A developer is using the field.
- *EXCL—(Exclusive Lock) A designer is updating the field. An *EXCL field lock can

cause implicit *EXCL locks to be set on other fields and files.

The following table gives an overview of the three categories of locks. Each is discussed
in more detail in this section.

Lock Objects that Lock Meaning of Authority Needed
Category CanBe Type Lock to Set Lock
Locked

Object Access Paths Temporary A developeris using *ANY
Locks Functions or updating an access
path or function.

Permanent A developerisusinga *DSNR with

file. additional rights
File locks Files *READ *ANY
*EXCL A designer is updating *DSNR
a file.
*SYNC *DSNR
Field Fields and *READ A developeris usinga *ANY
Locks related files field.

and fields

84 Administration Guide

Locking Objects

Lock Objects that Lock Meaning of Authority Needed
Category CanBe Type Lock to Set Lock
Locked
*EXCL A designer is updating *DSNR
a field.

Object Locks

Objects locks apply to functions and access paths.CA 2E supports both temporary and
permanent object locks:

m Temporary locks prevent individual objects such as CA 2E functions or access paths
from being changed by more than one user at a time. An object is locked while it is
in use.

m Permanent locks prevent users from changing a CA 2E object.

The locking feature is available from panels that display the line selection value assigned
to this feature.

You can edit but not update locked functions. When you exit, a message offers you the
option to create a new function.

Displaying Object Locks
You display the Object Lock panel by typing L in the selection line of the object whose
lock you want to display and pressing Enter. The Display Object Lock panel shows:
m The name of the job holding the lock.
m The name of the user profile holding the lock.
m The number of the job holding the lock.

m The date and time the lock was placed.

Chapter 3: Using Your Model 85

Locking Objects

Adding/Removing Object Locks

More Information

File Locks

More Information

Setting File Locks

If you have the required authority level, you can add or remove a permanent object
lock. You must be a designer (*DSNR) with *ALL rights to the YMDLLIBRFA data area.

You can add or remove a permanent lock from the Object Lock panel.

m |f an object is unlocked and you want to lock it, press F8. The message "Permanent
lock added" displays.

m [f an object is locked and you want to unlock it, press F8. The message "Permanent
lock removed" displays.

You may find that an object is locked, although you did not request to lock it. A file or an
access path can become locked when a request to generate source (YGENSRC)
terminates with the end option *IMMED. This failure is caused by an event such as a
subsystem ending.

For more information about authority, see the "Using Your Development Environment"
chapter in this guide.

File locks allow designers and programmers to work in a model concurrently by
preventing them from updating the same file at the same time. File locking occurs only if
the Open Access (YOPNACC) model value is set to *YES.

A summary of file lock functions appears at the end of this section.

For more information about the YOPNACC model value and open access, see the
"Creating and Managing Your Model" chapter in this guide.

File locks can be *READ, which allows multiple users to access the file at the same time,
*EXCL, which gives exclusive use of the file to a single *DSNR for update, and *SYNC,
which are converted *EXCL locks set when a *DSNR leaves the model without expanding
an updated file. In general,CA 2E sets file locks automatically based on your user
designation and the operation you are performing. A designer can also set *EXCL file
locks explicitly.

86 Administration Guide

Locking Objects

*READ File Locks

More Information

*READ file locks let several developers use a file at one time and prevent *DSNRs from
updating the file. Each developer using the file sets a separate *READ lock. A *DSNR
must wait until all *READ locks are removed before setting an *EXCL lock to update the
file. A *READ lock cannot be changed to another lock type.

Operations that set *READ locks include, viewing access paths for a file, loading a
function, and specifying a file or access path as a parameter detail.

If a *DSNR attempts to use a file when the model is unsynchronized, before setting the
requested *READ lock on the file,CA 2E expands the file and temporarily sets an *EXCL
lock on all files in the expansion path. When the expansion completes, the *EXCL locks
are removed, a *READ lock is set on the file, and the requested operation is performed.

Note: If CA 2E finds a lock on a file in the expansion path, the *DSNR will not be able to
perform the operation until the lock is removed.

For more information about file expansion, see the Considerations for Using File Locks
section in this chapter.

Implicit *EXCL File Locks

Implicit locks are set automatically when a *DSNR performs an action that updates a
relation or has the intent of updating a file. Operations that set *EXCL locks include
adding, changing, or deleting a relation, and adding a virtual entry.

Once a file is updated, only a *DSNR can use the file until the file is expanded or the
model is synchronized. Depending on the type of update, other files can also be locked.
m Adding a relation to a file sets an *EXCL lock on the current file only.

m |f you delete or change a non-key relation on a file, sets an *EXCL lock on the file
and any files having entries derived from the relation; for example, virtual entries.

m |f you delete or change a key relation for a file,CA 2E sets *EXCL locks on all files
that use the file. For example, if you delete the first relation shown below,CA 2E
sets *EXCL locks on the Order, Order detail, Order detail line, and Invoice files.

Order Known by Order Code
Order detail Owned by Order
Order detail line Owned by Order detail
Invoice Refers to Order

Chapter 3: Using Your Model 87

Locking Objects

Explicit *EXCL File

*SYNC File Locks

File Dependencies

Order Known by Order Code

Locks

Most file locks are set implicitly. However, if you are a *DSNR you can set an explicit file
lock by entering L against the file on the Edit Database Relations panel. The model need
not be synchronized.

For example, an explicit file lock lets you add several relations to a file and ensures that
you will be able to update the file when you finish. An explicit lock prevents all other
developers from using the file while you are adding the relations.

A *SYNC file lock is a converted *EXCL file lock. It is set when a *DSNR leaves the model
without expanding an updated file. A *SYNC lock is automatically converted to an *EXCL
lock when any *DSNR locks the file for update.

Note: We recommend that you run the Synchronize Model (YSNCMDL) command at the
end of each day to synchronize the model and clear all outstanding file locks.

To display a list of the files that will be affected by a change to a relation, enter R against
the relation you intend to update on the Edit Database Relations panel. This displays the
Display File Dependencies panel.

This panel lists the following information:

= File name

m Lock type

m User profile

®m Job name

m Date

B Time

You can also use this panel to send a message to a user requesting use of a file.

88 Administration Guide

Locking Objects

Displaying File Locks

Display existing file locks by pressing F22 on panels where it is available; for example,
the Edit Database Relations panel. The Display File Locks panel displays.

DISPLAY FILE LOCKS SYMDL

File. . . :
File Lock User Job Date Time
Branch EXCL JAR JARS2 02/02/02 13:31:04
Customer EXCL JAR JARS2 02/02/02 13:31:04

SEL: S-Send Message
F3=Exit F5=Reload

Enter S against any file listed to send a message to the user that locked the file. For
example, you can request that the user release the lock.

Removing File Locks

You remove *EXCL and *SYNC file locks by:

m Expanding the file. For example, enter F, Z, E, or Q against the file on the Edit
Database Relations panel.

m Synchronizing the model.

m Completing the update on the field that set the lock. See the Field Locks section in
this chapter for details.

You can remove an explicit *EXCL file lock you set by entering U against the file on the
Edit Database Relations panel.

*READ file locks are removed when you exit the panel where the lock was set; for
example, when you return to the Edit Database Relations panel.

Considerations for Using File Locks

Following are special topics and considerations related to file locking.

Chapter 3: Using Your Model 89

Locking Objects

Expanding Files

Synchronizing the Model

Expanding a file means that CA 2E resolves all of the file’s relations. If the file Refers to
another file, that file’s relations are resolved also.CA 2E follows the path of file-to-file
relations until all files in the path are expanded. File expansion relates to file locking in
the following ways:

One way to remove an *EXCL lock is to expand the file. For example, enter F, Z, E, or
Q against the file on the Edit Database Relations panel.

If the model is unsynchronized and a *DSNR performs an operation that uses a
file,CA 2E expands the file and sets an *EXCL lock on each file in the expansion path
momentarily. During the expansion, other developers are prevented from accessing
the locked files.

When the expansion is complete,CA 2E removes the *EXCL locks, sets a *READ lock
on the selected file, and performs the requested operation. If CA 2E finds a lock on
any file during the expansion, the requested operation is denied.

Synchronizing the model ensures that any changes to the relations in a model are
reflected in the CA 2E file entries of the model. This process removes all file locks and
can only be done by a *DSNR with exclusive access to the model. A *DSNR can
synchronize the model when exiting the model, select the resynchronize data model
option.

Note: This option is not available if the YOPNACC model value is *YES unless you enter
the model using the YEDTMDL command and override the OPNACC option to *NO. This
gives the *DSNR exclusive access to the model and the option of synchronizing the
model when exiting. After synchronization, YOPNACC is automatically reset to *YES.

Access the Display Unreferenced Fields panel. (Press F11 from the Display Fields
panel.) This panel implicitly synchronizes the model.

Use one of the following options on the Display Services menu. These options
implicitly synchronize the model.

- Submit model create request (YSBMMDLCRT)

- Job list menu. From this menu, select one of the following options:
YBLDJOBLST (Build job list for model)

YCHKJOBLE (Check job list entries)

YSBMMDLCRT (Submit model create requests)

Use the Synchronize Model (YSNCMDL) command outside of the model.

We recommend that you run the YSNCMDL command at the end of each day to
synchronize the model and clear all outstanding file locks.

90 Administration Guide

Locking Objects

More Information

For more information about the YSNCMDL command, see the CA 2E Command
Reference Guide.

File Locks Summary

The following table summarizes the functions related to file locks.

*READ Lock *EXCL Lock *SYNC Lock

Setting As *DSNR or *PGMR, Implicit: (As *DSNR) As *DSNR, exit the model
perform an action Change, add, or delete a Without expanding an
that uses afile; e.g., relation. updated file; the existing
edit an action *EXCL lock is converted

Access a panel with

H *
gcligrrcaem or generate intent to update a file, to a *SYNC lock.
’ e.g., Edit Virtual Field
Entries panel.
Update a field on the
file. See the next section,
Field Locks, for more
information.
Explicit: (As *DSNR)
Enter L against file on
EDR1; the model does
not have to be
synchronized.
Displayin Press F22=File Locks Press F22=File Locks Press F22=File Locks
g where available; e.g. where available; e.g. on where available; e.g. on
on EDR (Edit EDR1. EDR1.
Database Relations
panel).

Note: F22=File Locks
displays only if the
model value
YOPNACC is set to
*YES.

Chapter 3: Using Your Model 91

Locking Objects

Field Locks

Setting Field Locks

*READ Lock *EXCL Lock *SYNC Lock
Removing Exit panel where Implicit: (As *DSNR) As *DSNR,
lock has been set; Expand file; e.g., enter F, Synchronize the model.
for e>fample, return 7, £, or Q against file. Expand the locked file.
to Edit Database . .
Relations. Exit and resynchronize Note: We recommend
the model. that you run the
If file locked as a result ~ YSNCMDL command at
of a field update, finish the end of each day to
the update. synchronize the model
and clear all outstanding
file locks.
Explicit: (As *DSNR)
Enter U against file on
EDR1 to unlock an
explicit lock.
Notes: Multiple *READ Only one *EXCL lock can A *SYNC lock is

locks can exist on a
file.

An *EXCL lock
cannot be placed on
a file until all
removed.

be set on a file at a time.

Access path or function
generation will fail if an
*EXCL lock is set on the
based-on file.

automatically converted
to an *EXCL lock when
any *DSNR locks the file
for update.

Field locks apply to fields and are only set implicitly. A field lock can be exclusive (*EXCL)
or read (*READ). An *EXCL field lock can cause CA 2E to lock files and other fields. Field
locking occurs only if the YOPNACC model value is set to *YES.

A summary of field lock functions appears in the table at the end of this section.

If a *DSNR accesses the Edit Field Details panel,CA 2E sets an *EXCL lock on both the
field and its referencing file, if any. If the field is referenced by other fields, all reference
(REF) fields in the domain are also locked, including the REF field’s referencing files.
These prevent other developer’s from accessing an incorrect field definition while the

field is being updated.

If a *PGMR accesses the Edit Field Details panel,CA 2E sets a *READ lock on the field, but
does not lock files. This prevents *DSNRs from updating the field while it is used by a

*PGMR.

92 Administration Guide

Locking Objects

Displaying Field Locks

You display field locks by entering L against a field on most panels that access the Edit
Field Details panel. This displays the Display Object Locks panel which lists current locks
and the name of the job and the user profile that placed each lock. This is useful if you
cannot access the Edit File Details panel because a lock is set by another job.

Removing Field Locks

Field locks, and all associated locks, are automatically removed when you exit the Edit

Field Details panel.

Field Locks Summary

The following table summarizes functions related to field locks.

*READ Lock

*EXCL Lock

Setting As *DSNR or *PGMR, perform
an action that uses a field.

In this case, only the field is
locked.

As *DSNR, access the Edit Field
Details panel.

An *EXCL lock is also set on the
field’s referencing file, if any.

Displaying Enter L=Locks against a field
(when available) to view locked
fields using the Object Lock
panel.

Note: L=Locks is available on
most panels that access the Edit
Field Details panel.

To view field locks, enter
L=Locks against a field (when
available) to display the Object
Lock panel.

To view associated file locks,
press F22=File Locks (when
available).

Note: F22=File Locks is displayed
only if the model value
YOPNACC is set to *YES.

Removing Exit panel where lock has been
set; e.g., return to the Edit
Database Relations panel.

Press Enter and exit the Edit
Field Details panel. All
associated field and file locks
are also removed.

Notes: Multiple *READ locks can exist
on a field.
An *EXCL lock cannot be set on
a field until all *READ locks are
removed.

Only one *EXCL lock can be set
on afield at a time.

If the locked field is referenced
by other fields, all (REF) fields in
the domain are also locked.

Chapter 3: Using Your Model 93

Using Narrative Text

Using Narrative Text

Narrative text describes the purpose of a CA 2E object within the design. Each object
can include an unlimited amount of narrative text.

Narrative text is used to:

Document the model. All CA 2E documentation commands have a PRTTEXT
parameter that lets you specify whether you want to include text in a listing and, if
so, which type of text.

Describe the model interactively. The developer programmer can examine text at
any time when using the model.

Generate Help text for CA 2E functions

Generate program synopses

Types of Narrative Text

Narrative text can be functional or operational:

Functional narrative text describes the purpose of the design object, restrictions
associated with the object, and notes about the reasons for design decisions.
Functional text is available through the documentation commands.

Operational narrative text describes the function of the object to the end user.
Operational text is incorporated into Help text. If you do not specify operational
text in addition to functional text,CA 2E uses the functional text as Help text.

Creating/Editing Narrative Text

You can create new narrative text for an object or edit existing narrative text. You access
the narrative text feature from panels that display the line selection value for this
feature.

Accessing Narrative Text

To access the narrative text feature from the Edit Database Relations panel, enter N in
the selection line for the object you want to describe and press Enter. The Edit Narrative
Text panel displays.

Other panels let you access narrative text by pressing F20. This function key also lets you
switch between functional and operational narrative text.

94 Administration Guide

Using Narrative Text

User Interface Manager

More Information

If you generate Help text using User Interface Manager (UIM), the Help text you create
in narrative text formats according to the UIM defaults set up for your system. You can
create special formatting effects, such as columns or tables, by embedding UIM tags in
the narrative text.

For more information about:

m Generating objects with UIM, see the "Implementing Your Application" chapter in
the Generating and Implementing Applications guide.

m Tailoring Help text using UIM, see the Application System/400 Guide to
Programming Displays guide.

Entering/Editing the Text

You can add an unlimited amount of narrative text, with 24 lines per page. You edit both
functional and operational text in the same manner. You can edit the text from the Edit
Narrative Text panel, or if the IBM S/38 Text Management product for the IBM i is
installed on your system, you can use a function key (F7) to convert the text to a
temporary EDTTXT document. The following table lists the active function keys and their
function.

Function Key Action Comment
F3 Save changes and exit
program.
F4 Make current line top of
text display.
F5 Return to last saved

version of text.

F6 Cancel block for pending Blocked text is no longer highlighted.
copy, move, or delete.

F7 Edit text using TM/38. Convert text to temporary TM/38
EDTTXT document and edit with
EDTDOC commands. Reconvert
document to CA 2E text format.
EDTTXT paragraph Ids and text
emphasis information are not saved.

Chapter 3: Using Your Model 95

Using Narrative Text

Function Key

Action

Comment

F8 Mark line or block. To block text, place the cursor on the
first line you want to block and press
F8. Then place the cursor on the last
line you want to block and press F8.
You can block any number of pages.
If you do not block a line, the copy,
move, or delete function operates on
the line where the cursor is.

F9 Add blank line above

current line.

F10 Display text from

beginning.

F11 Delete text or block and

close up text.

F13 Exit without saving All changes you made in the session

changes. are lost.

F14 Display CA 2E product

map.Display product map.

F15 Display last line of text.

F16 Copy marked line or block. Places the text on the line
immediately preceding the line with
the cursor. To copy one line, place
the cursor on the line and press F16
twice.

F17 Move marked line or block. Places the text on the line
immediately preceding the line with
the cursor. To move one line, place
the cursor on the line and press F17
twice. If the cursor is within a block,
both the move and the block are
canceled.

F19 Edit text using SEU. Convert the text to a temporary
source member. Edit using SEU
commands. Reconvert to CA 2E text
format.

F20 Toggle between Saves changes

operational and functional
narrative text.

F24 Display more keys

96 Administration Guide

Displaying Model Object Cross References

When you finish editing, press Enter to accept the text. Then save changes and exit by
pressing F3 (Exit) to return to the panel from which you accessed the narrative text.

Displaying Model Object Cross References

CA 2E provides a cross-reference feature that helps you identify dependencies between
CA 2E objects. Using this feature you can identify all other model objects that use or are
used by a selected object.

The information you receive depends on the object you select:

More Information

For a physical access path, the panel displays all references to the access path by
other non-physical access paths, built over it or joined to it.

For other access path types, the panel displays the associated physical access
paths.

For a function, the panel displays a list of all functions that reference the function.
For a field, the panel displays references by CA 2E files, functions and parameters.

For a condition, the panel displays usage in a CA 2E access path, to specify selection
criteria, in an action diagram, or for a field, to control the validation and default
values.

For more information about model object cross references based on object type, see
the Command Reference guide.

Accessing the Cross References Utility

Following are ways to access this utility:

m Enter the Display Model Usages (YDSPMDLUSG) command at a command line.

m Enter the Display Model References (YDSPMDLREF) command at a command line.

m Use options on the Edit Model Object List panel.

m Enter U in the selection line to the left of the object from the interactive panels
shown in the following table and press Enter.

Usage on Invoked from Panel

CA 2E Access Paths Edit File Details

Chapter 3: Using Your Model 97

Using the Display Services Menu

Usage on Invoked from Panel

Display Access Paths

Display Access Path References

CA 2E Functions Functions Edit Functions

Display Functions

Display Access Path Functions

CA 2E Fields Fields Display Fields

In all cases the Display Model Usages or Display Model References panel displays.

Gen objs : 1 Display Model Usages Model. . : SYMDL
Total. . : 2 Level. . : 001
Object . : Change Employee Owner . : Employee
Type . . : FUN Attribute: RPG Include inactive code: *Yes Exclude system objs .
*YES
Scope. . : *NEXT Filter. . . : *ANY Current objects only. *YES
Object . : Type. . Reason. . *FIRST
2=Edit 3=Copy 4=Delete object 5=Display 8=Details 10=Action Diagram
13=Parms 14=GEN batch 15=GEN interactive 16=Y2CALL
Opt Object Typ Attr Owner Lvl Reason

Change Employee FUN DBF Employee 000 *OBJECT

Edit Employee FUN RPG Employee 001 *DFTDBF

Bottom

F3=Exit F5=Refresh F9=Command line F12=Previous F15=Top level
F16=Build model list F21=Print list F22=File locks F23=More options

More Information

For more information about the Display Model Usages panel and model object cross
references, see the "Managing Model Objects" chapter in the Generating and
Implementing Applications guide.

Using the Display Services Menu

The Display Services Menu lets you access CA 2E support functions while you are using a
model. This section describes how to access and exit the Display Services Menu and to
use two of the options available on this menu:

® Documentation menu

m Display system parameters

98 Administration Guide

Using the Display Services Menu

Accessing/Exiting the Display Services Menu

You access the Display Services Menu by pressing function key F17. This function key is
available from a number of CA 2E panels. You can also use the YEDTMDL command to
access the Display Services Menu. Enter the following at a command line:

YEDTMDL ENTRY (*SERVICES)

When you finish using the tasks on the Display Services Menu exit by pressing F3 (Exit)
to return to the panel from which you accessed the menu.

DISPLAY SERVICES MENU SYMDL

Generation 1. Submit model create request (YSBMMDLCRT)
2. Convert model data menu
Documentation 6. Documentation menu

7. Convert model panel designs (YCVTMDLPNL)

Model 8. Display all access paths
9. Display all functions
10. Display model values (YDSPMDLVAL)
11. Edit model pprofile (YEDTMDLPRF)
12. Work with model lists (YWRKMDLLST)
13. Edit model list (YEDTMDLLST *SESSION)
14. Impact analysis menu

Change Control 21. Go to Synon/CM menu
Option: (press F4 to prompt commands)

F3=Exit F6=Messages F8=Submitted jobs F9=Command line F10=Display job log

Invoking Documentation Commands from the Documentation Menu

CA 2E includes commands that print the documentation for a data model. The Display
Services Menu contains an option, Documentation Menu, that lets you invoke
documentation commands from a menu. These commands include:

® YDOCMDLREL—Document model relations

m YDOCMDLF—Document model files

m YDOCMDLACP—Document model access paths
m YDOCMDLFLD—Document model fields

m YDOCMDLMSG—Document model messages

m YDOCMDLAPP—Document applications

Chapter 3: Using Your Model 99

Using the Display Services Menu

More Information

To execute a documentation command:

1.

From the Display Services Menu, select the option to display the documentation
menu and press Enter. The Display Documentation Menu panel displays.

Enter the number for the command you want to invoke. A panel displays that
includes:

m Selection criteria allowing you to identify the CA 2E objects you want to
document.

m Print options allowing you to identify the information you want to include for
the selected objects.

m The PRTTEXT parameter lets you specify whether you want to include narrative
text in the listing and, if so, whether you want to include the functional or the
operational text .

Edit the prompts as necessary.

When you are ready to execute the command, press Enter. The system is inhibited
while the command executes.

Note: These commands can all be run in batch mode.

When the command is finished, the Display Documentation Menu redisplays with a
completion message.

For more information about the documentation commands, see the Command
Reference guide.

For more information about the documentation commands, see the Command
Reference guide.

Displaying CA 2E System and Model Values

The Display Services Menu includes an option, Display model values (YDSPMDLVAL),
that lets you display all model values:

1.

From the Display Services Menu, select the option to Display model values
(YDSPMDLVAL) and press Enter. The Display Model Values menu displays.

To display all model values, accept the default and press Enter. The Design Option
Values panel displays.

When you finish, return to the Display Model Values Menu. Press F3 (Exit).

From the Display Model Values menu, you can select another option or press F3 (Exit) to
return to the Display Services Menu.

100 Administration Guide

Using Online Help

Viewing/Editing Panel Default Attributes

From the Display All Values panel, you can display and edit default display attributes.

From the Display All Values panel, press F10. The Edit Default Display Attributes panel
displays. This panel displays a matrix with the default attributes for fields on panels and
reports created in CA 2E.
You can edit, as well as view, these attributes:
m [f you want only to view the attributes, press F3 when you are ready to return to
the Design Option Values panel. The panel displays the message:
Default screen attributes displayed for model (model name).
= |f you want to change a default attribute:
- Yindicates the attribute is active for the field type.
- Blank indicates the attribute is not active for the field type.

When you finish changes, accept the edits. Press Enter. Then press F3 to return to the
Design Option Values panel. The panel displays the message

Default screen attributes edited for model (model name).

Using Online Help

CA 2E contains a comprehensive online help facility. Features include:
® Diagnostic messages

m Selection displays

m Help text on commands and panels

® Product Map

Diagnostic Messages
CA 2E sends messages when a long-running process is executing or when an error

occurs. Messages appear on line 24 of the displayed panel. Second level Help text is
usually available by pressing Help.

Selection Displays

You can display a list of allowed values for most fields by entering a question mark (?)
into each field and pressing Enter.

Chapter 3: Using Your Model 101

Using Online Help

Help text

Each functional panel in CA 2E includes online Help text. Help provides detailed
information about the display down to the field level. You access help by pressing the
Help key.

CA 2E provides several means to navigate through help. Where information is extensive,
the Help text provides an index. You can also scroll through the text panel-by-panel,
pressing Page Up to display the previous panel and Page Down to display the next one.

102 Administration Guide

Using Online Help

Product Map

The product map helps you navigate through CA 2E. This feature shows where you are
in relation to other functions in the product. You display the product map using function
keys:

m To display the product map, press F14. The product map shows an outline map of
the functions in the CA 2E program you are using. The map displays the functions
you can invoke from the top level display. The function you are currently using is
blinking. The functions you passed through are in high intensity.

m To display a detail map, press F12. Use this function key to toggle between the
product map and the detail map.

m Toreturn to the program, press F3.

Chapter 3: Using Your Model 103

Using Online Help

Edit Edit Edit Edit Edit
access access R ccass 5 Acress z access
path ol path path - path path
wirtuals ™ relations detailz selectomit condition s
z & z
SEU E Edit Edit
acoess o ile EL
paths details path
(LF} antries
3
Z Z
Edit Edit Edit
file E i 2 feld I
entres Ll —— . details Fa conditions
Edit
Database
v Felations ,
Edit
“4— P
Edit
wirtual F10 Define
field objects
entries F
F Edit F Edit z Edit
———f function o function
Functions rarameters parameter
details
g
7 [
r
SEU Edit Edit
unction E function F7 function
memhers ol detailz - options
F3
Y Y
Edit F3 Edit £ Design
action = function — I SCEan
diagrames denicas or
reparts

104 Administration Guide

Chapter 4: Using Your Development
Environment

This chapter describes tasks you perform to set up a model environment after you
create a model. These tasks include using CA 2E commands to build and store the model
library list, controlling user access to a model, granting authority for users to perform
various tasks, and customizing the model to meet the requirements of the application
you are building.

This section contains the following topics:

Managing the Model Library Lists (see page 105)
Controlling User Access (see page 113)
Setting Up the User Environment (see page 126)

Managing the Model Library Lists

More Information

Library lists provide an efficient means to control the objects a job can access. Ani OS
library list, however, lasts only until the job finishes or until it is overwritten with
another list.

Toolkit library lists are designed to overcome that limitation. You can store a Toolkit
library list to use in every session desired. You can retrieve the list and apply it to user
profiles and other jobs. You can edit the list, and you can copy it to use as the library list
for another model.

Toolkit library lists are a Toolkit feature. They are stored by default in the Toolkit
product library. You can use the Toolkit Move Toolkit User Data Objects (YMOVY1DTA)
command to move the file containing your Toolkit library lists as well as other user
objects to another library.

For more information about the YMOVY1DTA command, see the Toolkit Reference.

Chapter 4: Using Your Development Environment 105

Managing the Model Library Lists

System-Wide Values

System-wide values apply to all models on a machine. These values are set during
installation. You can override them once the product is installed. System-wide values
include:

m The action diagram symbols (YACTSYM)

® The default HLL (YHLLGEN)

m The name of the null model (YNLLMDL)

m TheIBMior S/38 editing environment (YCRTENV)
m The system prompts (YSYSPMT)

m The system database access method (YSYSDBF)

Data Areas: Company Name Versus Company Text

The company text model value (YCMPTXT) contains the name of the model that displays
in the top right corner of each panel for that model and in the banner for generated
code.

The company text model value is different from the company name that prints on
reports or displays on panels of generated programs. The company name is retrieved at
execution time from the data area YYCOTXA located in the generation library.

Model Specific Values

Model-specific values set design standards for a particular model. These values include:

m Model use and code generation values, such as model name, automatic naming,
and HLL options.

m Code generation values, such as date validation and default function option values.

® |Implementation values, such as the working environment and the database access.

Setting Up the Model Library List

When you use the YCRTMDLLIB command to create a model,CA 2E creates a Toolkit
library list. The name of this library list is stored in the Library List (YLIBLST) model value.
By default, the name of the library list is the same as the name of the model library.

To use a model, your library list must contain the data model, generation libraries, and
the CA 2E and Toolkit product libraries. The list may also include the library for the
generated source.

106 Administration Guide

Managing the Model Library Lists

Setting Up the Library List for RPG, COBOL, or RPG/COBOL

The YCRTMDLLIB command also sets the default for the HLL used to generate source.
Unless you have merged the HLL objects into the base product library at install time, the
library list created with this command contains the libraries for the HLL s you will use:

m To generate source in RPG, the library named Y2SYRPG.
m To generate source in COBOL, the library named Y2SYCBL.
m To generate source in both RPG and COBOL, both libraries Y2SYRPG and Y2SYCBL.

Setting Up the Library List for Other National Languages

If you are using a national language that is different from the one installed in the base
product library, your library list must include the target national language library. The
library must display above the other product libraries.

More Information

For more information about Advanced National Language Support, see the "National
Language Support" chapter in the CA 2E Generating and Implementing Applications
guide.

Using the Change Library List (YCHGLIBL) Command

The YCRTMDLLIB command automatically creates a Toolkit library list that contains the
libraries needed to use the model. It also sets the Library List (YLIBLST) model value to
the library list specified by the LIBLST parameter. By default, the name of the library list
is the same as the name of the model library. You can set your library list from the CA
2E-created list.

One way to set your library list is to use the i OS Change Library List (CHGLIBL)
command. This command makes the CA 2E-created list your list for the duration of the
session.

You can also use the Toolkit Change Library List (YCHGLIBL) command. This command
uses the named library list to replace your library list. You can invoke this command
either from the CA 2E Main Menu or from a command line.

More Information

For more information about the CHGLIBL command, see Volume 2 of the j OS CL
Reference.

Chapter 4: Using Your Development Environment 107

Managing the Model Library Lists

Invoking YCHGLIBL from the Main Menu

To invoke the command from the CA 2E Main Menu:

1.

From a command line, enter YGO *Y2 and press Enter. The Main Menu displays.

Note: You can also invoke the YCHGLIBL command from each of the submenus
associated with the three user types. You can access these submenus from the
Main Menu or you can use the YSTRY2 command. For example, to access the CA 2E
Programmer (*PGMR) Menu, enter the following at a command line:

YSTRY2 library-list-name MENU(PGMR)

1.

Select the Change to work with another model option. The Change Library List
(YCHGLIBL) panel displays.

Select the library list you want to use to create your library list by doing one of the
following:

m Entering the name of the list.

m Pressing Enter to display the Select Library List panel. From this panel you can
display the contents of library lists and select the list you want.

When you are ready to execute the command, press Enter. The command replaces
your current library list with the list you selected.

108 Administration Guide

Managing the Model Library Lists

Invoking YCHGLIBL from a Command Line

You can replace your library list by entering YCHGLIBL from a command line. For
example, to set your library list from a model library list named MYLIB, enter the
following and press Enter:

YCHGLIBL LIBLST(MYLIB)

You can also use the short form of the command:

R LIBLST(MYLIB)

When the command finishes, your library list might look something like the following:
= QTEMP

m CA 2E generation library

m CA2E SQL library (optional)

m CA 2E model library

m QGPL

m Toolkit National Language library (Y1SYVxxx)

m Toolkit product library (Y1SY)

m CA 2E generator library (Y2SYRPG or Y2SYCBL)
m CA 2E National Language library (Y2SYVxxx)
m CA 2E product library (Y2SY)

CA 2E Commands and the Model Library List

More Information

Some CA 2E commands automatically change the library list. When you invoke a
command that loads a model,CA 2E checks the current job’s library list for the specified
model library as the first model library in the list. If it is not found,CA 2E automatically
replaces the current job’s library list with the library list specified by the YLIBLST model
value for the requested model. When the command completes,CA 2E resets the current
library list back to the original library list.

For more information about CA 2E commands and how they affect the library list, see
the CA 2E Command Reference Guide.

Chapter 4: Using Your Development Environment 109

Managing the Model Library Lists

Editing the Library List

More Information

Once you set your library list, you may need to customize it to meet the requirements of
a particular model.

The i OS provides a set of commands that lets you add or remove a single library list
entry and edit multiple library list entries. These commands include:

m ADDLIBLE (Add library list entry)

m RMVLIBLE (Remove library list entry)

m CHGLIBL (Change library list)

m EDTLIBL (Edit library list)

The changes you make with these commands are valid only for the duration of the
session.

The Toolkit Edit Library List (YEDTLIBLST) command calls an interactive program that lets
you edit a Toolkit library list and save the edited list. The YEDTLIBLST command lets you
create library lists that are tailored for the needs of particular models. You can use this
command to add libraries to, reorder libraries in, or delete libraries from a library list. A
model library list can contain up to 25 libraries.

For more information about these commands, see the i OS CL Reference.

110 Administration Guide

Managing the Model Library Lists

Invoking the YEDTLIBLST Command

1. Invoke the YEDTLIBLST command from a command line or by using the CA 2E
Designer (*DSNR) Menu as follows:

a. Enterthe YEDTLIBLST command at a command line:

YEDTLIBLST LIBLST(name-of-library-list)
Note: You can also use the letter "L" as an abbreviation for the YEDTLIBLST
command. The following has the same effect as the previous command:

L YLIBLST(name-of-library list)

Examples:

YEDTLIBLST LIBLST(MYLST)

To edit the library list for the current job, enter:

YEDTLIBLST
a. Display the CA 2E Designer (*DSNR) Menu using one of the following:

m Select the Display Designer (*DSNR) menu option from the CA 2E Main
Menu.

m Enter the following at a command line:

YSTRY2 library-list-name MENU(DSNR)
Select the Edit Library List for Model option.

1. The Edit Library List Entries panel displays. You can display additional library
information by pressing F11. This function key toggles between views of the list.
You can use this panel to:

m Edit the entries in the library list.
m Edit the Current Library used for this list.
m Edit the model job description used for this list.

m Completely replace the User Library and Current Library portions of the
displayed list with another library list.

2. When you finish all edits on the Edit Library List panel, exit from the panel. Press F3.
The Exit Edit Library List Entries panel displays.

This panel displays the values for the current library list and job description, and
indicates whether you changed entries on the list. You can accept the entries or
change them. If you want to print the library list, you can also execute the
Document Library List command from this panel.

3. When you are ready to execute YEDTLIBLST, press Enter. Depending on the options
you select when you exit, the edited library list replaces the current library list:

m Interactively

Chapter 4: Using Your Development Environment 111

Managing the Model Library Lists

More Information

m Inthe specified job list
m Inthe Toolkit library list file YLIBLST

For more information about:

Editing the entries, see the Editing Library List Entries section in this chapter.

Editing the Current Library for this list, see the Editing the Current Library for the
List section in this chapter.

Editing the model job description, see the Editing the Model Job Description for the
List section in this chapter.

Replacing the User Library and Current Library portions, see the Retrieving a Library
List from Another Source section in this chapter.

Editing Library List Entries

To edit library list entries, perform the following steps:
Edit the entries for the library list by doing the following:

m Add a library by placing the cursor at the first available line and enter the name
of the library you want to add. To place the library in a different position, add a
sequence number to the left of the library name.

m Remove a library by placing the cursor on the first character of the library you
want to delete and delete the name from the line.

m Replace a library by placing the cursor on the first character of the library you
want to replace and enter the new name over the displayed name.

When you finish editing library list entries, accept the changes. Press Enter. If you
added libraries, the libraries resequence according to the sequence numbers you
typed.

Editing the Current Library for the List

The YEDTLIBLST command lets you change the Current Library portion of the library list.
On the Edit Library List panel:

1.
2.

Place the cursor on the entry field for the Current Library prompt.

Enter the name of the library that you want to assign as the Current Library when
the list is to be used to change the library list for a job.

112 Administration Guide

Controlling User Access

Editing the List for the Model Job Description

The YEDTLIBLST command lets you change the library list you want to use in a job
description. On the Edit Library List panel:

1.
2.

Place the cursor on the entry field for the Job Description prompt.

Enter the name of the job description you want to associate with the list. This
should match the job description defined for the model in the YCRTJBD model
value.

At the entry field for the Library prompt, enter the name of the library that contains
the job description you selected.

Retrieving a Library List from Another Source

You can retrieve the User Library and Current Library portion of your library list from
another source. You can change only the User Library and Current Library portions of
the list. All other portions remain the same.

1.

From the Edit Library List panel, press F13. The Edit Library List Entries - Services
panel displays.

Select the source to be used to refresh the Edit Library List panel. You can reload
the list from:

m The User Library and Current Library of the current job
m The system value QUSRLIBL.

m The User Library and Current Library of a specified Toolkit library list. You
specify the list by name.

When you finish, press Enter. The library list is refreshed with the list you specified.

Controlling User Access

CA 2E user access and ownership security features protect the models within a
development environment from unauthorized access and change.

Chapter 4: Using Your Development Environment 113

Controlling User Access

Through Model Ownership

The user profile used to create the model owns the model library, its associated
generation library, and i OS objects. The owner can be an individual user or a user
group. The owner can transfer ownership to another user.

The owner of a model can control how users or groups of users can access and edit the
model by granting or revoking appropriate authority to access certain data areas and to
update the i OS objects that make up the model. The same considerations that apply to
granting and revoking authority in the i OS environment also apply to granting and
revoking authority in a CA 2E environment.

The primary means to control access to the model is by setting authority on the
YMDLLIBRFA data area. To edit this data area you can use the Edit Model Authority
option on the CA 2E Designer (*DSNR) Menu.

More Information

For more information about:
m The YMDLLIBRFA data area, see the Through Authority section in this chapter.

m The CA 2E Designer (*DSNR) Menu, see the "Using Your Model" chapter in this
guide.

Changing Model Ownership

The owner of a model can transfer ownership with the Toolkit Change Object Ownership
(YCHGOBJOWN) command.

For example, to change the ownership of all objects in the MYLIB library to a new
YOURNAME owner, you would enter the following and press Enter:

YCHGOBJOWN O0BJ(MYLIB/*ALL) OBJTYPE(*ALL) NEWOWN(YOURNAME) CHGLIBOWEN (*YES)

This example includes the following required parameters:

= OBJ(MYLIB/*ALL)—Sets the generic name of the objects whose ownership is to be
changed followed by which objects in the list are to be changed.

= OBJTYPE(*ALL)—Sets the type of objects whose ownership is to be changed.

= NEWOWN(YOURNAME)—Sets the new owner of the objects. Must be the name of
an existing user profile.

m CHGLIBOWN(*YES)—Ensures that the new owner owns the library as well as all
objects in the library.

114 Administration Guide

Controlling User Access

More Information

Through Authority

Types of User

For more information about the YCHGOBJOWN command, see the Command Reference
Guide.

The owner profile can grant or revoke authority for additional users to access the
model, to update specific objects in the model, and to generate and compile the source
for the model.

CA 2E lets you access a model as one of three different user types: designer,
programmer, or user. Designers and programmers are referred to collectively as
"developers." Your user type determines the limitations placed on you when you access
and edit the model.

Chapter 4: Using Your Development Environment 115

Controlling User Access

Designer User Type

More Information

A designer (*DSNR) can change any aspect of the model, both data relationships and
functional specifications. Whether more than one designer can use the model at one
time depends on the current setting of the Open Access (YOPNACC) model value. If
YOPNACC is set to:

m *NO, only one user can use the model as a designer. In this case, no other user can
access the model while the designer is using it.

m *YES, multiple designers and programmers can use the model at the same time. In
addition,CA 2E enables file and field locking to prevent two designers from updating
database relations at the same time.

You can control Open Access either by setting the YOPNACC model value or by using the
Edit Model (YEDTMDL) command.

A designer can also have *LOCK authority (*DSLK). This authority allows the designer to
place a permanent, exclusive lock on a function or access path that only a designer can
unlock. In addition, only a designer with *LOCK authority can change the YOPNACC
model value.

Designers are also responsible for synchronizing the model after updating a database
relation. Synchronizing ensures that any changes to the relations in a model have been
reflected in the CA 2E file entries of the model. To synchronize the model, a designer
must have exclusive use of the model.

The CA 2E Designer (*DSNR) Menu provides a list of tasks available to users having
*DSNR authority. You can access this menu by entering the following at a command line.

YSTRY2 library-list-name MENU(DSNR)

For more information about the *DSNR menu, see the Menus section in the "Using Your
Model" chapter in this guide.

116 Administration Guide

Controlling User Access

Programmer User Type

More Information

‘User’ User Type

More Information

A programmer (¥*PGMR) can create, change, and delete any access paths, arrays,
functions, including all work with action diagrams, and field conditions for database and
function fields but cannot alter the database files or fields. Several programmers may
simultaneously use a model. Whether programmers can use a model while a designer is
using it depends on the current setting of the Open Access (YOPNACC) model value.

If YOPNACC is set to:

m *NO, programmers cannot use a model while a designer is using it and cannot use
an unsynchronized model.

m *YES, multiple designers and programmers can use the model at the same time.

The CA 2E Programmer (*PGMR) Menu provides a list of tasks available to users having
*PGMR authority. You can access this menu by entering the following at a command
line.

YSTRY2 library-list-name MENU(PGMR)

For more information about the *PGMR menu, see the "Using Your Model" chapter in
this guide.

A user (*USER) is limited to viewing the model and cannot change it.

The CA 2E User (*USER) Menu provides a list of tasks available to users having *USER
authority. You can access this menu by entering the following at a command line:

YSTRY2 library-list-name MENU(USER)

For more information about the *USER menu, see the "Using Your Model" chapter in
this guide.

Chapter 4: Using Your Development Environment 117

Controlling User Access

User Authority Advantade

You control the ability of each of the three user types to access a model by granting
different levels of authority to the YMDLLIBRFA data area. This is explained in detail in
the Granting Authority section in this chapter. The YSTRY2 command displays your user
authority as a message at the bottom of the CA 2E menus.

The following table shows the minimum authority needed for each user type.

User Type Minimum Authority Needed
*DSNR with *LOCK (*DSLK) *ALL

*DSNR *CHANGE plus *OBIMGT
*PGMR *CHANGE

*USER *USE

Note: *LOCK authority gives you the capability to lock functions and access paths and
also to control the Open Access (YOPNACC) model value.

More Information

For more information about:

m The YOPNACC model value, see the Open Access section in the "Creating and
Managing Your Model" chapter.

m Locking objects and synchronizing the model, see the Locking Objects section in the
"Using Your Model".

m Data area authority levels, see the Editing Authority to Access Data Areas section in
this chapter.
Granting Authority

You grant authority to i OS objects with the i OS Grant Object Authority (GRTOBJAUT)
command.

More Information

For more information about the GRTOBJAUT command, see Volume 4 of the i OS CL
Reference.

118 Administration Guide

Controlling User Access

Granting Authority to Update Objects

To allow a user to update a model, grant the following authority:

m Use (*CHANGE) authority for the model library. For example:

GRTOBJAUT OBJ(QSYS/MYMDL) OBJTYPE(*LIB) USER(YOU) AUT(*CHANGE)

m Data authority to change (*CHANGE) for the objects in the model library. For
example:

GRTOBJAUT OBJ(MYMDL/*ALL) OBJTYPE(*ALL) USER(YOU) AUT(*CHANGE)

m The following minimum authorities are required to gain access to a CA 2E data
model:

- Object management authority is required to certain i OS database files in the
model library to which additional members may be added:

m YJOBLSTRFP
® YMDLLSTRFP

- Change authority is required to the following i OS database files in the model
library:

= YMDLPRFRFP
= YMDLOBJRFP

- Object existence authority is required to the following i OS database files in the
model library:

m YOBIJLCKRFP
m YSSNLCKRFP
m YSSNDTARFP
m YLSTSGTNXP

For example:
GRTOBJAUT OBJ(MYMDL/YJOBLST*) + OBJTYPE(*FILE) USER(YOU)
AUT(*ALL)
GRTOBJAUT OBJ(MYMDL/YMDLLST*) + OBJTYPE(*FILE) USER(YOU)
AUT(*ALL)
GRTOBJAUT OBJ(MYMDL/YMDLPRF*) + OBJTYPE(*FILE) USER(YOU)
AUT(*ALL)

GRTOBJAUT OBJ(MYMDL/YMDLOBJ*) + OBJTYPE(*FILE) USER(YOU)

Chapter 4: Using Your Development Environment 119

Controlling User Access

More Information

AUT(*ALL)

GRTOBJAUT OBJ(MYMDL/YOBJLCKRFP) + OBJTYPE(*FILE) USER(YOU) AUT(*ALL)
GRTOBJAUT OBJ(MYMDL/YSSNLCKRFP) + OBJTYPE(*FILE) USER(YOU) AUT(*ALL)
GRTOBJAUT OBJ(MYMDL/YSSNDTARFP) + OBJTYPE(*FILE) USER(YOU) AUT(*ALL)
GRTOBJAUT OBJ(MYMDL/YLSTSGTNXP) + OBJTYPE(*FILE) USER(YOU) AUT(*ALL)

m Appropriate authority to use data area YMDLLIBRFA in the data model library.

For more information about data area authority levels, see the Editing Authority to
Access Data Areas section in this chapter.

Granting Authority to Generate Source

To allow a user to generate source, in addition to the rights listed in the Granting

Authority to Update Objects section in this guide, grant object existence authority to the
source files in the generation library. For example:

GRTOBJAUT O0BJ(MYGEN/*ALL) OBJTYPE(*FILE) + USER(YOU) AUT(*ALL)

Granting Authority to Compile Source

To allow a user to compile source, in addition to the rights listed in Granting Authority to

Update Objects section in this chapter, grant data authority to update the generation
library. For example:

GRTOBJAUT 0BJ(QSYS/MYGEN) OBJTYPE(*LIB) USER(YOU) AUT(*ALL)

120 Administration Guide

Controlling User Access

Editing Authority to Access Data Areas

When a user attempts to access a model,CA 2E checks to ensure the user has the
authority to access data areas YMDLLIBRFA and YGENLIBRFA with the specified user
type before allowing access to the model.

Designer User Type—To allow a user access to a model as a designer, grant at least
CHANGE and OBJMGT authority. To allow the designer to lock and unlock objects, grant
ALL authority. For example:

EDTOBJAUT 0BJ(MYMDL/YMDLLIBRFA) + OBJTYPE(*DTAARA)

Press Enter and F11. Update the panel that displays by assigning authorities to the
appropriate user as follows:

m For a designer without lock authority, enter *CHANGE in the Object Authority
column and X in the Mgt column.

m For a designer with lock authority, enter *ALL in the Object Authority column. For
example:

EDTOBJAUT OBJ(MYMDL/YMDLLIBRFA) OBJTYPE(*DTAARA)

Press Enter. Update the panel that displays by assigning *CHANGE authority. For
example:

EDTOBJAUT 0OBJ(MYMDL/YMDLLIBRFA) OBJTYPE(*DTAARA)

Press Enter. Update the panel that displays by assigning *USE authority.

The following illustration shows the authorities needed to the YMDLLIBRFA data area to
access a model:

m User JXY has designer with lock access.

m User DSH has designer access.

m User OPK has programmer access.

m User RMG has user access.

Chapter 4: Using Your Development Environment 121

Controlling User Access

Edit Object Authority

Object : YMDLLIBRFA Owner : DEV
Library. : MYMDL Primary group. . . . : *NONE
Object type. : *DTAARA

Type changes to current authorities, press Enter.

Object secured by authorization list *NONE

Object ---------- Object-----------

User Group Authority Opr Mgt Exist Alter Ref

QsYs *ALL X X X X X

*GROUP DEV *ALL X X X X X

RMG *USE X B B B

OPK *CHANGE B

DSH *USER DEF X B B B

XY *ALL X X X X X

Bottom
F3=Exit F5=Refresh F6=Add new users F10=Grant with reference object
F1l=Display data authorities F12=Cancel F17=Top F18=Bottom
Object authorities changed.

Edit Object Authority

Object : YMDLLIBRFA Owner :DEV
Library. : MYMDL Primary group. . . . : *NONE
Object type. : *DTAARA

Type changes to current authorities, press Enter.

Object secured by authorization list *NONE

Object ---------- Object-----------

User Group Authority Opr Mgt Exist Alter Ref

QSYs *ALL X X X X X

*GROUP DEV *ALL X X X X X

RMG *USE X B B B X

OPK *CHANGE X X X X X

DSH *USER DEF X B B B

JIXY *ALL X X X X X

F3=Exit F5=Refresh F6=Add new users F10=Grant with reference object

F11=Nondisplay detail F12=Cancel F17=Top F18=Bottom

Both designers and programmers must have *ALL authority to access YGENLIBRFA. For
example:

GRTOBJAUT 0BJ(MYMDL/YGENLIBRFA) + OBJTYPE(*DTAARA) USER(BERT) AUT(*ALL)

You can grant *USE authority to those users who need to view, but not update,
generated source. For example:

GRTOBJAUT 0BJ(MYMDL/YGENLIBRFA) + OBJTYPE(*DTAARA) USER(USER) AUT(*USE)

122 Administration Guide

Controlling User Access

The following illustration shows the authorities needed to the YGENLIBRFA data area to

access a generation library:

m User JXY and DSH have designer access.

m User OPK has programmer access.

m User RMG has user access.

Edit Object Authority

Object . YGENLIBRFA Owner . DEV

Library. MYMDL Primary group . *NONE
Object type. *DTAARA
Type changes to current authorities, press Enter.

Object secured by authorization list. . . *NONE

Object ---------- Object-----------
User Group Authority Opr Mgt Exist Alter Ref
QsYS ALL X X X X X
OPK *ALL X X X X X
DSH *ALL X X X X X
RMG *USE X B B ~
XY ALL X X X X X
*GROUP DEV ALL X X X X X
*PUBLIC *EXCLUDE B B B B
Bottom
F3=Exit F5=Refresh F6=Add new users F10=Grant with reference object
F11=Display data authorities F12=Cancel F17=Top F18=Bottom
Edit Object Authority

Object . YGENLIBRFA Owner . DEV

Library. MYMDL Primary group . *NONE
Object type. *DTAARA
Type changes to current authorities, press Enter.

Object secured by authorization list. . . *NONE

Object --------------- Data---------------
User Group Authority Read Add Update Delete Execute
QsYs *ALL X X X X X
OPK *ALL X X X X X
DSH *ALL X X X X X
RMG *USE X B B B B
XY *ALL X X X X X
*GROUP DEV *ALL X X X X X
*PUBLIC *EXCLUDE _ B B B B
Bottom

F3=Exit F5=Refresh F6=Add new users F10=Grant with reference
F1l=Nondisplay detail F12=Cancel F17=Top F18=Bottom

Chapter 4: Using Your Development Environment 123

Controlling User Access

If you want to grant authority for many users to use YGENLIBRFA, you can set the USER
parameter to *PUBLIC rather than granting separate authorities to each user.

Revoking Authority

More Information

Sometimes, the owner of a model may want to prevent a user profile from accessing as
a designer or unauthorized users from accessing the model.

To set up these limitations, use the Revoke Object Authority (RVKOBJAUT) command.
Revoke *ALL authority for user USER1 to data area YMDLLIBRFA.

For example:

RVKOBJAUT 0BJ(MYMDL/YMDLLIBRFA) + OBJTYPE(*DTAARA) USER(USER1) AUT(*ALL)

For more information about the RVKOBJAUT command, see Volume 4 of the i OS CL
Reference.

124 Administration Guide

Controlling User Access

Compiling Objects in a Multi-Programmer Environment

More Information

If all the developers who use a model are not part of the same group profile, one
developer cannot recompile objects created by a developer in another group. When the
developer invokes the command to generate and recompile, YSBMMDLCRT, the process
fails because the developer does not have the authority to delete existing objects. The
*PUBLIC authority given by YSBMMDLCRT to each object in the model is only *CHANGE.

The i OS Change Command Default (CHGCMDDFT) command lets you change the default
value on the YSBMMDLCRT command to allow anyone authorized to use the data model
to recompile all programs in the model. Change the default value from *CHANGE to
*ALL.

For example:

CHGCMDDFT CMD(Y2SY/YSBMMDLCRT) + NEWDFT(‘AUT(*ALL) ")

Note: If you have separate LDO libraries, this command will reside in the CA 2E LDO
library (Y2SYVENG).

Should you find later that you do not want to grant universal recompile privileges, you
can restore the authority value to *CHANGE.

A developer can also temporarily change the authority for YSBMMDLCRT when invoking
the command from the Display Services Menu. The command is stored in the Y2MSG
message file in the two message IDs, Y2R0030 and Y2R0062.

1. To invoke the command, select the Submit model create request (YSBMMDLCRT)
option and press F4. A panel displays the parameters for the command.

2. Page to the second panel to display additional parameters. Press F10.
3. Change the PUBLIC AUTHORITY (AUT) value to *ALL.
4. Accept the change and execute the command. Press Enter.

The new authority affects only those objects submitted while using the option. When
the command finishes, the PUBLIC AUTHORITY parameter returns to the default value.

For more information about the CHGCMDDFT command, see Volume 2 of the i OS CL
Reference.

Chapter 4: Using Your Development Environment 125

Setting Up the User Environment

Setting Up the User Environment

More Information

The Null Model

When you create a model, you create a template for your user environment. This
template is a copy of the null model. Before you can begin the tasks involved in building
an application, you need to change aspects of this model so that it meets the
requirements and standards of your development environment. In addition, you may
need to perform other tasks that prepare your environment. This section discusses
some of these tasks:

m Controlling how names are allocated at both the system and the model level

m Customizing the default device design

m Setting up common routines and utilities

Every user in a model has an associated model profile that can be modified to tailor the

development environment. Additional capabilities are available using CA Xtras Change
Management (CM).

For more information about:

m Setting up a default environment, see the Model Profile section in the "Managing
Model Objects" chapter in the Generating and Implementing Applications guide

m CM, see the CA Xtras Change Management User Guide.

The null model is the base for new models. It contains no user-defined objects. The null
model is installed with CA 2E and reinstalled when you upgrade to a new version of CA
2E.

When you execute YCRTMDLLIB, the command creates a copy of the null model with the
default system values for your development environment. YCRTMDLLIB parameters let
you modify these defaults. You can then tailor the model to meet the requirements of
your development environment.

126 Administration Guide

Setting Up the User Environment

Shipped System Files (*)

Each model contains a number of CA 2E system files, fields, and functions. The names of
all CA 2E objects begin with an asterisk (*). Shipped system objects include:

Default Model Profile

*Built-in functions—The CA 2E file to which all built-in functions are attached.

*Field attribute types—The CA 2E file to which all field data types, such as DTE,
CDE, or TXT, attach. You can add user-defined data types to this file. The validation
functions for user-defined data types are attached to this file.

*Job data—A CA 2E file that provides access to job status data, such as job date and
user profile name, for use in CA 2E functions. The *Job data shipped file contains
system fields that supply execution time information about the job, such as the user
name, the job name, or the job start time. The *Job data file contents are fixed. You
cannot add fields to this file.

You can use fields in the JOB context only for input to other functions. You cannot
change these fields.

The JOB context is available in the action diagram of all function types.

*Messages—The CA 2E file to which all message functions attach.CA 2E is shipped
with a number of commonly required messages.

*Program data—A CA 2E file that provides access to program status data, such as
*Program mode and *Return code, for use in CA 2E functions. The *Program data
shipped file contains CA 2E system fields that control the execution of a CA 2E
function, such as the *Program mode. The *Program data file contents are fixed.
You cannot add fields to this file.

The PGM context is available in the action diagram of all function types.

*Standard header/footer—A CA 2E file to which any functions defining headers,
footers, windows, and action bars used by device functions attach. The file includes
five default functions: four of type DFNSCRFMT to define panel design headers and
one of type DFNRPTFMT to define report design headers.

*Template—A CA 2E file that provides a method for defining a template for any
standard function. A function based on this file is known as a template function.

*Synon reserved program data—A CA 2E file that contains special fields for use in
all function types.

The default model profile defines defaults for various processes and file specifications
for an interactive session. It is shipped with the null model. When you create a new
model, this default model profile is automatically copied to the new model library.

You can edit the default model profile to create a default model profile tailored to your
environment. To do so, select the Edit Default Model Profile for Model option from the
CA 2E Designer (*DSNR) Menu.

Chapter 4: Using Your Development Environment 127

Setting Up the User Environment

More Information

For more information about:

m Setting up a default environment, see the Model Profile section in the "Managing
Model Objects" chapter in the Generating and Implementing Applications guide.

m The *DSNR menu, see the Menus section in the "Using Your Model" chapter.

System and Model Values

More Information

Naming Control

CA 2E model values control optional features of the product. Changing model values lets
you create a model that meets your needs. You can override many model values at the
function or file level.

Model values fall into two classifications:

m System-wide

m Model-specific

You can display the model values for a model using the Display Services Menu option
Display model values (YDSPMDLVAL)

For more information about:

m All model values, see the description of the YCHGMDLVAL command in the CA 2E
Command Reference Guide.

m Model values related to functions, see the "Setting Default Options for Your
Functions" chapter in the CA 2E Building Applications guide.

m The Display system parameters option, see the "Using Your Model" chapter in this
guide.

When you think of names in CA 2E, you need to consider two types:

m The name that CA 2E automatically allocates to the i OS objects when generating
source code, provided you are using automatic name allocation

m The textual names that you assign when you create objects within a model

This section describes how CA 2E automatically allocates names and provides guidelines
for assigning names when you create objects.

128 Administration Guide

Setting Up the User Environment

Automatic Naming of Generated Code

A model value, YALCVNM, lets you control whether or not CA 2E automatically allocates
names within a model. If you set this value to *YES,CA 2E automatically assigns a name
for every database file, device file, format field, and program you define. Automatic
naming ensures that names generated for model objects are unique across the model.

In CA 2E, the implementation names are issued by a number of CL programs. The source
for these programs is available. You can replace these programs with your own routines.

Name Allocation Programs

The following table provides the name allocation programs.

CA 2E Object Object CL Program to Name Model Entity

Access Paths YALCPHYR1C Physical file names
YALCLGLR1C Logical file names
YALCQPFR1C Query physical file names
YALCIDXR1C SQL index names
YALCVIWR1C SQL view names

Access Path Formats ~ YALCFMTR1C PF and LF format names

Field Names YALCFLDR1C Field names

Functions YALCFUNR1C Program names
YALCMSGR1C Message names
YALCDSPR1C Display files
YALCPRTR1C Printer files
YALCHLPR1C Help text member and help panel

group names

YALCSCMR1C Screen message identifier

User Interface YALCUIMR1C UIM help module names

Manager (UIM) Help
Modules

Chapter 4: Using Your Development Environment 129

Setting Up the User Environment

Most of the name allocation programs make use of an RPG program, YALCVNMR1R, to
retrieve the last used mnemonic for the object type from a file in the model,
YALCVNMRFP. The source for the RPG program is also shipped.

CA 2E ships source code for a number of CL programs that assign names. The source
resides in the library Y2SYSRC. These programs provide an Application Program Interface
(API) to naming routines. You can modify these programs to achieve any naming
convention that fits the constraints of the implementation language.CA 2E checks for
duplication and calls the naming programs until they either return a unique name or
signal failure by returning blanks.

Automatic Naming: Last-Used Mnemonics

YALC xxR1C "PGEM
!

TALCWNMERL R “PGEM
I

YALCY MDD L “LF

TALCWNMEFP “PF

130 Administration Guide

Setting Up the User Environment

Automatic Naming Algorithm

If you use automatic naming,CA 2E assigns a name according to an algorithm when you
create a new entity, such as a field, file, or function, and ensures that the name is
unique across the model. The following diagram summarizes how names are assembled
for Objects/Members (programs/files), Formats, and Fields.

Objed prefix

Idertifing

Tywpe

Objed type

‘ E— Chjedt subtyoe

Ohjed=zhembers, OO kibd KW O

Formats F MM MNNPP

Fields) PREAM N

\—I— Type
Identifing

F_crmat

Foarmat type

Chapter 4: Using Your Development Environment 131

Setting Up the User Environment

The following explains the elements in the illustration:

UU—The object prefix is derived from the model value YOBJPFX which contains the
value stored in the file YALCVNMRFP.

MM—The identifying mnemonics are a unique, arbitrary pair of letters read from the
file YALCVNMRFP. Each object type has a different set of identifying mnemonics that
correspond to different records in the file YALCVNMRFP.

For example, physical and logical files will use the next available value in Object type
FIL. Functions, including the CLP for query access paths, will use the value in Object
type MSG.

Model value YFILPFX contains the last identifying mnemonic used for defining files;
see the note following this list for more information.

NN—The type mnemonics are a pair of letters allocated according to the CA 2E object
attribute. For example, fields of type CDE are CD and query access path CLP programs
are QF.

O—The object type is a single letter that identifies object types; for example, P
(physical file), L (logical file), R (RPG program), or C (CLP program). You can set up the
values to be used by the object types by using the Edit Generation Types panel. For
functions, the object sub-type distinguishes between the help and display file
associated with the PGM object type.

X—The object sub-type is a single letter that depends on the object type. For logical
files, this letter indicates the access path number. For display files and help member or
panel groups, you can set up the values to be used by the object sub-types by using
the Edit Generation Types panel.

F—The format type is a single letter that identifies the format type; for example, @ for
database files or # for display files. You can set the values to be used by the object
types using the Edit Generation Types panel.

PP—The format ID (PP) is an arbitrary set of letters unique for each physical file.

132 Administration Guide

Setting Up the User Environment

Presetting Automatic Naming Identifiers

Two-character automatic naming identifier that is incremented each time a new name is
assigned, ranges from AA to T9 for file names and from AA to Z9 for other objects. This
limits the product to 684 file names and 936 names for each of the other object types.

To avoid the inconvenience of reaching these limits you can preassign the next unique
code to be used by the automatic naming algorithm for each object type using the Edit
Next Mnemonic (YEDTNXTMNC) command. This command displays the following
interactive panel.

Note: You need to be out of your model when you run YEDTNXTMNC and you need
*DSNR authority to edit the panel. If multiple models use the same naming library,
ensure that no one is using any of the models.

Change Next Object Prefix (OBJPFX Model Value) for Member Names
ID Mnemonic Current Next
FIL MSG Prefix Prefix
AH A8 MY YY

Change Next Field Type Mnemonic
Field Identifying Type Next

Type Mnemonic Code Code
CDE AI @) CE
DTE AA DT DE
NBR AF NB NR
NAR AA NA NE
QrTY AB QT QY
STS AE ST SS
TME AA ™ TE
TXT AH X T
VAL AD VA VL
VNM AA VN WM

MORE ...
F3=Exit F5=Refresh F20=0verride

This panel is divided into two parts as follows:

m Change Next Object Prefix for Member Names—The top section of the panel
applies to physical and logical files (FIL) and functions (MSG). The mnemonic for
these objects is the system prefix; namely, the OBJPFX model value. This table
describes the panel options:

Option Description

ID Mnemonic FIL Last 2-character identifier used for a file name. Use this
to determine how close you are to the limit (T9)

MSG Last 2-character identifier used for a program name. Use
this to determine how close you are to the limit (Z9)

Chapter 4: Using Your Development Environment 133

Setting Up the User Environment

Current Prefix The current OBJPFX model value.

Next Prefix The mnemonic to use when the naming algorithm runs

out of names. When the name limit is reached for either
files or programs, the OBJPFX model value is updated to
this value.

Assign the next mnemonic to be used when the automatic naming algorithm runs
out of names by typing a two-character mnemonic for the ‘Next Prefix’ option and
press Enter.

When the name limit is reached for either files or programs, the ‘ID Mnemonic’ is
reset to AA for both FIL and MSG objects and the value you entered becomes the
new mnemonic when assigning file and program names. The OBJPFX model value is
also updated to this value.

Change Next Field Type Mnemonic—The bottom section of the panel applies to
field types. This table describes the panel options:

Option Description

Field Type Three-character field type code.

Identifying Mnemonic Last 2-character identifier used when assigning a field name

for the corresponding field type. Use this to determine how
close you are to the limit of Z9.

Type Code The current Type mnemonic used for the corresponding field
type.
Next Code The Type mnemonic to use when the naming algorithm runs

out of names for the corresponding field type.

Assign the next mnemonic to be used when the automatic naming algorithm runs
out of names for a field type by typing a two-character mnemonic for the ‘Next
Code’ option and press Enter.

When the name limit is reached for the field type, the ‘Identifying Mnemonic’ is
reset to AA and the value you entered becomes the new mnemonic when assigning
field names for this field type.

Note:

m Use the F20 function key on the YEDTNXTMNC panel with care. Like the Enter
key, it updates the YALCVNMREFP file but without performing error checking. It
is intended for use only in unusual circumstances; for example, if you need to
use the same mnemonic for two different field types.

m Since format names are combined with the associated file name identifier, the
two-character identifier for formats is simply reset to AA when the name limit
is reached.

134 Administration Guide

Setting Up the User Environment

Reserved Format Identifiers

CA 2E reserves certain letters to use as field prefixes so that you do not inadvertently
duplicate field names in HLL programs. The program you use to allocate format prefixes,
Edit Generation Type Details, contains a check to ensure that you do not use the

reserved values.

RPG COBOL/
RPGCBL

Reserved for

o
o

Passed parameter fields

Program work fields

User service subroutine fields

CA 2E internal use

Use in user EXCUSRSRC fields

External date fields

CA 2E service subroutine fields

Use by panel fields

Use by printer fields

|V [|N|<|c|[<|[x]|s
<|N|X|N|<|c|=<|Xx|=

Use by special fields

Source File Names

Implementation names should be appropriate for the HLL and DDS source code you are

generating.

In the shipped system, new implementation names depend on the YHLLVNM model
value; for example *RPGCBL, and the allocation characters for each source type. The
Edit Generation Types panel displays a table that provides allocation characters. These
characters should be appropriate for your target HLL. To display this table:

1. From the Display Services Menu, select the Display model values (YDSPMDLVAL)

option.

2. From the Display Model Values panel, select the Display Name allocation values

option.

3. Press F10 to display the Edit Generation Types panel. Modify the allocation
character and source file name as necessary.

Chapter 4: Using Your Development Environment 135

Setting Up the User Environment

High Level Landuade Naming Restrictions

Different CA 2E HLLs impose different restrictions on the names they allow and,
therefore, to the names you can give to files, formats, and fields. CA 2E also requires
that you reserve the first two characters in field names for a format prefix.

Other restrictions depend on your target HLL. For example, restrictions on length are
generally more severe in RPG than in COBOL. However, RPG lets you use some
non-alphabetic characters, such as #, &, or @, in names, that COBOL does not allow.

The HLL name validation model value, YHLLVNM, lets you specify that names must
satisfy RPG restrictions, COBOL restrictions, or both. If you are generating a database for
use with both COBOL and RPG programs, use names that satisfy both sets of
restrictions.

The default for the model value YHLLGEN is *RPGCBL. The CA 2E convention using
*RPGCBL produces names of 8 or less characters that would be valid names on most

platforms.

The following table describes YHLLVNM and HLL name restrictions:

Restricted DDS RPG COBOL #RPG #RPGCBL #CBL
File Name Max 10 8 30 8 8 10
Length

Format Name Max 10 8 30 8 8 10
Length

Field Name Max 10 8 30 2 + 4% 2 + 4% 2 + 4%
Length

Allow #, @, etc. Yes Yes No Yes No No

*Where 2 is the length of the prefix and 4 or 8 is the remainder of the name.

When you create a new model, you set the initial value for the YHLLVNM model value.
The default for this model value is the same as the value set for the HLLGEN parameter.

You can change the model value for the YHLLVNM using the Change Model Value
(YCHGMDLVAL) command.

136 Administration Guide

Setting Up the User Environment

More Information

Note: If your HLL is COBOL, the first five characters of the name must be unique.

If you have a model originally implemented with model value YHLLVNM set to RPG and
you want to regenerate it in COBOL, you must convert the implementation names so
that they satisfy COBOL restrictions.

For more information about:

m The YCHGMDLVAL command, see the Command Reference guide.

m Converting a model from one HLL to another, see the “Preparing for Generation
and Compilation” chapter in the Generating and Implementing Applications guide.

For more information about:
m The YCHGMDLVAL command, see the Command Reference Guide.

m Converting a model from one HLL to another, see the "Preparing for Generation and
Compilation" chapter in the Generating and Implementing Applications guide.

Device Field Names

When you create a new model,CA 2E automatically sets up a table with values
appropriate for the HLL specified by the YHLLGEN model value. When you implement a
CA 2E device function in DDS and an HLL,CA 2E uses the implementation names for the
device file formats and fields specified by the table. The Edit Device Generation Details
panel provides this table. The allocation characters in the table should be valid for your
target HLL. You can change these values.

To display the table:

1. From the Display Services Menu, select the option Display model values
(YDSPMDLVAL).

2. From the Display Model Values panel, select the Display Name allocation values
option.

3. Press F22. The Edit Device Generation Details panel displays. Modify the GEN name
as necessary.

Chapter 4: Using Your Development Environment 137

Setting Up the User Environment

Adopting Naming Conventions for File and Function Design

Name allocation lets you set naming standards at the system level. Naming conventions
let you set naming standards at the model level.

All objects originating from an application must have a uniquely identifiable name. Users
who add objects to an application should take care that object names follow a set of
naming standards. The Copy Model Object (YCPYMDLOBJ) command uses the text
description to determine whether to add an object or copy over an existing object.

CA 2E requires that all names you create follow these general rules:

m Names can be up to 25 characters.

m |etters within a name can be both upper and lower case.

m Names can include embedded blanks and special characters.

138 Administration Guide

Setting Up the User Environment

Fields

More Information

Field names should be complete words or abbreviations that are a concise, meaningful
definition of the field. Following are some suggestions for creating field names:

The format should be object name + field type:
m The object name should be words or abbreviations separated by spaces.

m The field type is optional and should describe the type of data stored in the
field. The field type is useful when the type is not evident from the object
name. For example, Date might be Statement Date.

Develop a method to capitalize consistently. For example, capitalize the first letter
of the first word, or the first letter of each meaningful word.

Develop standard abbreviations that conform to site vocabulary. For example, you
could use "CUST" for customer or "PROD" for product.

Develop rules for naming common status field types. For example, status fields used
as binary flags should be referenced to a single status field with the conditions Yes
or No.

Set up base fields for all common field types and reference these fields by most
other field types. This convention helps to ensure uniformity and allows changes to
be made more efficiently. To place base fields at the top of the list, preface them
with the letter A. Name base fields to reflect the field attributes. For example, A yes
or no (Y|N) status or A Text Desc 30.

When you create the field, add narrative text. Add functional narrative to describe
the field to designers, and if applicable, add operational narrative to describe the
field to end users. Use a standard template.

Keep in mind the effect of the narrative on help text. If you enter operational text, it
becomes the help text for the field; however, if you enter only functional text, it
becomes the help text.

To facilitate panel generation, set appropriate column headings for each field.

Where sequencing is necessary, sequence numbers by five.

For more information about narrative text, see the "Using Your Model" chapter in this
guide.

Chapter 4: Using Your Development Environment 139

Setting Up the User Environment

Function Fields

Files

Relations

Following are some suggestions for creating function field names:

Function field names should be the same as the related database field. Prefix USR
function fields with a common set of characters and, if necessary, a number to
make the name unique. Reference the function field to the same base field as the
database field. For example, use Order Amount #. Suffix other function fields
according to their type, such as, Order Amount SUM, Order Amount MAX.

Add functional narrative to describe the field to programmers, and if applicable,
add operational narrative to describe the field to end users.

Develop similar conventions for function fields not related to database fields.

File names should consist of complete words or abbreviations and should provide a
concise and meaningful definition of each file.

Following are some suggestions for creating file names:

Do not use the word file in a file name.

Name files in the singular, rather than the plural, tense. For example, use Customer
rather than Customers.

Develop a method to capitalize consistently. For example, capitalize the first letter
of the first word, or the first letter of each meaningful word.

Develop standard abbreviations that conform to site vocabulary.

To avoid truncation of default function names, restrict file names to 18 characters
where possible.

When you create a file, add narrative text. Use a standard template. Keep in mind
the effect of the narrative on help text.

Following are some suggestions for creating relation names:

Create meaningful names for foreign key fields by adding For Text to ALL
relationships in order to define the relationship with the target file.

When you create a file-to-file relation, add narrative text. Use a standard template.
Keep in mind the effect of the narrative on help text.

140 Administration Guide

Setting Up the User Environment

Access Paths

Following are some suggestions for creating access path names:

Functions

When you add an extra access path, create a meaningful name. Avoid including
redundant information. Where possible, indicate selection and sequence details.
The name of a span file should indicate the two files the span is over. If necessary,
abbreviate the file name rather than reduce other information. For example,
Customers Active by Postcode, Orders US by Product.

It may be useful to set a convention that indicates where a procedure is being
followed to control the implementation of joins within separate logical files.

Function names should consist of complete words or abbreviations and should provide a
concise and meaningful definition of each function.

Following are some suggestions for creating function names:

Develop a method to capitalize consistently. For example, capitalize the first letter
of the first word, or the first letter of each meaningful word.

Number functions that are sequenced to perform a process. Use the number in
numeric form. For example, Calc Daily Rate 2.

Database Maintenance Functions:

Following are some suggestions for creating database maintenance function names:

Use the Process name + Object name format. The process name should describe the
type of process the function performs. You may want to abbreviate the name:

The object name can be a file name, generic data name, or specific data attribute
name. The name should conform with other naming standards. To indicate how
many objects will be processed, use singular and plural tense.

Versions of Functions and Messages

For versions of functions and messages there is a shipped program for generating names
if you specify *GENERATE as the To model object name on the Create Model Version
(YCRTMDLVSN) command. You can define your own naming convention by amending
the CL program YOBJNAMR1C.

Chapter 4: Using Your Development Environment 141

Setting Up the User Environment

More Information

Panel Titles

Condition Names

Messade Names

Messade Name

First Level Text

For more information about versions, see the "Working with Model Objects" chapter in
the CA 2E Generating and Implementing Applications guide.

All functions with a device design have a screen title on the header/footer. For *SAA
format, this field is fifty characters. For other formats, this field is thirty-seven
characters. The default for this field is the function name.

m Expand the default to further describe the function.

m Allow upper and lower case letters.

Condition names are referenced in action diagrams and for selection criteria on active
paths.

m Make condition names as meaningful as possible. Do not abbreviate unless
absolutely necessary.

= Condition names should be independent of the functions that use them.

CA 2E messages consist of three parts:
® Message name
m First level text

m Second level text

The message name is unique, 25-character field that identifies the message texts in the
CA 2E model. The message name forms the default for the first level text. The message
name should indicate the intended first level text and the message type.

The first level text can be up to 76 characters and should be meaningful to the system
user. You might want to add variable data to make the message more flexible and
expand the user’s understanding.

142 Administration Guide

Setting Up the User Environment

Second Level Text

Design Control

More Information

Second level text displays when the user presses the Help key while first level text
displays. Second level text describes why the message displayed and what actions the
user can take. Since many functions may use this text, it should not be specific to the
operation.

The following table shows CA 2E message types and their components.

Type Message Name 1st Level Text 2nd Level Text
ERR Yes Yes Yes
INF Yes Yes Yes
CMP Yes Yes Yes
STS Yes Yes Yes
EXC Yes Yes Yes
RTV Yes Yes Yes

Messages of the EXC type should contain the command they process. For example,
SBMJOB Customer Report.

A device design is a display format for either a panel or a report that refers to a
particular function. Establishing and modifying a device design lets you control the user
interface for a function.CA 2E translates device designs into DDS.

Model values set when the model is created determine the initial defaults for device
design attributes.CA 2E lets you change these defaults to customize the device design
for a particular model.

This section introduces CA 2E design options and standard user interfaces, such as
standard function key meanings, line selection values, headers and footers, and
screen/report display attributes.

For more information about device design and procedures to customize the design for
your environment, see the CA 2E Building Applications Guide.

Chapter 4: Using Your Development Environment 143

Setting Up the User Environment

Design Options

When a model is created, the model value YSAAFMT sets the default display
conventions for screen designs within a mode. The default can be one of the following:

m CUA Text Subset
® CUA Entry
m S/38

The display convention determines such aspects of display as:
m Standard user interfaces
m Standard headers and footers

m Screen and report attributes

The following sections discuss these features.

Standard User Interfaces

The generated user interface includes features that affect the appearance of the screens
and reports you design and generate with CA 2E. These features include:

m Standard function key meanings
m Standard line-selection value meanings

m Standard headers and footers

Default screen and report attributes

Model values control these features of the user interface. By resetting model values,
you can change from, for example, S/38 to SAA standards. In addition, CA 2E provides
programs that let you customize the user interface for a particular application.

144 Administration Guide

Setting Up the User Environment

Standard Function Keys

CA 2E provides a number of standard function key meanings, such as *Exit, *Delete, or
*Next page. Each meaning is assigned a function key. These meanings conform to the
design standards. To change the user interface for an application, you reassign the
function key and regenerate the code.

Each function key has a specific value out of a list of standard values. The standard
function key meanings are controlled by list (LST) conditions attached to the *CMD key
field. Each available function key is specified by a value (VAL) condition attached to the
same field. Assigning a particular function key value condition to a given list condition
assigns it a particular meaning. The CA 2E screen design and generator programs use the
assigned value.

The following table shows the shipped function key value defaults.

For... Command Key Description
All Programs F1 Display Help text
Enter Validate Input
F3(Exit) exit without update
Where appropriate F12 Previous screen
F4 prompt
F5 Reset
F7,Roll Up Next page
F8,Roll Down Previous page
F9 Add/Change
F11 Delete

You can display standard function key meanings by accessing the Edit Field Conditions
panel. You can access this panel from an action diagram or from the Edit Field Details
panel.

Note: A good practice is to define all function keys referenced in action diagrams as lists
(LST) and not values (VAL). You can then change the description of the function key
where ever it displays by changing the list condition.

Chapter 4: Using Your Development Environment 145

Setting Up the User Environment

Standard Line Selection Values

CA 2E identifies a number of standard line selection value meanings, such as *Zoom,
*Delete, or *Select.

Standard line selection meanings are controlled by list (LST) conditions attached to the
*SFLSEL field. Each available option value is specified by a value (VAL) condition
attached to the same field. Assigning a particular line selection value condition to a
given list condition assigns it to have a particular meaning. The CA 2E screen design and
generator programs then use the assigned value.

The length of the *SFLSEL field can be either one or two; it is shipped with a length of
one. A designer (*DSNR) can change the model-wide length using the Edit Field Details
panel; a developer can override the model-wide length for an individual function on the
Edit Screen Entry Details panel.

The Edit Field Conditions panel for the *SFLSEL field shows the standard line selection
values. You can display this panel from an action diagram. You can also edit a list
condition from this panel.

More Information

For more information about overriding the length of the *SFLSEL field, see the
"Modifying Device Designs" chapter in the CA 2E Building Applications guide.

Standard Headers and Footers

CA 2E functions Define Screen Format (DFNSCRFMT) and Define Report Format
(DFNRPTFMT) usually define the top and bottom lines for device designs. The function
options show the name of the standard header function associated with each function.
Unless you explicitly name a particular function, this name defaults to the name of the
default header function.

You can change the appearance of the header and footer of all your device designs by
doing one of the following:

m Change the layout or your default standard header, using the Edit Device Design
displays.

m Specify an alternate default standard header.

Specifying the Default Standard Header

If you have several DFNSCRFMT functions, you can control which is the default standard
header function by accessing a CA 2E panel, Edit Function Options, from the
DFNSCRFMT panel and setting the Use as default header flag. Only one DFNSCRFMT
should be flagged as the default.

146 Administration Guide

Setting Up the User Environment

Panel/Report Display Attributes

Environment

More Information

Field attributes determine how a field displays in a device design. Attributes include
such features as reverse image, highlighting, and underlining.

For each CA 2E field data type, you can set default values for various field properties,
such as length and edit codes. Any new fields will be given these values.

You set default values for field properties with the Edit Field Attribute Defaults panel.
Some values on this panel are protected, such as the data type. You can change other
values. Changing the value does not affect existing fields. The value is the default for any
new fields created in the model after the change.

You can change other default attributes at the individual field level with the CA 2E Edit
Default Display Attributes (YEDTDFTATR) command.

CA 2E lets you create objects and generate application systems on an IBM i as if you
were in an S/38 environment. Three model values control the environment in which
applications are designed, created, and executed:

m YEDTEXC sets the environment within which CA 2E is used.
This value is determined automatically by the machine, S/38 or IBM i.
m YCRTENV sets the default object creation environment.

This value determines whether System/38 or native IBM i code is generated; that is,
whether machine- specific references in the source should be in IBM i syntax or
System/38 syntax. The source attribute, native IBM i or System/38, is set according
to this model value.

This value also controls whether the native or the System/38 environment
compilers are invoked to create objects from the generated source.

m YEXCENV sets the environment within which CA 2E applications are to execute. This
value determines the default for any machine-dependent syntax that is brought or
built at execution time; for example, messages to use in QCAEXEC or QCMDEXEC.

You can change these values with the YCHGMDLVAL command. These values can be
either QCL for S/38 or QCMD for IBM i.

For more information about the YCHGMDLVAL command, see the CA 2E Command
Reference Guide.

Chapter 4: Using Your Development Environment 147

Setting Up the User Environment

Setting Up Common Routines/Utility Functions

Certain routines and utilities are common to many CA 2E functions. These include:
m Date/Time stamp update for CRTOBJ and CHGOB)

m Date handling

m Authority level checking

m Report distribution

® Menus

m User defined attributes and mapping functions

® Function fields

IBM supplied programs

148 Administration Guide

Chapter 5: Setting Up a Multi-Modeling
Environment

This chapter describes commonly used multi-model structures and provides an overview
of the tasks that may be required to set up a multi-model environment. This chapter
also describes how to copy an entire model and portions of a model.

This section contains the following topics:

Before You Begin (see page 149)
Multi-Model Structures (see page 150)

Shared Name Environment (see page 152)
Common Multi-Model Configurations (see page 154)
Copying a Model (see page 158)

Before You Begin

Multi-model environments requires planning to set up and maintain. Weigh the benefits
you expect to receive against the resources you expect to invest.

As a first step, read this chapter. It provides an overview of common multi-model
structures and describes the tasks involved in setting up a multi-model structure. If you
decide that a multi-model structure is appropriate for your development environment,
you may want to get information and advice from other sources.

Chapter 5: Setting Up a Multi-Modeling Environment 149

Multi-Model Structures

Multi-Model Structures

The multi-model structure is a modeling environment that allows multiple models to
exist in development and production environments. You can copy object definitions

from among participating models. And you can create a multi-model structure made up
of:

m A standards model, which is the foundation for all new models in the environment.
This model contains any system-wide standards, such as structure files, field types,
and header/footer designs. This model is used to create all other models.

m A core model, which contains the database relations of the complete database.

m Application models, which contain database relations for a particular application
plus functions. Many environments may not need application models. The
application models may be integrated into a production model.

In a multi-model structure, object definitions are intended to be shared. The structure
can be treated as one model and eventually consolidated. In some environments,
database changes to the design may be prevented in the core model.

150 Administration Guide

Multi-Model Structures

Considerations

A multi-model structure is designed for development environments in which:

A large project must be split so that users can work separately.
A product is being tailored for a client but must be compatible with the standards.
Each model in the structure represents a phase of development.

Development is split over IBM i without a remote link.

In deciding whether your development environment would benefit from using a
multi-model structure, consider these factors:

Development Schedule—A multi-model structure benefits environments where
data design and programming overlap.

Note: If you are using Change Management (CM), you should consider using
Check-out, User capabilities, and locks to achieve control in this kind of
environment rather than using multi-models.

Application Requirements—Identify which interfaces to other applications are
required; for example, which files must be shared between applications. Identify
functions that are common to or must be shared with multiple applications. Loosely
integrated or unrelated applications work well in separate models.

Organization Requirements—You may want to separate models for security
reasons, or you may want to separate or merge staff responsibilities.

Note: If you have CA Xtras Change Management, consider partitioning the model
with model object lists authorized to groups of staff and further refine access
capabilities within just the one model.

If you decide that a multi-model structure is appropriate for your environment, use the
requirements you identified to design a structure that meets those requirements. This
section describes some common configurations, though other configurations may best
meet the needs of your environment.

In addition to identifying requirements, plan how you will maintain the structure you
designed. Consider such factors as:

Standards and procedures:

- Shared naming library

- Standardized functions
- Coding techniques

- Project time

Staff needs:

- Database administration

— Operations

Chapter 5: Setting Up a Multi-Modeling Environment 151

Shared Name Environment

® System requirements:
- Hardware
- JOBQs
- Subsystems

— Pool allocations

CA 2E Change Management (CM)

More Information

CM, available as a separate product, is a change control system for the IBMi. In a
multi-model environment, CM can automate and track the flow of design objects,
generated source, and compiled objects between development, test, and production
models. In a single model, CM can control versions of objects, user access capabilities,
locking of objects, and concurrent development.

For more information about CM, see the CA 2E Change Management User Guide.

Shared Name Environment

More Information

CA 2E requires that object names of the same type be unique across a model. In a
multi-model environment, where the models will eventually be consolidated, names of
different objects of the same type must be unique across all models. Similarly, the
names of the same object, both CA 2E names and implementation names, should be the
same across all models.

CA 2E’s autonaming function ensures that names are unique for all objects in a
particular model. A shared name environment ensures that names are unique even
when created in different models. You set up a shared name environment when you
create the models that make up the multi-model environment.

Note: If you override an automatically allocated name,CA 2E can check only that the
new name is unique within the application model. We strongly suggest that you use
autonaming in a multi-model environment and rename objects only when absolutely
required. Renaming of either the CA 2E name or the object name is the most common
cause for the same object having different names in different models.

For more information about autonaming, see the "Setting Up Your Development
Environment" chapter in this guide.

152 Administration Guide

Shared Name Environment

Setting Up a Shared Name Environment

You can set up a shared name environment by creating a separate shared name library
or by designating a library in a particular model as the shared name library. Then edit
the designated library to include only the names of shared objects listed in the
procedure. This section describes how to set up a separate shared name library.

Creating a Separate Shared Name Library

Use the i OS Create Library (CRTLIB) command to create a shared name library that
contains the objects required by the name allocation routines.
The shared name library objects should include:

m The logical file YALCVNMOOL, which contains the last used sequence values for
names of files, programs, and fields, and the model value object prefix. The
based-on physical file is YALCVNMRFP.

m Data area YMSGPFXRFA, which contains the message prefix.
m Data area YMSGNBRRFA, which contains the last sequential message number.

m Data area YMSGVNMRFA, which contains the message file name.
More Information

For more information about the CRTLIB command, see Volume 3 of the i OS CL
Reference.

Advanced National Landuade Support in a Shared Name Environment

If you are using the National Language Support feature, that is, the model value
YPMTGEN is set to *MSGID or *LITERAL, you need to move the data area YPMTNBRRFA
into the shared name library so all models can share the naming for message identifiers.

Library List Considerations

For any model that shares the name environment, the shared name environment library
name must precede the name of the model in both the interactive and batch library
lists. To edit the lists and associated job description for each model, use the Edit Library
List (YEDTLIBLST) command and specify the library list for each model (named in the
YLIBLST model value).

Chapter 5: Setting Up a Multi-Modeling Environment 153

Common Multi-Model Configurations

Object Prefixes

For a shared name environment, we recommend that you assign an object prefix to
shared objects. Program YALCVNMR1R assigns the object prefix using the SYS entry in
the YALCVNMREFP file. All models in the environment then share the prefix.

Note: The source for the YALCVNMR1R name allocation program is shipped in source
file QRPGSRC in library Y2SYSRC.

If you want object prefixes to indicate the model origin of each object, you need to
assign prefixes differently. A typical method is to create a new data area for the prefix in
each model. Change the YALCVNMR1R program to retain the data area rather than to
access the file. The library list then determines the object prefix.

Note: For environments with many objects, you may need to reset the YALCVNMRFP
file.CA 2E then starts allocating object names from the next prefix. Make sure you
allocate unique prefixes for each model. It is possible to assign duplicate names.CA 2E
implements the names until no duplicates exist for the current model, but does not
check the models for duplicates.

Common Multi-Model Configurations

This section describes several common multi-model configurations and outlines the
steps required to configure each type:

m Database administrator
m Development/test/production

m Split application

154 Administration Guide

Common Multi-Model Configurations

Database Administrator Configuration

More Information

A database administrator (DBA) configuration is a shared name environment that
enables developers to design a data model in one model and design functions in
another. All data modeling changes take place in the database design model, and the
object definitions are copied to the application model. All procedural coding takes place
in the application model. The database design model does not require a generation
library.

The DBA configuration generally has two variations:

m One database design model with several application models. This configuration may
be appropriate when an environment needs a cross-application data model but
application-specific programming.

m Multiple database design models with a single application model. This configuration
may be appropriate in a maintenance environment or in an environment
developing interfaces between applications in separate models.

To set up a DBA configuration:

1. Create the required models. Specify the same model values for all models.
Designate the database design model and application design models.

2. Using the database design model as the name library, set up a shared name
environment. See the Shared Name Environment section in this chapter for more
information.

3. Prevent access by programmers to the database design model.

4. Optionally, prevent access by designers to the application models.

You can generate files and access paths using the database design or the application
model. You should not generate them from both models. If you use the database design
model, any differences between the models tends to become obvious when the
functions are created. In this situation, job descriptions for the application models must
contain the database generation library. Differences between the model definition of
the access path and the actual model can also cause spurious image compare errors
during application execution.

You can define additional access paths either in the application or in the database
models. Do not define them in both models. Because of the significant impact on
performance, ensure that you control the number and types of access paths if you
define them in the application model.

For more information about granting authority to use a model, see the "Using Your
Development Environment" chapter in this guide.

Chapter 5: Setting Up a Multi-Modeling Environment 155

Common Multi-Model Configurations

Development/Test/Production Configuration

A development/test/production configuration is a shared name environment that lets
you develop in one model and to install production-level definitions in another.

Note: This is the recommended configuration when using CM. CM automates and
controls the promotion of objects from development through to production.

You set up a development/test/production configuration as you would set up a DBA
configuration except that you:

m Specify a different generation library for each model.

m Use the production library as the shared name library.

®m Prohibit access to the production model and place object definitions into it only by
copying from the development model using the Copy Model Objects (YCPYMDLOB))

command.

YCPYMOLOE

YCPYMOLOE

el

RTF

ol

0

YCPYMOLOE

Production Archive

&

YCPYMOL
Test

F

Y CPYMOLOE

pell-

Dewelopment

156 Administration Guide

Common Multi-Model Configurations

Split Application Configuration
The split application configuration is a hybrid of the DBA configuration. The split
application configuration has two model levels:

m A Core Model level with the core model that contains the files common to multiple
applications. These files are maintained at the core model level and copied to the
application models. The core model may have been created from a standards
model.

= An Application Model level with multiple application models for
application-specific DBA configurations.

The split application configuration provides flexibility with control in environments that
need application-specific data models.

Standards

Core

YCPYMDLOBJ

YCPYMDLOBJ

Production
(or Core)

Chapter 5: Setting Up a Multi-Modeling Environment 157

Copying a Model

You set up a split application configuration as you would set up a DBA configuration:

1. Create the core model.

2. Set up the application models.

If you want to specify a generation library that is different from the generation library at

the core level, add the core model generation library to the application level library lists
after the application model generation library.

Copying a Model

CA 2E provides two methods to copy a model. You can copy part of a model or a
complete model.

158 Administration Guide

Copying a Model

Copy Part of a Model

To copy only selected objects from one CA 2E data model to another, use the CA 2E
Copy Model Objects (YCPYMDLOBJ) command. For example, a company that develops
software for its own use might want to apply some changes to the production model
before the entire development model is ready to be copied.

You copy model objects by creating a model object list of all objects in the model you
want to copy from. You can use the Edit Model List for Copy (YEDTCPYLST) command to
perform additional setup tasks related to copying and to view the results of a copy. For a
description of this process, see the Copying Part of a Model section in this chapter.

Copying part of a model involves the following steps:

1.

Prepare a model object list containing the model objects you want to copy. For
example:

m Use the Build Model List (YBLDMDLLST) command.

m Use an existing model object list; for example, your session list where CA 2E has
automatically logged all changed model objects.

m Use other model object list commands to create the list, such as the Filter a
Model Object List (YFLTMDLLST) command to select objects changed since a
certain date.

Ensure the list entries for the objects you want to copy are flagged with CPYOBI flag
*SELECTED. You can do this directly from the YBLDMDLLST or YFLTMDLLST
commands, with the YCHGMDLLE command, or interactively using the YEDTCPYLST
panel (see below).

Note: To prepare a list for copying you should use only the new model object list
commands and/or the YEDTCPYLST command. The Build Copy List (YBLDCPYLST)
command is available only for backward compatibility with previous releases of CA
2E and should not be used.

Optionally, use the YEDTCPYLST command to invoke the Edit Model Object List for
Copy panel. You can specify which objects you want to copy.

You can assign new object names that will be used both to identify the same object
in the target model and to be the name of the copied object in the target model.
This step is often required if an object has been renamed that exists in both the
target and source models.

Use the YCPYMDLOBJ command to copy the CA 2E objects indicated by the edited
model object list to another model. You can copy the objects, or you can run a
prepass check for discrepancies between the objects in the source and target
models.

The remainder of this section discusses this process in more detail.

Chapter 5: Setting Up a Multi-Modeling Environment 159

Copying a Model

More Information

For more information about:

m Model object lists, see the "Managing Model Objects" chapter in Generating and
Implementing Applications.

m Model object list commands, see the CA 2E Command Reference Guide.

Copying an Entire Model

More Information

When you want to copy everything in a model to another model, use the CA 2E Copy
Model (YCPYMDL) command. The YCPYMDL command copies an entire CA 2E model
library into a new model or to an existing model. When you copy using this command,
you cannot add to the contents of an existing model. The source model overwrites the
target model if it exists.

If the target model does not exist, the YCPYMDL command creates the target model
when it copies from the source model. Using this method is significantly faster than
creating the target model first with the Create Model Library (YCRTMDLLIB) command,
then separately executing the YCPYMDL command.

Note: The YCPYMDL command does not create the generation library for the target
model.

You can use the YCPYMDL command to create models from your standards model. For
example, to copy model MYSTDMDL to a model MYCOREMDL, that is created by the
copy, you would enter the following and press Enter:

YCPYMDL FROMMDLLIB(MYSTDMDL) + TOMDLLIB(MYCOREMDL) CRTOPT(*YES)

For more information about the YCPYMDL command, see the CA 2E Command
Reference Guide.

Understanding Model Object Lists

A model object list is a list of CA 2E objects in a CA 2E data model. In a multi-model
environment, using a model object list for copying provides a method for you to control
which objects are copied to the target model.

Note: The terms model list and copy list are often used interchangeably; both refer to
the same thing.

160 Administration Guide

Copying a Model

Model Object List Commands Used for Copying Objects

Before You Copy

< > >

Model Model
LEtl
LEtC
Lista -
YCPYMOLOB)
YEDTCPYLST

Associations between objects in a CA 2E model are complex. Before you copy, you
should be aware of how the copy process handles objects associated with objects

referenced in a model object list and conflicting versions of the same object in both the
source and target models.

Chapter 5: Setting Up a Multi-Modeling Environment 161

Copying a Model

Referenced Objects

More Information

A model object may have other required or dependent objects that it refers to. These
objects will also need to be in the target model for the target object to be complete.

The YCPYMDLOBJ command automatically expands the model object list to include
implicitly required (or referenced) objects. When the copy takes place, any implicitly
required objects not in the target model must also be copied. You can intervene to
examine the expanded list before continuing with the copy, and you can control the
expansion of the complex interrelationships between functions using the CPYSUBFUN
and EXPRQDOBJ parameters.

Note: You can also use options and function keys from the Edit Model Object List for
Copy panel to expand a model object list to include dependent objects (references).

When copying a model object that references other model objects, the command uses
existing dependent objects whenever possible. Any object you explicitly select is added
or replaced. Any object you do not explicitly select, but is implicitly required, is copied
only if it does not exist in the target model.

The explicit flag shows as an asterix (*) in the Copy Select column on the YEDTCPYLST
panel. The implicit flag shows as an exclamation (!). Entries will be flagged as implicitly
required during the expansion phase of the YCPYMDLOBJ command.

Note: The expanded list does not automatically include functions of type SELRCD
implicitly referenced by other functions.

For more information about:

m Dependent model objects, see the Edit Model Object Lists and Impact Analysis
sections in the "Managing Model Objects" chapter in Generating and Implementing
Applications.

m The YCPYMDLOBJ command, see the CA 2E Command Reference Guide.

m Dependent objects and a table showing model object types and their possible
dependent objects, see the CA 2E Command Reference Guide, the YDSPMDLREF
command.

m Objects selected for copy on the YEDTCPYLST panel, see the Editing the Model
Object List for Copy section in this chapter.

162 Administration Guide

Copying a Model

Conflicting Object Names Across Models

When YCPYMDLOBIJ copies the selected entries to the target it matches objects
between the two models by owner, name and type. By default, an object in the source
model is copied to the target model using the same object name. You can override this
default by specifying a different name for an object in the target model; two reasons
you may need to do this are:

m Adifferent object in the target model has the same name as an object in the source
model that you want to copy.

m An object in the source model has a different name in the target model.

The YCPYMDLOBJ command includes a prepass option that lets you compare objects by
name within object type. A prepass report generates with diagnostic messages that
indicate discrepancies. The default selection for this option causes the copy process to
stop so that you can resolve discrepancies before you proceed with the copy. If you
want the object to be copied but do not want to overwrite the corresponding object in
the target model, you can rename it in the model object list. The object is copied into
the target model without replacing the existing version.

Note: The object in the source model is not renamed.

To rename an object in a model object list:
1. Use selection option 7 from the Edit Model Object List for Copy panel.
2. Enter the name in the Name for purposes of copy field.

3. Press F8 to view a list of all renamed objects.

You can make the rename more permanent by changing the Copy name for an object
using the Change Model Object Description (YCHGMDLOD) command; as a result, any
new model object lists containing the object will automatically be renamed for purposes
of copy.

To avoid problems when copying objects from one model to another, consider the
following:

m The YCPYMDLOBJ command can detect that two objects are the same object in
both models only if the objects have the same name and type. Remember to
rename a shared object in all models where it is defined. Otherwise, the command
assumes it is a different object and copies it, creating a new instance of the object.

m When you delete a shared object from one model, remember to delete it from all
models where it is defined.

m To avoid overlaying the correct definition for an object, copy the object from its
owning model to other models.

Chapter 5: Setting Up a Multi-Modeling Environment 163

Copying a Model

More Information

m Remember that access path names are reassigned. If you delete or manually
rename an access path,CA 2E automatically reassigns the original name when a new
access path is created. Make sure you update or delete all references to the original
name in the owning or referencing models.

For more information about renaming objects for copying, see the Editing the Model
Object List for Copy section in this chapter.

Building the Model Object List

More Information

As the first step in the copy model object process, you need to ensure the objects you
want to copy have entries in the model object list. One way to do this is to use the Build
Model List command. This section describes how the Build Model List (YBLDMDLLST)
command functions and provides an example of how you might use the command.

Note: This step is optional. You can use any model object list as the source for the copy;
for example, you could use your session list of changed model objects.

The YBLDMDLLST command builds a list of CA 2E objects in a model, including CA 2E
files, fields, access paths, and functions in the source model. The model object list
resides in the model library.

For example, to build a model object list, MYMDLLST, of all access paths and functions in
the model, MYMDL, you would enter the following and press Enter:

YBLDMDLLST MDLLST(MYMDL/MYMDLLST) + OBJINAM((*ANY *ALL *ACP) (*ANY *ALL *FUN))

The YBLDMDLLST command includes optional parameters that let you specify how CA 2E
should build the model object list and which objects in the model object list should be
selected. For example, to automatically select for copying all objects added by the
YBLDMDLLST command, specify the OUTCPYOBJ(*SELECTED) parameter.

For more information about the YBLDMDLLST command, see the CA 2E Command
Reference Guide.

164 Administration Guide

Copying a Model

Editing the Model Object List for Copy

You can edit the model object list using the YEDTCPYLST command. This command
invokes the Edit Model Object List for Copy interactive panel. This section describes how
YEDTCPYLST functions and provides an example of how you might use the command.

The YEDTCPYLST command lets you select from the model object list the CA 2E objects
you want to copy to the target model. Any renamed objects are copied to the target
model under their new names.

For example, to edit the model object list, MYMDLLST, in the model SYMDL, you would
enter the following and press Enter:

YEDTCPYLST MDLLST (MYMDL/MYMDLLST)
The Edit Model List for Copy panel displays.

The explicitly selected objects have an ‘“*’ in the Copy Select column. Objects that were
implicitly selected during a previous use of the YCPYMDLOBJ command are shown with
an ‘. You can explicitly select additional objects for copy using option 1. You can
deselect explicitly selected objects from this panel or by using the CPYOBJ parameter of
the YCHGMDLLE command. Press F9 to subset the display so only entries that have been
selected display.

Edit Copy List - Selected Entries
System . : SYNONDV1
Model . : SYMDL
List. . : MYMDLLST List MYMDLLST in SYMDL created by user JAR

Type options, press Enter.
1=Select 4=Delete entry 5=Display 7=Rename
8=Details 9=Deselect 12=Resolve conflicts 19=Work with versions
Opt Object Owner Type

! Customer phone number FLD

! Cusomer status FLD

* Customers by name Customer ACP

! Existing Customer status CND

! Former Customer status CND

I New Customer status CND

! Physical file Customer ACP

* Retrieval index Customer ACP

* Update index Customer ACP

More. ..

F3=Exit F4=Prompt F5=Refresh F6=Build
F7=Position F8=Display renames F23=More options F24=More keys
This is a subsetted list.

Chapter 5: Setting Up a Multi-Modeling Environment 165

Copying a Model

More Information

For more information about the YEDTCPYLST command, see the CA 2E Command
Reference Guide and the "Managing Model Objects" chapter in CA 2E Generating and
Implementing Applications.

Renaming Objects for Purposes of Copy

By default, YCPYMDLOBJ copies an object in the source model to the target model using
the Copy name specified in the model object’s description. If you need to copy an object
in the source model to another name in the target model, you can rename the object in
the model object list for purposes of copy. For example, you might need to do this to
avoid overwriting an object in the target model that has the same object name and type
but a different definition. Note that this does not change the name of the object in the
source model.

To rename a model object for a particular copy, use selection option 7 on the
YEDTCPYLST panel. Enter the name of the object in the target model in the Name for
purposes of copy field.

Note: The object in the source model has a different name in each of several target
models, you need to rename the object each time you copy it to a different target

model.

Press F8 to view a list of all objects that have been renamed for purposes of copy.

166 Administration Guide

Copying a Model

Copying the Model Objects

After editing the model object list, you use the YCPYMDLOBJ command to copy the
objects. As a safety check, the target model must be the first model in the library list.
The source model must be the second. This section describes how the YCPYMDLOB)
command functions and provides an example of how you might use the command.

The YCPYMDLOBJ command does the following:

1. Expands the model object list. Each of the selected objects in the list is examined
for referenced objects that are required for each object to be complete. These
implicitly required objects must be copied if they do not exist in the target model.

2. Adds to or updates the referenced objects in the list and flags them as implicitly
selected.

3. Checks for discrepancies between the objects.

4. Depending on the option you specify in the CPYOPT parameter, does one of the
following:

m If you specified the prepass check option (¥*PREPASS), generates a prepass
report with discrepancies and stops so that you can resolve them before you
continue the copy. Note that only exceptions are reported during this
procedure.

m If you specified the copy option (*COPY) and the procedure does not detect
errors, copies the objects in the model object list to the target model and
generates a prepass report of warnings and an audit report that lists all objects
copied.

For example, to copy model objects from model object list MYMDLLST of the objects in

model MYOLDMDL to the model MYMDL, you would enter the following and press
Enter:

YCPYMDLOB]J FROMMDLLIB(MYOLDMDL)+ TOMDLLIB(MYMDL) CPYLST(MYMDLLST)
This example leaves the CPYOBJ parameter at the default *PREPASS option.
More Information

For more information about the YCPYMDLOBJ command, see the CA 2E Command
Reference Guide.

Chapter 5: Setting Up a Multi-Modeling Environment 167

Copying a Model

Using the Prepass Check Option

The YCPYMDLOBJ command includes a parameter, CPYOPT, with an option that lets you
check the objects before they are copied.

The default CPYOPT(*PREPASS) option lets you check for discrepancies between the
models before copying the objects. The command expands the list of objects specified
for copying and compares the selected objects against those in the target model but
does not copy the objects. A report generates, which lists any discrepancies between
the models. These discrepancies fall into two categories:

m Warning—Severity less than 30

For example, the target model may contain fewer referenced objects than the
source model.CA 2E can resolve the discrepancy by replacing the existing object in
the target model with the new version from the source model.

® Error—Severity 30 or greater

A direct conflict exists between the object in the source model and the one in the
target model.CA 2E cannot resolve the discrepancy. You must resolve the conflict
before the copy can continue. Errors are identified by the message *ERROR.

All messages reside in the Y2MSG file. You can obtain more information about a
message by using the Display Message Description (DSPMSGD) command to examine
the second level text for the message.

If the report contains only warnings or no discrepancies, you can rerun YCPYMDLOBJ,
using the *COPY option. You must resolve all errors before you can successfully rerun
the copy. Actions you can take include:

m Editing one of the models directly using the Edit Model (YEDTMDL) command.
m Renaming objects using YEDTCPYLST and then copying them into the target model.

To reduce the volume of the report you can use the SEVFLT parameter to omit various
categories of warnings.

Using the Copy Option

If you select CPYOPT(*COPY), the command expands the list of specified objects,
generates the prepass report and, if no errors exist, copies the objects. An audit report
generates, which lists each object copied to the target model and details, such as
implementation names and any renamed source members. If errors exist, the copy does
not take place.

168 Administration Guide

Copying a Model

Merdging Implementation Names

The YCPYMDLOBJ command includes a parameter that lets you specify whether you
want to copy the implementation names of CA 2E objects that exist in the target model.

The command always copies implementation names for objects new to the target
model.

The YCPYMDLOBJ Command

Expand
object list
*COPY *PREPASS
STOP* a—FRRORS
Execute Execute
prepaszs prepass
Wamings
onhy
»>
Copy Prepass Prepass
ohjedtz Report Report

Ay acdit
Report

Chapter 5: Setting Up a Multi-Modeling Environment 169

Appendix A: SQL Implementation

This appendix contains examples illustrating differences between earlier versions of CA
2E SQL implementations and current implementations. Use these examples as
guidelines to understanding how SQL is implemented in your generated application.

The following SQL features are covered. Each is discussed in detail in the sections that
follow.

m Extended SQL Naming—Supports long table and column names.

m Separate View and Index Creation—Lets the designer specify whether to generate
a view, an index, or both a view and index for an access path.

m Reduced Number of SQL SELECTs—Suppresses SELECTSs prior to update, delete, or
insert.

® Row Level Locking—Lets the designer specify what lock capability to use when
updating rows.

m Restrictor and Positioner Functionality—Lets the designer determine whether to
use NOT or OR logic to implement restrictor and positioner capability.

m Direct Table Access—Lets the designer specify whether to access data using a view
or directly from the table.

m Cursor Name Length

®m SQL SELECT in CRTOBJ

Extended SQL Naming

Prior to Release 5.2 the SQL Data Definition Language (DDL) and Data Manipulation
Language (DML) generated for CA 2E used the name allocation mechanisms available for
traditional DDS file definition used in RPG- or COBOL-generated function access.
Specifically, names were limited to six-character field names by RPG naming rules and to
10-character names by IBM i object naming rules. As a result, names of the SQL tables
and columns generated by CA 2E did not allow for meaningful reference to the
implemented tables and their associated columns.

Appendix A: SQL Implementation 171

Extended SQL Naming

Example of Pre-Release 5.2 SQL Naming

The following example shows generated SQL DDL prior to Release 5.2 to create a view
and an index for an access path over a table called ORDP.

EXEC SQL
CREATE VIEW RWCSQL.ORDL1 (
ABABCD
,ABADCD
,ABACTX
,ABABST
,ABABDT

AS SELECT

X1.ABABCD

,X1.ABADCD

,X2.ACACTX

,X1.ABABST

,X1.ABABDT
FROM RWCSQL . ORDPX1

,RWCSQL . CUSPX2

WHERE X1.ABADCD = X2.ACADCD

END-EXEC
EXEC SQL

COMMENT ON TABLE RWCSQL.ORDL1 IS
‘Orders Retrieval index’
END - EXEC

172 Administration Guide

Extended SQL Naming

Understanding Extended SQL Naming

EXEC SQL
COMMENT ON RWCSQL.ORDL1 (
ABABCD IS ‘Order code’
,ABADCD IS ‘Customer code’
,ABACTX IS ‘Customer name’
,ABABST IS ‘Order status’
,ABABDT IS ‘Order date’

END-EXEC
EXEC SQL
LABEL ON TABLE RWCSQL.ORDL IS
‘Orders Retr’
END-EXEC
EXEC SQL
CREATE UNIQUE INDEX RWCSQL.ORDL1I ON RWCSQL.ORDP
(ABABCD ASC
)
END-EXEC

The optional extended SQL naming feature assigns longer, more meaningful names as
follows:

m SQL Tables and Columns—These are assigned the 25 character unique file and field
names currently found in the model. Since names for CA 2E model files and fields
can be any combination of allowable characters and blanks as long as the name is
unique within the model, you need to ensure that no illegal characters are used.

The CA 2E generators map special characters as shown in the following table.

Special Character in Model Mapped to in the SQL Name
~ % & o () {1} Underscore (_)

R A

S I

blank

Lowercase letters Uppercase letters

m SQL Views—Views are assigned the access path source member name.

m SQL Indexes—Index names are assigned at generation time by appending an ‘ to
the access path source member name. They are a maximum of ten characters long.

Appendix A: SQL Implementation 173

Extended SQL Naming

More Information

For more information about:
m Naming SQL indexes, see the next section, "Separate View and Index Creation."

m SQL name conflicts, see the "SQL Name Conflicts" section in this appendix.

YSQLVNM Model Value

You specify whether to use the extended SQL naming capability using the SQL Naming
(YSQLVNM) model value. The valid values are:

*DDS—Use DDS names. The shipped default.

*SQL—Use the names of the CA 2E objects in the model.

It is up to you when and whether to use extended SQL naming. It is anticipated that
most designers will choose to convert all tables, views and indexes, including the

functions built over them, as a unit; however, incremental migration is also possible
with careful planning.

YSQLLEN Model Value

The SQL Naming Length (YSQLLEN) model value is a numeric value that controls the
length of the extended SQL name. Its maximum value is 25. This model value is used
only when YSQLVNM is *SQL.

YSQLLEN lets you trim the SQL name so that it conforms to the parameters of the
version of i OS or a third party RDBMS; for example, SQL as supported by i OS permits
extended names up to 10 characters prior to V3R1 and supports 30 characters under
V3R1 and beyond.

Note: If you are running i OS V3R1 or beyond and set YSQLLEN to a value greater than
10, you also need the QDBRTVSN IBM API in order to successfully submit IBM i physical
file access paths for generation and compilation. This APl is used to retrieve the ten-byte
character name from the long SQL name. If the APl is not present, the submission will
fail.

The PTF numbers for the QDBRTVSN API are:

m SF28596
m SF28597
= V3R1
= V3R6

174 Administration Guide

Extended SQL Naming

SQL Name Conflicts

When you use extended SQL naming, it is possible for two or more file or field names to
resolve to the same SQL name. Such name conflicts are not automatically resolved; it is
your responsibility to ensure that name conflicts do not occur. Two ways name conflicts
can occur are:

m Model names contain special characters.

For example, two fields named "< start’" and "> start’" both resolve to the SQL
name "_START’."

m The YSQLLEN model value contains a value less than 25.

For example, if YSQLLEN is 24, two fields named "is a very long namel’" and "is a
very long name2’" both resolve to the SQL name "_IS_A_VERY_LONG_NAME"."

Examples of Extended SQL Naming

The following two examples show the generated SQL DDL and SQL DML that results if
you set YSQLVNM to *SQL and YSQLLEN to 25. Note that the view name remains
unchanged, but the table name becomes ORDERS (from ORDP) and columns are
assigned the names for the corresponding fields in the CA 2E model.

Note: Do not use reserved SQL keywords when selecting names. The name ORDERS is
used because ORDER is a reserved SQL keyword and cannot be used as a valid table
name.

Appendix A: SQL Implementation 175

Extended SQL Naming

Example of Extended SQL DDL Naming

EXEC SQL
CREATE VIEW RWCSQL.ORDLL (
ORDER CODE
,CUSTOMER CODE
,CUSTOMER NAME
,ORDER STATUS
,ORDER DATE

AS SELECT
X1.0RDER CODE
,X1.CUSTOMER CODE
,X2.CUSTOMER NAME
,X1.0RDER STATUS
,X1.0RDER DATE
FROM RWCSQL .ORDERS X1
RWCSQL .CUSTOMER X2
WHERE X1.CUSTOMER CODE = X2.CUSTOMER CODE

END-EXEC
EXEC SQL
COMMENT ON TABLE RWCSQL.ORDL1 IS
‘Orders Retrieval index’
END-EXEC
EXEC SQL
COMMENT ON RWCSQL.ORDL1 (
ORDER CODE IS ‘Order code’
,CUSTOMER CODE IS ‘Customer code’
,CUSTOMER NAME IS ‘Customer name’
,ORDER STATUS IS ‘Order status’
,ORDER DATE IS ‘Order date’
)
END-EXEC
EXEC SQL
LABEL ON TABLE RWCSQL.ORDL1 IS
‘Orders Retr’
END-EXEC
EXEC SQL

CREATE UNIQUE INDEX RWCSQL.ORDL1I ON RWCSQL.ORDERS
ORDER CODE ASC
END-EXEC

176 Administration Guide

Extended SQL Naming

Example of Extended SQL DML Naming

EXEC SQL

UPDATE ORDLO
SET CUSTOMER CODE :ABADCD
, ORDER_STATUS :ABABST
, ORDER DATE = :ABABDT
WHERE (ORDER CODE = :ABABCD)

END-EXEC

Impact on Other Areas of the Product

More Information

Extended SQL naming affects the following areas of the product:

Impact Analysis and Change Type—Because CA 2E file and field names are used in
generated DDL and DML, when you change a field name you now need to
regenerate any SQL-implemented functions and access paths that use the field. In
other words, the type of change caused by changing a field name becomes
*PRIVATE rather than *OBJONLY when you use extended SQL naming.

Use option 94 (Simulate *PRIVATE change) on the Display Model Object Usages
panel to identify the functions and access paths you need to regenerate.

National Languages—Because names of files and fields in non-English models often
contain inflections and other "invalid" characters, you might experience difficulty
when using extended SQL naming.

Note: Extended SQL naming is not valid for models using DBCS (double byte
character set).

DRDA Applications—Because view names are still limited to ten characters and CA
2E still uses the existing member name in the distributed configuration file table,
extended SQL naming does not affect DRDA (Distributed Relational Database
Architecture) Applications.

For more information about change type, impact analysis, and simulating a change, see
the CA 2E Generating and Implementing Applications guide.

Appendix A: SQL Implementation 177

Separate View and Index Creation

Separate View and Index Creation

Beginning with Release 5.2 you can specify not to generate an index and also retain
*IMMED maintenance capability for the access path on the IBM i. Prior to Release 5.2, if
you specified *IMMED maintenance for an SQL access path, SQL DDL to create an index
was unconditionally generated into the source member of the access path following the
DDL for the view.

In the current implementation of SQL you can:

m Suppress the generation of an index by specifying *NONE or blank for the index
name on the Edit Access Path Auxiliaries panel.

® Rename an index.

m Generate an index without a view.

A discussion of these capabilities follows.

Suppressing Index Generation

When an access path that is to be implemented in SQL has *IMMED index maintenance,
you can press F7 from the Edit Access Path Details panel to access the Edit Access Path
Auxiliaries panel. Previously this panel was available only for query (QRY) access paths.

EDIT ACCESS PATH DETAILS SYMDL

Filename : Customer Attribute . : REF
Access path name. : Retrieval index Type. . . . : RTV
Unique or duplicate order : U (U-Unique, F-FIFO, L-LIFO, C-FCFO, ‘ ‘-Undefined)

Index maintenance option : I (I-IMMED, D-DLY, R-REBLD)
Alternate Collating table :

Allow select/omit : (S-Static, D-Dynamic, ‘ ‘-None)
Generation mode : S (M-MDLVAL, D-DDS, S-SQL)
Source member name. . . . : UUADREL1l
Source member text. . . . : Customer Retrieval index
Data access method. . . . : (M-MDLVAL, G-DBFGEN, T-TABLE)
Format GEN Format text Associated
? Seq name pfx (Based on file) Updated access path
1 FADREAO AD Customer Update index

SEL: Z-Entries, R-Relations, S-Select/omit, A-Assoc.acps, T-Trim, V-Virtualize
F3=Exit F7=Auxiliaries F8=Change name F20=Narrative

178 Administration Guide

Separate View and Index Creation

Edit Access Path Auxiliaries Panel

Because an SQL index is considered to be an access path auxiliary, this panel provides a
method to suppress index generation. To suppress the generation of the SQL index,
either enter *NONE in the name’ field or leave it blank. In both cases, the index will not
be generated, regardless of the Maintenance Option’. As a result, you can create
*IMMED DDS access paths and also suppress generation of an SQL index.

EDIT ACCESS PATH AUXILIARIES SYMDL
File name : Customer

Access path name. : Retrieval index
Source library. : SYGEN

SQL access path auxiliaries :
? Src member Type Text
UUADREL1 RTV Customer Retrieval index

Index Name Type Text
UUADREL1I =~ IX1 Index SQL DDL LOCATED IN : UUADREL1

SEL: e-STRSEU.
F3=Exit

Note: The name’ is automatically set to *NONE when the Maintenance Option’ is either
R or D. You cannot use this facility to create a REBLD or a DELAY DDS access path and
also create an SQL index.

Generating an Index Only

You can specify T for the Access Method’ option on the Edit Access Path Details panel to
generate an SQL index and not a view for a specific access path.

More Information

For more information about the Access Method option, see the Direct Table Access
section in this appendix.

Appendix A: SQL Implementation 179

Reducing the Number of SQL SELECTs

Reducing the Number of SQL SELECTs

Before Release 5.2, an SQL SELECT was always performed prior to the insert, update, or
delete for the CRTOBJ, CHGOBJ, and DLTOBIJ function types. However, where a prior
read is not required, not performing the SQL SELECT can result in significant
performance gains.

In current releases the SQL SELECT is suppressed for CHGOBJ, DLTOBJ, and CRTOBJ
unless any of the conditions shown in the following table are true.

Conditions in which the SQL Reason SQL SELECT Is Required
Database Function SELECT Is Required

CHGOBJ Null update suppression ison. To compare images to see if the
record needs to be updated.

The CHGOBJ is embedded in To compare images to ensure
the DBF Record’ user pointin that the record has not been
the EDTFIL, EDTRCD(1-3), or modified by another user.
EDTTRN function types.

There is action diagram code in Action diagram code in CHGOBJ

any of the user points in the usually indicates that changes to

CHGOB.. the DB1 context are needed
prior to update

There are output parameters To return data for those fields

specified for the CHGOBJ. that are not being updated but
merely returned to the calling
function.
CRTOB)J The CRTOBJ is embedded in To check for a duplicate key and

the DBF Record’ user pointin to issue a message to the screen
the EDTFIL, EDTRCD(1-3), or in order to terminate the write
EDTTRN function types. attempt.

There is action diagram code in To allow the action diagram
the if data record already logic to be executed.
exists’ user point

DLTOBJ The DLTOBJ is embedded in To compare images to ensure
the DBF Record’ user pointin that the record has not been
the EDTFIL, EDTRCD(1-3), or modified by another user.
EDTTRN function types.

180 Administration Guide

Row Level Locking

Row Level Locking

Prior to Release 5.2, a row to be updated by a CHGOBJ function implemented in SQL was
locked at the time the row was updated. As a result, it was possible for the row to be
updated by another user between the time it was read (SELECT) and the time it was

updated (UPDATE).

The SQL Locking (YSQLLCK) model value in Release 5.2 lets you specify whether a row to
be updated will be locked at the time it is read or at the time it is updated. Note that
locking the row at the time of the read requires that an SQL cursor be declared, which

incurs performance penalties.

YSQLLCK Model Value

The SQL Locking (YSQLLCK) model value lets you specify what level of locking is
appropriate for your environment. It has three possible values:

m *UPD—Row locking occurs at time of update. This is the shipped default.

m *FET—Row locking occurs at time of read. Note that if no SELECT is to be
performed, the lock will occur at time of update. See the Reducing the Number of
SQL SELECTSs section in this chapter for conditions that require a SELECT.

m *IMG—Row locking occurs at time of read. This applies only to CHGOBJ’s that are
embedded in the default DBF Record’ user point of standard EDTFIL, EDTRCD(1-3),
or EDTTRN functions, which will contain code that performs image compares.

Implementing Restrictor and Positioner Functionality

Restrictor and positioner functionality can be implemented in SQL using WHERE clauses
that contain either NOT or OR logic. For example, the two following SQL examples are
equivalent: both declare a cursor that satisfies one restrictor and two positioners.

Example of WHERE Clause Containing OR Logic

EXEC SQL
DECLARE MYVIEWCURSOR CURSOR FOR
SELECT * FROM MYVIEW

WHERE KEY1l =

AND ((KEY2 >

OR (KEY2 =

KEY3 >=
ORDER BY KEY1 ASC,
KEY2 ASC,
KEY3 ASC

END-EXEC

:HOSTVAR1
:HOSTVAR2
:HOSTVAR2
:HOSTVAR3

AND

Appendix A: SQL Implementation 181

Implementing Restrictor and Positioner Functionality

Example of WHERE Clause Containing NOT Logic

EXEC SQL
DECLARE MYVIEWCURSOR CURSOR FOR
SELECT 8 FROM MYVIEW
WHERE KEY1 :HOSTVAR1L
AND NOT (KEY1 :HOSTVARL AND
KEY2 < :HOSTVAR2)
AND NOT (KEY1 :HOSTVARL AND

KEY2 = :HOSTVAR2 AND

KEY3 < :HOSTVAR3))
ORDER BY KEY1 ASC,

KEY2 ASC,

KEY3 ASC

END-EXEC

The relative efficiency of these two methods depends on the target RDBMS; for
example, Oracle tables with large amounts of data perform better using NOT logic.

YSQLWHR Model Value

The SQL Where Clause (YSQLWHR) model value lets you specify the method that is more
efficient for your target database. The two valid values are:

m *OR—Generate WHERE clauses using OR logic to implement restrictor and
positioner functionality. This is the shipped default.

m *NOT—Generate WHERE clauses using NOT logic to implement restrictor and
positioner functionality.

The end result of the executing application is the same whether you specify *OR or
*NOT for YSQLWHR. All that changes is the structure of WHERE clauses in the generated
application. This can result in improved performance depending on the target RDBMS.

Note: The OR and NOT logical operators are used only when there is more than one
positioner. For example, if there were two restrictors and one positioner, both *OR and
*NOT would generate identical SQL statements.

182 Administration Guide

Direct Table Access

Direct Table Access

If an access path and the table over which it is based contain the same fields, it is
generally more efficient to access data directly from the table rather than through a
view. The Database Access Method (YDBFACC) model value and an option on the Edit
Access Path Details panel let you specify which method is most appropriate for your
environment.

Note: Direct table access is not supported for DRDA (Distributed Relational Database
Architecture) Applications.

YDBFACC Model Value

The two possible values for the Database Access Method (YDBFACC) model value are:
*DBFGEN—Access data using a view. This is the default.

*TABLE—Access data directly from the table rather than using a view.

Appendix A: SQL Implementation 183

Cursor Name Length

Data Access Method Option

More Information

You can set the Access Method’ option on the Edit Access Path Details panel to specify
how data is to be accessed for a specific access path. Specify G to access data using a
view; specify T to access data directly from the table; M uses the YDBFACC model value.

EDIT ACCESS PATH DETAILS SYMDL

File name : Customer Attritue . : REF
Access path name. : Retrieval index Type . . . : RTV
Unique or duplicate order : U (U-Unique, F-FIFO, L-LIFO, C-FCFO, ‘ ‘-Undefined)

Index maintenance option : I (I-IMMED, D-DLY, R-REBLD)
Alternate collating table :

Allow select/omit : (S-Static, D-Dynamic, ‘ ‘None)
Generation mode : S (M-MDLVAL, D-DDS, S-SQL)
Source member name. . . . : UUADREL1
Source member text. . . . : Customer Retrieval index
Data access method. . . . : T (M-MDLVAL, G-DBFGEN, T-TABLE)
Format GEN Format text Associated
? Seq name pfx (Based on file) Update access path
1 FADREAO AD Customer Update index

SEL: Z-Entries, R-Relations, S-Select/omit, A-Assoc.acps, T-Trim, V-Virtualize
F3=Exit F7=Auxiliaries F8=Change name F20=Narrative.

Only functions in which the generation mode is SQL use this access path option.

Note: If you specify *TABLE as the data access method, be sure that the access path
does not contain a join; in other words, be sure it contains no virtual fields. Otherwise,
either compile or run time errors may occur.

When you specify direct table access, no SQL DDL is generated to create the view. As a
result, you can use this feature to suppress the view and generate SQL DDL for an index
only.

For more information about controlling the generation of SQL DDL of an access path,
see the Separate View and Index Creation sections in this chapter.

Cursor Name Lengdth

The suffix used to generate an SQL cursor name in CA 2E applications changed in
Release 5.2 from "CURSOR" to "CSR"; for example, the cursor name associated with a
view named ORDL1 will be ORDL1XXCSR rather than ORDL1XXCURSOR.

184 Administration Guide

SQL SELECT in CRTOBJ

SQL SELECT in CRTOBJ

The SQL SELECT performed in a CRTOBJ function is used to determine if a row currently
exists with the key value of the data to be written. Before Release 5.2, the SELECT
loaded all host variables belonging to the view as shown in the following figure.

SQL SELECT Before Release 5.2

EXEC SQL
SELECT * INTO
:ABABCD,
:ABADCD,
:ABABST,
:ABABDT
FROM ORDLO
WHERE (ABABCD = :ABABCD)
END-EXEC

In Release 5.2, the SELECT was rewritten as follows to avoid overwriting current values
of the host variables belonging to the view.

Current SQL SELECT Implementation

EXEC SQL
SELECT * INTO
:ABABCD
FROM ORDLO
WHERE (ORDER_CODE = :ABABCD)
END-EXEC

Appendix A: SQL Implementation 185

Index

A

Advanced National Language Support ¢ 39, 153
about ¢ 39
in multi-model environment ¢ 153

B

batch mode » 42, 44
creating model library in ¢ 42
executing commands in ¢ 44

C

clearing a model ¢ 46

concurrent *DSNR/*PGMR ¢ 34
open access ¢ 34

creating a model ¢ 41, 42
executing YCRTMDLLIB command e 41
in batch mode ¢ 42

D

deleting a library ¢ 47, 48, 51
about * 47
considerations ¢ 48
generation library ¢ 48
SQL collection ¢ 51
design model * 31, 40, 46, 53, 63, 70, 114
accessing ¢ 63
clearing » 46
creating ¢ 31
ownership ¢ 40, 114
renaming ¢ 53
resynchronizing ¢ 70
design standard ¢ 35
designer user type (*DSNR) » 34, 86, 116, 121
authority » 121
described ¢ 116
locks ¢ 86
open access ¢ 34
device design ¢ 35, 143, 144, 146, 147
common user interfaces ¢ 144
defined » 143
design options ¢ 144
design standard ¢ 35
screen/report display attributes ¢ 147
standard headers and footers ¢ 146

DLTLIB (Delete Library) » 47

G

generation library 33, 46, 48
deleting » 48
name e 33
saving ¢ 46

H
high level language (HLL) » 38, 39, 107, 135, 136

allocation characters for source file names ¢ 135

default target 38

defaults at model creation ¢ 107
naming convention ¢ 39

naming restrictions ¢ 136

L

library lists » 40, 62, 66, 105, 106, 110, 113
changing ¢ 40, 66
changing job description for e 113
editing * 110
managing in Synon/2E ¢ 105
retrieving ¢ 113
setting up Synon/2E library list « 106
YLIBLST model value ¢ 62

M

message ¢ 38, 39, 143
Advanced National Language Support ¢ 39
naming prefix for e 38
types ¢ 143
model ¢ 31, 40, 46, 53, 63, 65, 70, 114
accessing ¢ 63
clearing * 46
creating ¢ 31
entry point ¢ 65
open access ® 65
ownership ¢ 40, 114
renaming ¢ 53
resynchronizing ¢ 70
session list ® 65
model library ¢ 33, 46, 48
deleting » 48
name e 33

Index 187

saving ¢ 46 R

model values ¢ 32, 34, 61, 67, 86, 90, 100, 106, 107,
116, 128 renaming a model ¢ 53

classifications ¢ 128 reorganizing a model ¢ 45

company hame vs company text ¢ 106 S
displaying « 100

library list (YLIBLST) e 67, 107 saving a library e 46, 47

open access (YOPNACC) » 34, 61, 86, 90, 116 about « 46

setting » 32 considerations ¢ 47

YLIBLST » 67, 107 SAVLIB command e 47
multi-model structure » 150, 151, 154 using ¢ 47

SAVLIB (Save Library) ¢ 46
SBMJOB (Submit Job) « 42, 44

common configurations ¢ 154
considerations ¢ 151

described ¢ 150 using to create model ¢ 42
using to manage models ¢ 44
N SQL 36,51, 171, 178, 180, 181, 183, 184, 185
naming conventions * 33, 36, 39, 138, 139, 140, 141, cursor name length ¢ 184
142 DDS in same model * 36
about ¢ 138 deleting SQL collection ¢ 51

access paths ¢ 141
condition names ¢ 142
fields 139

files » 140

functions 141

direct table access ¢ 183
extended naming ¢ 171
positioner functionality ¢ 181
reducing SELECTs 180
restrictor functionality » 181

generation library » 33 row level locking » 181

HLL ¢ 39 SELECT in CRTOBJ » 185
relations ¢ 140 separate view and index ¢ 178
screen titles 142 Structured Query Language (SQL) * 35, 36
sqL library « 36 implementing ¢ 36
versions ¢ 141 setting model value for ¢ 35
naming prefixes ¢ 37, 38 system-wide values ¢ 106
about ¢ 37 U
for application objects * 37
for message file name ¢ 38 user profile e 40

when creating a model ¢ 40
user user type (*USER) » 34, 63

for message Ids ¢ 38
for value list objects ¢ 37

National Language Support ¢ 39 menu ¢ 63
NLA, see National Language Support 39 open access ® 34
o Y

open access ¢ 34, 61, 65, 86, 90, 116
Open Access (YOPNACC) » 34, 61

YCLRMDL (Clear Model) » 46
YCRTMDLLIB (Create Model Library) 31, 32, 33, 35,
36, 37, 38, 39, 40, 41, 42, 43, 106, 107, 126

P about ¢ 31
programmer user type (*PGMR) e 34, 86, 117 bat_ch mode * 42
described ¢ 117 executing in e 42

locks * 86 before using ¢ 32

open access ® 34 changing library list before executing * 40

188 Administration Guide

creating SQL collection ¢ 36

executing ¢ 41

HLL defaults e 107

naming model library « 33

null model ¢ 126

overriding HLL system value ¢ 38

overriding implementation standard e 35

prompting ® 43

setting default design standard e 35

setting message file name ¢ 38

setting message prefix value ¢ 38

setting model values ¢ 32

setting naming conventions ¢ 39

setting up library list 106

setting value list object prefix ¢ 37
YOPNACC (Open Access) ¢ 34, 61
YRGZMDL (Reorganize Model) e 45
YRNMDL (Rename Model) ¢ 53

Index 189

	CA 2E Administration Guide
	Contents
	1: Introduction
	CA 2E Product Libraries
	More Information

	CA 2E Development Environment
	Development Libraries

	The Model Library
	Generation Library
	SQL Collection
	Prototyping an Application
	Creating Prototype Panels
	Naming Prototype Panels
	CA2E--Using CA 2E Device Design Animation
	Converting an CA 2E Device Design to Toolkit
	Converting Multi-Screen Functions

	Replacing Toolkit Navigation and Data
	Replace Navigation and Replace Action Bar
	Clear Narrative and Clear Test Data

	Transferring Control to Toolkit
	Working with a Toolkit Panel Design
	Editing the Panel
	Defining Command Keys
	Building a Window Prototype
	Building an Action Bar Prototype
	Defining Color
	Entering Sample Data
	Displaying Prototype Panels
	Returning to CA 2E

	2: Creating and Managing Your Model
	Creating a CA 2E Design Model
	Before You Create a Model
	More Information

	Setting Model Values
	More Information

	Model Library Name
	Generation Library Name
	Open Access
	More Information

	Design Standard
	SQL/DDS
	More Information

	Implementing SQL
	Implementing SQL and DDS in the Same Model
	More Information

	Naming Prefixes
	Application Objects
	Values List Objects
	Message IDs
	Message File Name
	Default Target High Level Language
	High Level Language Naming Convention
	Advanced National Language Support
	More Information

	Signing on with the Correct User Profile
	More Information

	Changing Your Library List
	More Information

	Creating a Model
	Creating the Model in Batch Mode
	More Information

	Prompting YCRTMDLLIB

	Managing CA 2E Models
	More Information
	Executing the Commands in Batch Mode
	More Information

	Reorganizing an CA 2E Model
	More Information

	Checking an CA 2E Model
	Clearing an CA 2E Model
	Prompting the YCLRMDL Command
	Saving an CA 2E Model Library
	Considerations
	Using the SAVLIB Command
	More Information

	Deleting an CA 2E Model Library
	Considerations
	Deleting a Model Library
	Deleting a Generation Library
	Deleting Journal Receivers and Journals
	Checking for Journals
	End Journaling
	Delete the Journal Receivers
	End Journaling
	Delete Journal Receivers

	Deleting the Generation Library
	Deleting an SQL Collection
	Deleting Journal Receivers and Journals from the SQL Collection
	Checking for Journals

	Deleting the SQL Collection
	More Information

	Renaming an CA 2E Model

	3: Using Your Model
	Menus
	More Information
	Main Menu
	More Information

	Design Model Options
	More Information

	User-Type Submenus
	Designer (*DSNR) Menu
	Enter Model Options
	More Information
	Open Access: Enter with *NO Options
	More Information
	Model Profile Options
	Authority Option
	Library List Options
	Programmer (*PGMR) Menu
	User (*USER) Menu

	Accessing Your CA 2E Model
	Access Your Model Using the YSTRY2 Command
	Accessing Your Model Using the YEDTMDL Command
	More Information

	Setting and Editing the Library List for Your Model
	Setting the Library List with the Change Library List Command
	Editing the Library List
	YLIBLST Model Value
	More Information

	Edit Database Relations Panel
	More Information
	Edit Aids
	Navigation Facilities
	Subsidiary Facilities of Edit Database Relations Panel
	Grouping Facilities
	Branching to Other Facilities
	More Information

	Exiting Edit Database Relations Panel
	More Information

	Edit Model Object List Panel
	More Information

	Edit Device Design Panel
	Edit Device Design Facilities
	Exiting the Edit Device Design Panel

	Edit Action Diagram Panel
	Edit Action Diagram Facilities
	Exiting the Edit Action Diagram Panel
	Action Diagram Line Commands and Function Keys
	Line Commands
	Function Keys

	Using Application Areas
	More Information
	System Application Area
	Application Area Codes
	Application Areas as Selection Values
	Application Areas as Selection Parameters
	Displaying/Editing Application Areas
	More Information

	Deleting an Application Area
	Creating/Editing an Application Area
	Displaying Files
	Creating an Application Area
	Editing an Application Area
	More Information

	Using Line Selection Options
	More Information

	Locking Objects
	Object Locks
	Displaying Object Locks
	Adding/Removing Object Locks
	More Information

	File Locks
	More Information

	Setting File Locks
	*READ File Locks
	More Information

	Implicit *EXCL File Locks
	Explicit *EXCL File Locks
	*SYNC File Locks
	File Dependencies
	Displaying File Locks
	Removing File Locks
	Considerations for Using File Locks
	Expanding Files
	Synchronizing the Model
	More Information
	File Locks Summary
	Field Locks
	Setting Field Locks
	Displaying Field Locks
	Removing Field Locks
	Field Locks Summary

	Using Narrative Text
	Types of Narrative Text
	Creating/Editing Narrative Text
	Accessing Narrative Text
	User Interface Manager
	More Information

	Entering/Editing the Text

	Displaying Model Object Cross References
	More Information
	Accessing the Cross References Utility
	More Information

	Using the Display Services Menu
	Accessing/Exiting the Display Services Menu
	Invoking Documentation Commands from the Documentation Menu
	More Information

	Displaying CA 2E System and Model Values
	Viewing/Editing Panel Default Attributes

	Using Online Help
	Diagnostic Messages
	Selection Displays
	Help text
	Product Map

	4: Using Your Development Environment
	Managing the Model Library Lists
	More Information
	System-Wide Values
	Data Areas: Company Name Versus Company Text
	Model Specific Values

	Setting Up the Model Library List
	Setting Up the Library List for RPG, COBOL, or RPG/COBOL
	Setting Up the Library List for Other National Languages
	More Information

	Using the Change Library List (YCHGLIBL) Command
	More Information

	Invoking YCHGLIBL from the Main Menu
	Invoking YCHGLIBL from a Command Line
	CA 2E Commands and the Model Library List
	More Information

	Editing the Library List
	More Information

	Invoking the YEDTLIBLST Command
	More Information

	Editing Library List Entries
	Editing the Current Library for the List
	Editing the List for the Model Job Description
	Retrieving a Library List from Another Source

	Controlling User Access
	Through Model Ownership
	More Information

	Changing Model Ownership
	More Information

	Through Authority
	Types of User
	Designer User Type
	More Information

	Programmer User Type
	More Information

	‘User’ User Type
	More Information

	User Authority Advantage
	More Information

	Granting Authority
	More Information

	Granting Authority to Update Objects
	More Information

	Granting Authority to Generate Source
	Granting Authority to Compile Source
	Editing Authority to Access Data Areas
	Revoking Authority
	More Information

	Compiling Objects in a Multi-Programmer Environment
	More Information

	Setting Up the User Environment
	More Information
	The Null Model
	Shipped System Files (*)
	Default Model Profile
	More Information

	System and Model Values
	More Information

	Naming Control
	Automatic Naming of Generated Code
	Name Allocation Programs
	Automatic Naming: Last-Used Mnemonics

	Automatic Naming Algorithm
	Presetting Automatic Naming Identifiers
	Reserved Format Identifiers
	Source File Names
	High Level Language Naming Restrictions
	More Information

	Device Field Names
	Adopting Naming Conventions for File and Function Design
	Fields
	More Information

	Function Fields
	Files
	Relations
	Access Paths
	Functions
	Database Maintenance Functions:
	Versions of Functions and Messages
	More Information

	Panel Titles
	Condition Names
	Message Names
	Message Name
	First Level Text
	Second Level Text

	Design Control
	More Information

	Design Options
	Standard User Interfaces
	Standard Function Keys
	Standard Line Selection Values
	More Information

	Standard Headers and Footers
	Specifying the Default Standard Header
	Panel/Report Display Attributes
	Environment
	More Information

	Setting Up Common Routines/Utility Functions

	5: Setting Up a Multi-Modeling Environment
	Before You Begin
	Multi-Model Structures
	Considerations
	CA 2E Change Management (CM)
	More Information

	Shared Name Environment
	More Information
	Setting Up a Shared Name Environment
	Creating a Separate Shared Name Library
	More Information

	Advanced National Language Support in a Shared Name Environment
	Library List Considerations
	Object Prefixes

	Common Multi-Model Configurations
	Database Administrator Configuration
	More Information

	Development/Test/Production Configuration
	Split Application Configuration

	Copying a Model
	Copy Part of a Model
	More Information

	Copying an Entire Model
	More Information

	Understanding Model Object Lists
	Model Object List Commands Used for Copying Objects
	Before You Copy
	Referenced Objects
	More Information

	Conflicting Object Names Across Models
	More Information

	Building the Model Object List
	More Information

	Editing the Model Object List for Copy
	More Information

	Renaming Objects for Purposes of Copy
	Copying the Model Objects
	More Information

	Using the Prepass Check Option
	Using the Copy Option
	Merging Implementation Names
	The YCPYMDLOBJ Command

	A: SQL Implementation
	Extended SQL Naming
	Example of Pre-Release 5.2 SQL Naming
	Understanding Extended SQL Naming
	More Information

	YSQLVNM Model Value
	YSQLLEN Model Value
	SQL Name Conflicts
	Examples of Extended SQL Naming
	Example of Extended SQL DDL Naming
	Example of Extended SQL DML Naming
	Impact on Other Areas of the Product
	More Information

	Separate View and Index Creation
	Suppressing Index Generation
	Edit Access Path Auxiliaries Panel
	Generating an Index Only
	More Information

	Reducing the Number of SQL SELECTs
	Row Level Locking
	YSQLLCK Model Value

	Implementing Restrictor and Positioner Functionality
	Example of WHERE Clause Containing OR Logic
	Example of WHERE Clause Containing NOT Logic
	YSQLWHR Model Value

	Direct Table Access
	YDBFACC Model Value
	Data Access Method Option
	More Information

	Cursor Name Length
	SQL SELECT in CRTOBJ
	SQL SELECT Before Release 5.2
	Current SQL SELECT Implementation

	Index

