CA 2k

This documentation and any related computer software help programs (hereinafter referred to as the
“Documentation”) is for the end user’s informational purposes only and is subject to change or withdrawal by CA at
any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in
part, without the prior written consent of CA. This Documentation is confidential and proprietary information of CA
and protected by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of the documentation for
their own internal use, and may make one copy of the related software as reasonably required for back-up and
disaster recovery purposes, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the provisions of the license for
the product are permitted to have access to such copies.

The right to print copies of the documentation and to make a copy of the related software is limited to the period
during which the applicable license for the Product remains in full force and effect. Should the license terminate for
any reason, it shall be the user’s responsibility to certify in writing to CA that all copies and partial copies of the
Documentation have been returned to CA or destroyed.

EXCEPT AS OTHERWISE STATED IN THE APPLICABLE LICENSE AGREEMENT, TO THE EXTENT PERMITTED BY
APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING
WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY LOSS
OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT
LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY
ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in the Documentation is governed by the end user’s applicable license
agreement.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the
restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-
7014(b)(3), as applicable, or their successors.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Copyright © 2009 CA. All rights reserved.

Contact CA

Contact Technical Support

For your convenience, CA provides one site where you can access the
information you need for your Home Office, Small Business, and Enterprise CA
products. At http://ca.com/support, you can access the following:

Online and telephone contact information for technical assistance and
customer services

Information about user communities and forums
Product and documentation downloads
CA Support policies and guidelines

Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about CA product documentation, you can
send a message to techpubs@ca.com.

If you would like to provide feedback about CA product documentation,
complete our short customer survey, which is also available on the CA support
website, found at http://ca.com/support.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.casurveys.com/wsb.dll/166/TIPO_2008_Survey.htm
http://www.ca.com/support
http://www.ca.com/support
http://www.ca.com/support

Contentis

Chapter 1. Overview

PUNPOSE . . e 1-1
Related Information 1-1
ISEMIES GUIAES ... e e e e 1-1
General IBM GUIES o 1-2
CONVENEIONS . . .o 1-2
Terms Used in This Manual e e e e e e e e 1-2
Introduction to iSeries Programming and Documentation Standards 1-3
Importance of Standards 1-4
ISeries Standards i 1-4
Enforcing Standards 1-6

Chapter 2: Naming Conventions

Naming ConNVENtiONS e e 2-1
Natural Language. o 2-1
ObJECES . 2-1
Object-Oriented Approach o 2-3
Planning @ Naming ConVeNntion e e 2-3
0S/400 Entity and Object Typeso 2-5
Constraints on the Uniqueness of Names 2-8
Constraints on Naming Conventions i e 2-9
OGS/ 400 . .. 2-9
RPG IIL. .. 2-9
COBO L . .o 2-9
UM L 2-10
Nature of DiStinCtiONS e 2-11
Number of DIisStinCtioNs 2-12
Object-action Naming 2-13
Recommendations 2-14
CA 2E Naming CoNVENEION e e e e e e 2-14
FOr RPG Il . . e e e e e e e e e e e e e 2-15
Naming Convention Variation 2-16
FOr ObJeCtS . . .o 2-16
FOor FOrmats ... 2-18
FOr Fields ... e 2-19

Contents v

HLLs Other Than RPG IIL. e 2-19

M BIMONICS . .o 2-20
CA 2E MNemONiC SYSteIM ..o 2-20
Formulate New MNemoOniCs e e e e e 2-20
CA 2E and MNEMONICS . . .ottt ettt e e e e e 2-21
CA 2E Naming Convention EXCEpLions 2-21

Advantages of CA 2E Naming Convention 2-21

Enforcing A Naming Convention 2-22

Chapter 3: IBM i General Design Standards

Design Methods 3-1
Contents of @ Specification 3-2
DESIGN TOOIS . . . 3-2

Design Standards for User Interfaces 3-4
Ease Of USe 3-4
Interface CoNSISTENCY 3-5
Transfer of Learning 3-6
Modal Behavior. 3-6
Exploring and Backing OuUt 3-6
Recall Versus Recognition 3-7
Novice and EXpert Paths 3-8
Contextual Information 3-9
Shipped Systems 3-10
iSeries User Interface Implementation Components. 3-10

Design Standards for Display Files 3-11
For the IBM Midrange 3-11
CUA Panel Components 3-11
iSeries Panel Layout Standards 3-12
Using Command KeYS 3-15
Using Selection ColumNs e e e e 3-17
SUBFilEe DESIGN . .. 3-18
Basic Panel Display Styles On iSeries 3-18
Common Panel Display Variants 3-19

Design Standards for Printer Files 3-22
Standard Report Design Layout 3-22
Notes on Report DesSign 3-23

Design Standards for MENUS 3-24
Menu Design Considerations 3-25
Grouping Items ONn MEeNUS 3-25
Appearance Of MENUS e 3-25
Arranging MENUS 3-27

vi Standards Guide

Tools for Creating MenuUS 3-28

Design Standards for Help Text. 3-29
Help Text Design Considerations e 3-29
Designing Help TexXt. 3-29
Panel Help TexXt 3-30
Command Help TexXt 3-30
Menu Help TeXt 3-31
SearCh INAeXeSo 3-31

Design Standards for Commands i 3-31
Why Use Commands? 3-32
Naming ConVentions 3-33
Design Standards 3-34
Required Parameters for Commands 3-42

Design Standards for Database Files 3-43
Design GOals 3-43
The Database Of 1Series e 3-43
Considerations for Database File Design 3-47

Design Standards for Programs 3-53
Design Goals 3-53
PrOgram Ty DS .. 3-53
Choosing Standard Programs 3-54
Organizing Programs into Modules 3-55
Program Modularization 3-57
ErrOr RECOV Y . e e 3-58
Error Handling 3-58
Record LOCKING 3-59
SUbfile ProCESSING o 3-60
Journaling for Audit Trail PUrpOSes 3-61

Design Standards for Internationalization 3-64
General PrinCiples 3-64
MRI Translation 3-65
Considerations for MRI (text) Translation 3-69
Using System ValUes o 3-73
Writing Text for Translation 3-75
Ideographic SUPPOIt 3-76

Chapter 4: General Coding Standards

Coding PrinCiples 4-1
Standard Source File Names. 4-2
Source File Member Names 4-2
Standards for Text Descriptions and Titles 4-2

Contents vii

Common Source File Coding Standards 4-4

Standard Banners in SOUMCE.t e 4-4
Copyright Notice in SOUICE o e e 4-5
Maintenance CommeNnts iN SOUMCE ittt e e e et e 4-6
Formatting Source Code 4-6
DDS Coding Standards for Files 4-7
HLL Coding Standards for Programs 4-8
Program LayouUt 4-8
Coding fOr ISEMIES . ..o 4-14

Chapter 5: Coding Standards for Database Files

Data Dictionary/Field Reference File 5-1
Standard for Field Reference Files 5-1
Physical and Logical Database Files. 5-4
Database File Coding Standards: File Level. e 5-4
Format Levelo 5-4
Field Level .. 5-4
ALY S . o 5-6
Coding Standards for Display Files 5-6
Related Design Utilities 5-6
Coding Standards for Printer Files 5-13
Related Design Utilities 5-13
General Considerations 5-13
Coding Standards for HLL Programes e e 5-17
General PrinCiples o 5-17
Coding Standards for CL Programs e 5-18
Field Names in CL Programs. et e e e e e e e e 5-19
Coding Standards for RPG III ProgramsS.ttt e e e e e e e 5-21
Program Layout 5-21
RPG III Coding Structures and Program LOGiCo 5-23
Format Names in RPG III e 5-28
RPG III Field NameSot 5-28
RPG III Subroutine and Label Names e 5-30
RPG III Parameter and Key Lists e 5-32
RPG III Standard Indicators e e 5-33
Techniques in RPG III Programs i e e e e e e e 5-35
Coding Standards for COBOL Programsttt e e e 5-37
Language Standards 5-37
Program LayouUt 5-37
Naming Standards in COBOL e e 5-44
Handling Dates in COBOL 5-49

vii Standards Guide

Coding Standards for PL/1 Programs 5-49

Program LayoUt. 5-50
CopY BOOKS ..o 5-53
PL/1 Coding Structures and Program LOQIC 5-56
Standard ProCeAUIESt e 5-58
Naming Standards 5-61
PL/1 Procedure and Label Names e 5-62
Command Coding Conventions 5-64
Layout of Command Definition Source. 5-64
Cross-reference Data i 5-66
Command processing programs (CPP) 5-66
Command Validity Checking Programs it e 5-67
Prompt Override Programs 5-68
Coding Standards for MeSSages. i 5-69
PromMPt MESSAgES . . .o 5-70
EXECULION MESSageSo 5-71
Standards for Defining Messages 5-74
Monitoring for Generic Message GrOUPSttt e e e e e 5-75
Message Handling by Interactive Programs 5-77
Message Handling by Batch Programs 5-79
Coding Standards for Help Text. e 5-80
General Considerations 5-81
Help Text Modularization 5-81
General Coding TeChNIiQUES e 5-83
Coding Help Text for Commands e 5-86
Coding Help Text for Panels 5-87
Coding Help Text for MeNUS e e e 5-88
Designing Search Indexes 5-89

Chapter é: Work Management Standards

INtrodUCHiON . . 6-1
General PrinCiples 6-1
Shipped Work Management Objects. 6-2
Work Management Objects in QGPL 6-3
0S/400 Shipped Authorities 6-3
Naming Work Management Objects 6-4
Job DeSCripliONS . . . 6-5
QUEBUES . . 6-5
Print File DireCtion 6-6
Scheduling Print OUtpUL 6-7
User Profile and Security Standards 6-7

Contents ix

User Profiles 6-7

Implementation of Security 6-13
Operational Rights. 6-13
Generic Implementation of Security 6-14

Using Libraries 6-17
Organizing a Development Environment 6-18
Operational Flow for Objects and Source e 6-19
Naming Convention for Libraries. 6-20
Use of Libraries 6-23

Version CoONErOl ... 6-26
ObJect VersioNs 6-27
Upward Compatibility 6-27
Version NUMIDEISo 6-28
Version Installation Procedures 6-28

Backup and RECOVEIY e e e e e e 6-29
Data SeCUNtY ... 6-30
Recovering from Non-Catastrophic Failure 6-31
Recovering from Catastrophic Failure 6-31

Backing-Up 6-32
Organizing Objects for Backup 6-33
Backing Up Live Application Systems 6-33
Backing Up Development Systems 6-34
Backup Methods 6-34

Chapter 7: Standards for Testing

Types of Testing 7-1
Program Testing 7-1
SySstem Testing 7-2
Test TeChniqQUES 7-2

Chapter 8: Documentation Standards

CoNSIderations 8-1
Documenting Commands 8-4
S S AgES . . .ot 8-5
Standards For Preparing Text Documentation i 8-5

Appendix A: Naming Convention Examples
EXaMIPIES . . o A-1

x Standards Guide

Appendix B: EJB Option Runtime Example

Nouns, Adjectives, and Verbs. B-1

Appendix C: Programming and Coding Examples

Field Reference File EXample C-1
Primary Reference Fields: "TYPE FIELDS” e C-1
Secondary Reference Fields. C-2

Database File DDS EXample C-4
Sample Physical File DDS C-4
Sample Logical File DDS C-5

Display File DDS EXample C-5

Printer File DDS EXample. o C-9

CL Program Source EXample C-11

RPG III Program Source EXample e e C-12

COBOL '85 Program EXample Cc-21

Command Source EXample C-51

Command Diagram EXample C-51
YEDTLIBLST (Edit Library List) e e e C-52
General Rules for Preparing Command Diagrams. C-53
Parameter DesCriptions. C-54

UIM Help Text EXample e e e C-55
Command Help (CWIlcmH") ... C-55
Panel Help CwWHIpnh) ..o C-58
Search Index (‘WSChidX') C-60
Hypertext Definitions (‘wlllenh’) C-63

Appendix D: Printer Form Sizes

Printer Form Standard Options D-1

Index

Contents xi

Chapter 1: Overview

Purpose

This manual describes CA 2E design, documentation, and programming
standards for IBM iSeries. It also details techniques and tools to support and
facilitate the use of the standards, including CA 2E Toolkit and CA 2E products.

This manual covers both expected minimum standards and good practice in
applying programming standards for iSeries. Where possible, the reason for
the use of a standard is given as well as the standard itself. This manual does
not advocate adopting any particular standard. It emphasizes the need for
standards and their usefulness and provides considerations for choosing
standards appropriate to IBM iSeries. In many cases, the rationale for the
suggested standards rests on software engineering principles.

Related Information

iSeries Guides

Information that is available from either IBM manuals or CA 2E product guides
is not repeated in this manual.

Documentation you may want to refer to in the context of using this manual is
listed below. Relevant iSeries guides include the following:

m IBM iSeries Programming: Control Language Programmer’s Guide (SC21-
8077-0).

m IBM iSeries Programming: Control Language Reference Volume 1 (SC21-
9775-0), Volume 2 (SC21-9776-0), Volume 3 (SC21-9777-0), Volume 4
(SC21-9778-0), and Volume 5 (SC21-9779-0).

m IBM iSeries Programming: Data Description Specifications (SC21-9620-0).

m IBM iSeries Guide to Programming Application and Help Displays (SC41-
0011)

m IBM iSeries Defining Compatible Displays using DDS specifications (GC21-
8136-0).

m IBM iSeries National Language Support Planning Guide (GC41-9877-00)

Chapter 1: Overview 1-1

Conventions

Regarding performance considerations for iSeries, refer to the following:

m RPG III Reference Manual

General IBM Guides

IBM guides that contain general information include the following:

m IBM National Language Information and Design Guide Volume 1 (SEQ9-
8001-00) and Volume 2 (SE09-8002-00).

m IBM National Language Support Planning Guide (GC41-9877)

Conventions

This manual uses the following conventions:

m Data entry text appears in caps for emphasis; however, you can enter the
data in lower case.

m All terms (commands, access paths, files, and fields) refer to CA 2E unless
otherwise indicated, such as 0S/400 Save Library (SAVLIB) command.

m The first reference to features that have abbreviated names includes both
the full and abbreviated name; for example, the Edit File (EDTFIL) function
or National Language Support (NLS). Subsequently, only the abbreviated
name identifies the feature.

Terms Used in This Manual

Descriptions of the acronyms used in this module are defined here in this
chapter. In the text, both the full name and acronym are given the first time
the term is used. Thereafter, only the acronym, value, or term is used.

ADT Abstract Data Type

API Application Program Interface

CPP Command Processing Program

CUA Common User Access

DBCS Double Byte Character System

FRF Field Reference File

1-2 Standards Guide

Intfroduction to iSeries Programming and Documentation Standards

1GC Ideographic Support

LTR Left to Right

MRI Machine Readable Information

NLS National Language Support

NPT Non-programmable Terminal

PDM Programming Development Manager

PASA Program using Automatic Storage Allocation
RTL Right to Left

SAA System Application Software

SDA Screen Design Aid

SBCS Single Byte Character Set

Infroduction to iSeries Programming and Documentation

Standards

The IBM midrange has grown to provide new and more powerful hardware
(iSeries); additional High Level languages (HLL) such as PL/1, COBOL/400,
C/400, REXX, FORTRAN; additional iSeries capabilities such as SQL/400, UIM
Help, and Knowledge Tool/400; the system programming APIs; and new IBM
tools such as Programming Development Manager (PDM) are also offered.
Equally significant is the widespread adoption of software design and
implementation tools, such as CA 2E products.

Although there is now more technology to cover, there are also some welcome
developments that simplify the task. Both the industry in general and, IBM in
particular, now give greater attention to common standards; for example,
IBM’s System Application Architecture (SAA). IBM’s Common User Access
(CUA) standard for user interface design has been rapidly and universally
adopted within the IBM world. The need for and value of software tools is
becoming better understood. Other helpful developments include the
widespread understanding and adoption of object-oriented techniques and the
realization that objects are of use not just in full object-oriented programming
environments but also in a more limited role for design.

Chapter 1: Overview 1-3

Infroduction to iSeries Programming and Documentation Standards

Importance of Standards

iSeries Standards

It is essential that you make an intelligent use of standards in order to take
full advantage of the IBM midrange architecture. The 0S/400 has many
standards, both explicit and implicit, with which you need to conform in order
to provide applications that are robust, maintainable, and easy to use.

Standards can be viewed as actual productivity tools. By adopting good
standards, you can simplify both your design and development.

Standards reduce the amount of work you need to do to produce a given
result. Those aspects of a specification that are covered by your normal
standards can be removed from the picture, leaving only the essentials specific
to the problem in hand to be solved. This can significantly reduce the amount
time needed to communicate between people at all stages of the development
process: design, programming, testing, and user training.

Standards can also improve the quality of your software. Good standards
should embody established techniques for approaching commonly encountered
development problems.

The inherent capabilities of IBM iSeries can be complemented by providing
additional productivity tools that build upon 0S/400. This manual provides you
with indications of where such aids can be useful.

IBM’s midrange architecture provides many features and productivity aids that
make using the computer easier for both the developer and the end user: the
computer can assist with its own use.

The fourth generation features of iSeries related to the use of standards
include:
m Single level object addressing
- Correct use of libraries
- Use of effective naming conventions
- Use of verb-object syntax for commands and programs
- Use of an object-oriented design approach
m Consistent user interface
- User interface design standards
- Object-oriented design
- Use of commands

- Use of messages

1-4

Standards Guide

Intfroduction to iSeries Programming and Documentation Standards

- Use of help text

m Integral relational database

Normalized file design
- Set of data modeling
- Performance conscious design
- File independence
- Database design and coding standards
m Development aids
- Online development techniques
- Use of design tools
- Testing techniques
- Naming conventions
- Automatic documentation techniques
m Advanced architecture
- Lessons for modularization
- Use of messages
- Work management standards
- Shipped system concepts
m High-level languages
- Coding standards
- Lessons for modularization
- Use of APIs
m Integral security
- Correct use of user profiles
- Correct use of object authorities
The CA 2E standards consolidate the collective practical experience of many
people who have used the midrange architecture for application development.
There are obvious limits as to how far practical experience can be reduced to

succinct principles; as a consequence, the level of discussion in this manual
varies from general to specific.

Chapter 1: Overview 1-5

Infroduction to iSeries Programming and Documentation Standards

Enforcing Standards

Developing a standard is relatively easy; however, persuading people to follow
it can be more difficult. You can implement standards by either applying
standards to yours and others’ work, or by getting software to apply the
standards for you.

To implement standards through people:

Develop sensible standards that you can explain and justify.

Educate staff in the reason for using standards. Ensure that they realize
that standards help make their work understandable to each other.

Provide a clear statement of what the standards are and give examples.

Monitor that the standards are followed. Quality control can be assisted by
the use of development tools such as the CA 2E Toolkit utilities that will
cross-reference and summarize systems to a level at which inspections can
be made.

Conduct periodic code reviews to check conformance and to identify new
standards.

When adopting a new HLL or other tool, allocate time to identify and
establish appropriate standards for its use.

To implement standards automatically:

Use code generation tools such as the CA 2E application generator
wherever possible.

Use change management and object manipulation tools to manage objects
where necessary.

Develop copybooks of standard code and use them whenever possible.

Develop an online reference library.

1-6

Standards Guide

Chapter 2: Naming Conventions

A naming convention is a systematic method for allocating names to things.
This chapter describes the CA 2E recommended method for establishing your
naming conventions.

Naming Conventions

Naming conventions assume a particular importance on iSeries for a number
of reasons. The Single Level Object Addressing of the 0S/400 architecture
means that the fundamental software entities exist within a flat hierarchy of
only two levels—library and object. While this has many benefits, it also
means that name conflicts are more likely, and that the context in which an
object is found does not necessarily give information about its purpose or
nature.

The maximum lengths allowed for the names of most types of 0S/400 entities
are relatively short; ten characters is standard. This means that where there
are large populations of an entity, you need to plan to avoid conflicts.

One of the fundamental strengths of the 0S/400 is its consistent user
interface. In some cases, this requires that objects be named to conform with
0S/400’s implicit rules for naming objects that are visible to an end user.

Natural Language

Obijects

You do not use names to only provide unique identifiers; you also use names
to classify the identified objects in order to recognize them. This is the basis of
an 0S/400 naming convention.

The 0S/400 operating system is object-based; this means the fundamental
software entities on the iSeries can be understood and manipulated as objects
existing within a uniform, simple conceptual framework. All 0S/400 objects
have certain common properties; for example, a name, a creation date, an
owner; and can be subjected to certain common methods, such as saving,
moving, and deleting.

Chapter 2: Naming Conventions 2-1

21BObjects

Objects ensure better integrity and better modularization. The 0S/400 objects
also provide a simple intuitive way of understanding system software. The
statements of 0S/400’s CL command language have highly uniform
verb/object syntax; for example Create Data area (CRTDTAARA), Delete data
area (DLTDTAARA), Display data area (DSPDTAARA). You may consider this as
being similar to the imperative tense used for simple English commands such
as “Read this” or “Stop that.” The distinction between objects and the methods
that operate on them corresponds to the noun/verb distinction found in natural
languages.

By adopting a consistent syntax in its commands and other interfaces, 0S/400
is able to harness our innate capabilities to generalize rules and formulate new
instances so that you can successfully use new software or cope with new
situations.

As an illustration of what can be achieved with useful names, consider the
following three lists of names that show three different sets of unique names
for the same set of objects:

List 1 List 2 List 3
ABCO0001 PGM0001 DSPCUS
ABCO0002 PGM0002 DSPCUSDTL
ABC0201 FILOOO1 CUSDTA
ABCO0210 FILOO10 ORDHDR
ABC0220 FILO020 ORDDTA

In the first list, the names are meaningless. You must already know about
object ABC0001 to know what it is and its capabilities. Although you might be
able to make use of rules like “objects with a range of 001 to 100 are
programs” to glean additional information, the rules are as arbitrary as the
names. In the second list, you can tell the type of the object from the name
(PGM or FIL), but little else. In the third list, you can make an educated guess
as to what each of object is, provided that you are aware of normal 0S/400
conventions.

In doing so, you are employing naturalistic mechanisms: the use of a limited
vocabulary of “words” which always have a similar meaning, (DSP-Display,
DTA-Data), and the use of a simple syntax. The essence of the syntax is to
use a simple imperative verb word (DSP) followed by an object word (CUS) to
indicate a procedural verb object (DSPCUS), as opposed to an adjective (CUS)
and a noun (DTA) to indicate a passive noun object (CUSDTA). A third point to
note is that the 0S/400 convention for systematically deriving mnemonics
from significant consonants is naturalistic as consonants are generally more
easily remembered.

2-2

Standards Guide

22BObject-Oriented Approach

Object-Oriented Approach

There is no reason why an object-oriented design approach should be limited
to the entities of the 0S/400 shipped system. You can introduce your own
entities and design applications in terms of operations performed upon them.
For instance, if you decide that ‘Customers’ and ‘Orders’ are design entities,
you could provide the following functions:

m DSPCUS: Display customers

m DSPORD: Display orders

m CHGCUS: Change customer details

m DSPCUSORD: Display customer’s orders.

Note: An object-based approach gives you underlying rationale for a naming
convention on 0S/400.

Not all of your design objects will necessarily result in a separate 0S/400
object, but the same object-oriented design principles can still be used when
naming sub-entities such as fields and members. Because of the strictures of
some of the 0S/400 HLLs such as RPG III, you may need to use additional
compression rules; for example, reducing the standard three-letter mnemonics
to two.

Planning a Naming Convention

A naming convention for iSeries should do the following:

m be applicable to entities at all levels. 0S/400 entities include all 0S/400
object types, files, formats, fields, and members

m be rule-based. It should be possible to generate a new name or to analyze
an old one by a rule, rather than by referring to a table or central log. The
rules should be based on relevant categories of distinction; for instance,
properties of the entities being named that are important in distinguishing
them from other entities of the same type. You may want to distinguish
between database files by both the file type (physical/logical) and the
nature of the file’s contents (transient/permanent); you will want to
distinguish between programs by their function.

m encode as much useful information as possible within the names it
generates about the role of the entity, and its relation to other entities.
Similarly, it should not contain irrelevant information.

m be easy to remember. Simplicity, consistency, and adherence to natural
language principles will facilitate this.

Chapter 2: Naming Conventions 2-3

23BPlanning a Naming Convention

m use the same name for an entity wherever it is used. For example, it
should not be necessary to explicitly rename fields to overcome the
limitations of a particular HLL, such as with RPG III.

m be as compatible as possible with other standards, notably those inherent
in the OS/400 shipped system. For example, no object name should begin
with the letter ‘Q’, which is reserved for IBM-supplied objects.

There are three separate interfaces in the 0S/400 architecture with which you
should be consistent:

m The Control Language
m The DDS Database description language
m The System displays and printouts

The CL command language interface in particular suggests certain naming
practices; for example, use 0S/400 mnemonics such as DSP for display
wherever possible.

Follow an object-action system. Name objects that perform a function
(commands and programs) according to the action they perform upon an
object or entity; use the form ‘verb + object’. For objects that have actions
performed upon them (as files, data areas, message queues), base their
names on the significant entity that they represent; use the form ‘object’ or
‘adjective + object’. For example, Display Active Jobs (DSPACTJIOB), Date
format system value (QDATFMT), Batch subsystem (QBATCH).

Allow the names generated by the convention to lend themselves to generic
manipulation. This means adopting names that give useful generic names for
manipulation by CL commands. Also, ensure that names are tractable by the
scan functions of source editor utilities such as SEU and object manipulation
tools such as IBM’s Programming Development Manager (PDM). A generic
name, indicated by an asterisk at the last position, encompasses the names of
all entities, which begin with the same character string. For example, AB*
implies all entities whose names begin with the letters AB.

Because of the limitations of the CL generic name, it is almost impossible to
come up with a naming convention that completely satisfies this requirement.
If you include indications of both an object’s type and its function in a name,
one must be given precedence. Since sometimes you may want to manipulate
objects by type, yet at other times by functional group, there inevitably can be
a conflict. The floating generic name (*XXX*) capabilities of PDM can be used
for generic manipulation on lower order parts of the name, provided you have
adopted a convention that ensures related objects have at least some related
component to their names.

The following example gives two different schemes for naming programs and
files.

2-4

Standards Guide

23BPlanning a Naming Convention

0S/400 Object Types

Group Object Type Description Number of Seen by end
Entities user
CFG *ALRTBL- Alert table Few No
SEC *AUTL- Authorization Several Yes
list
CFG *CFGL

0S$/400 Entity and Object Types

The following table shows all of the 0S/400 entities (both 0OS/400 objects and
component elements) that need to be named. The table also indicates whether
each entity is common or scarce, and whether an end user might need to refer
to the entity by name, both of which may affect how the item needs to be

named.
Group Object type Attr Description Number of Seen by
entities end user
APP *FILE DSPF File - display Many No
APP *FILE MXDF File - display Many No
mixed
APP *FILE CMNF File - Many No
communications
APP *FILE BSCF File - Many No
communications
APP *FILE DFUEXC File - display DFU Many No
APP *FILE TAPF File - tape Many No
APP *FLR! Folder Many No
APP-P *FNTRSC- Font Few Yes
resource
APP-P *FORMDF- Form Many Yes
definition
APP *GSS Graphics symbol Few No
set
APP *IGCDCT! Ideographic Few Yes
dictionary

Chapter 2: Naming Conventions 2-5

23BPlanning a Naming Convention

Group Object type Attr Description Number of Seen by
entities end user
WKM *JOBD Job description Several No
WKM *JOBQ Job queue Few Yes
APP *JRN Journal One No
APP *JRNRCV! Journal receivers Many No
APP *LIB Library Several Yes
CFG *LIND Line description Few Yes
APP *MENU Menu Many Yes
CFG *MODD Mode description Dew No
APP *MSGF Message file One No
WKM *MSGQ Message queue Several No (2)
CFG *NWID Network Interface Few No
descr
WKM *0oUuTQ Output queue Few Yes
APP-P *QVL Overlay Few No
APP-P *PAGDFN- Page Few No
definition
APP-P *PAGSEG- Page Few No
segment
WKM *PDG G Print descriptor Few No
APP *PGM C Program - C Many No
APP *PGM CLP Program - CLP Many No
APP *PGM CBL Program - Cobol Many No
APP *PGM DFU Program - DFU Many No
APP *PGM FTN Program - Fortran Many No
APP *PGM PLI Program - PL/1 Many No
APP *PGM RPG Program - RPG III Many No
APP *PGM QRY Program - Query Many Yes
APP *PNLGRP! Panel group Many Yes
CFG *PRDAVL- Product Few -
availability
CFG *PRDDFN- Product definition Few -

2-6

Standards Guide

23BPlanning a Naming Convention

Group Object type Attr Description Number of Seen by
entities end user
APP *QMFORM- Print image Few No
APP *QMQRY Query Manager Few No
Query
APP *QRYDFN! Query definition Many No
CFG *RCT - RC table Few -
APP *SAVF! Save file Few No
CFG *SBSD Subsystem Few Yes
description
APP *SCHIDX! Search index Several No
APP *SPADCT! Spelling aid One Yes
dictionary
CFG *SSND Session Few No
description
APP *TBL Table Few No
APP *USRIDX- User index Many Yes (3)
SEC *USRPRF! User profile Several Yes
APP *USRQ- User queue Many No (3)
APP *USRSPC- User space Many Yes (3)
Other Entities
Group Object Attr Description Number of Seen by
Type entities end user
*FILE MEMBER - Member 1;Many No (1)
*FILE FORMAT - Format 1;Many No(1)
FORMAT FIELD - Field Many No(1)
PGM FIELD - Field in HLL Many No
program
MEMBER MENU - CA 2E menu Many Yes
JOB INT Interactive Several
job
JOB BCH Batch job Many
RDR Spool reader Few

Chapter 2: Naming Conventions

2-7

24BConstraints on the Uniqueness of Names

Other Entities

Group Object Attr Description Number of Seen by
Type entities end user
WTR Spool writer Several
*MSGF MSGID - Message Many No
description
*PNLGR HLPGRP - Help group Many No

m [tems, such as database files and fields, are seen by end users if they are
permitted to crate query reports.

m Job, reader, and writer names should be the same as the device

descriptions.

Constraints on the Uniqueness of Names

The 0S/400 system entities fall into a hierarchy that dictates the level at
which names must be unique. Library names must be unique within the
system, object names unique by type within library, format names unique
within file, and field names unique within format.

The hierarchy of the common 0S/400 entities is displayed in the following

diagram:

LIBRARY

| FOLDER |

COMMAND

DOCUMENT
| |
[PROGRAM | | FILE [DATA AREA| | MSG FILE |
| vemBER | [FORMAT | |MESSAGEID

| FIELD |

[MENU |

[PNLGRP |

HELP GRP

2-8 Standards Guide

25BConstraints on Naming Conventions

Constraints on Naming Conventions

OS§/400

RPG IlI

COBOL

Each programming language has specific naming characteristics you need to
be aware of which are described in the following section.

0S/400 simple names may have a maximum of ten alphabetic characters: the
first character must be alphabetic or a special character such as ‘@’, ‘$’, or *#".
Embedded blanks are not allowed. This restriction applies to object names,
member names, format names, and field names in CL, command source, and
DDS. The names of 0S/400 objects, folder, and document names may also
contain an embedded period; for example ‘FRED.DOC'.

The user profile names used in networks should be eight characters or less, as
some other architectures only support eight-character names.

RPG III field names may have a maximum of six characters.

File names in RPG III Calculation specifications may have a maximum of eight
characters. This is also true in File specifications, although a database override
can be used to associate this eight-character name with an actual file
possessing a longer name.

A program call statement is executed more efficiently in RPG III if the name of
the program being called can be coded as a literal. This requires that program
names are restricted to eight characters maximum.

Within an RPG III program, field names are global: they cannot be local to a
particular subroutine, nor may they be qualified by the name of the file or
format with which they are associated. This means they need to be unique
within the program. In order to avoid having to rename fields, and also to be
able to relate fields to formats, you may want to provide an indication of the
format in the field name.

Characters other than the letters of the alphabet, digits, and the hyphen, for
example &, #, @), are not allowed.

Chapter 2: Naming Conventions 2-9

25BConstraints on Naming Conventions

UIM

* # and ‘@’ are not allowed in label names.

Several psychological factors are also relevant. Human short-term memory
has difficulty retaining more than seven (plus or minus two) “chunks” of
information. This is significant if unfamiliar names have to be remembered for
short periods of time; for instance, when noting down the name of a program
that has crashed, or when looking up a code value for an input display.

Remembering an arbitrary code such as ‘X1274ZF’ is more difficult than
remembering a meaningful one of equivalent length which can be “chunked”
into a lower number of known components. For example, although ‘UDSPCUS’
is also seven letters long, to someone familiar with 0S/400 naming
conventions it can be remembered as only three elements (U + DSP + CUS).

Where a name is made up of subcodes, the number of possible ambiguous
interpretations is greatly reduced if the subcodes always have the same
starting positions and lengths. For instance, knowing that a name (CUSCDE) is
made up of two mnemonics, each three characters long, you stand a fair
chance of guessing what it represents:

CUS + CDE = Customer code

If, on the other hand, it could also be made of any other combination of
abbreviations, guessing is more difficult:

m C + US + CDE = Carolina USA code?

m CU + S + CDE = Customer salary code?

m CUS-C + DE = Customer complaints department?

m CU + SCD + E = Custom security code entry?

The most efficient (giving maximum recognizability for minimal size) form of
mnemonic is three characters long, as in most CL mnemonics.

Consonants are generally more significant for distinguishing names than
vowels. The information content of a consonant (which distinguishes between
from around twenty other letters) is greater than that of a vowel (which
distinguishes from about five other vowels).

For example:
Contrast: ..a. .0e. B .a.?
with: wh.td..s th.s s.y?

2-10

Standards Guide

25BConstfraints on Naming Conventions

It is easier to carry out pattern matching on items that are strictly comparable.
A column of names is easier to scan if the names are aligned as shown in the
following example.

| : SLCUDAP . CUSTPHY |
| : SLCUDALO : CUSTLGLORD |
| : SLDSCUR : DISPC |
| : SLDSCUC@ : DSCUSTCTRL |
| : SLDSCUC1 : CUSTCTRLUP |
| : SLEDCUR1 : CUEDITR |
| : SLEDCUC@ : CUEDITRCTRL |

Program types: RPG CL PLI CBL BAS PAS (MI)
File types: PHY LGL DDM DSP MXD BSC CMN PRT DKT TAP CRD SAV

The structure of 0S/400 sets basic restrictions on the uniqueness of names: to
what extent should you apply further restrictions? Should program names be
unique not just within an application, but across all applications held on the
machine? Different versions of the same program, however, may have the
same name but be in different libraries.

You usually want uniqueness at an object level for application objects, as it
enables an object to be identified simply by its name. At a lower level it is only
useful in database entities, files, formats, or fields, which may be common to
many different applications.

It is also useful if message identifiers are unique, because once a message has
been sent, there is generally no indication of the message file from which it
was obtained.

The 0S/400 object hierarchy also has a bearing on the significance of names
for making distinctions, both as to the nature of the distinction, and as to the
number of distinctions.

Nature of Distinctions

The name of an item should only contain information useful in distinguishing it
from similar items. There is little point, for instance, in adding ‘LIB’ to the end
of names of libraries to indicate that they are libraries, because there are no
other objects on the same level whose type needs to be distinguished: every
single library name would have LIB on the end of it. On the other hand, it is
useful to include an indication of an object’s attribute in its name in order to
distinguish it from other objects of the same type but different attribute; for
instance two similar programs of different types UXCHDTR (RPG) UXCHDTC
(CLP).

Chapter 2: Naming Conventions 2-11

25BConstraints on Naming Conventions

Number of Distinctions

Application Objects

When formulating a naming convention, the most critical factor to be

considered is the number of items of a given type that need to be named; in
other words, how many distinctions need to be made between similar items.
The following table gives approximate figures for population sizes in a typical

application system.

Entity Number of items
Libraries 1-10
Menus 10 - 100
Commands 10 - 100
Programs 100 - 1000
Device files 100 - 1000
Device formats 300 - 3000
Device fields 3000 - 30000
Message files 1-2

DBF files 10 - 100
DBF formats 50 - 200
DBF fields 200 - 1000
Panel groups 30 - 300
UIM Help groups 300 - 3000
Data areas 10 - 100
Data queues 0-10
Dictionaries 0-20
Folders 10 - 500
Documents 50 - 1000
Receivers 0-10
Save files 0-30
Virtual disks 0-30

2-12 Standards Guide

25BConstfraints on Naming Conventions

Work Management Objects

Entity Number of items
User profiles 10 - 250
Control units 1-5
Lines 0-20
Devices 20 - 50
Sessions 0-10
Subsystems 5-20
Classes 5-20
Job descriptions 5-50
Job queues 5-20
Output queues 5-50

Note: The largest populations are for device formats and fields: usually it isn't
worthwhile to give them unique names.

Object-action Naming

Under an object-action approach to naming, in line with an object-oriented
approach to design, distinguish between:

m those items that implement a process; for example programs or
commands. (Actions)

m those items that are operated upon by a process; for example, database
files or data areas. (Objects)

This distinction can be seen in 0S/400. Things upon which you operate
(QPRINT, QBATCH, QINTER), are named differently from the things you use to
perform the operation, which are named after the operation itself; for instance
DSP (DSPSBS, DSPOUTQ), or CRT (CRTSBSD, CRTOUTQ).

Name all objects needed to implement a process after the process (programs
and device files); and all objects that are operated on by processes (subjects
of actions) by what they represent.

This allows you to identify all the objects needed to run a given command or a
HLL program, apart from application-wide objects, which is assumed to be
generally needed.

Chapter 2: Naming Conventions 2-13

25BConstraints on Naming Conventions

Why not name programs and device files the same name as the command that
invokes them, since 0S/400 object names only need to be unique within
object type? For example:

(UDSPCUS) — [*PGM
*CMD (UDSPCUS)|— | *DSPF (UDSPCUS)

This is unviable, as the relationship between the object types is often not one-
to-one. A single command may cause many programs to be invoked or a
single program may be called by several commands. It is, however, a useful
approach to take when naming work management objects, which are related
on a one-to-one basis. For example, job description QBATCH may submit jobs
to job queue QBATCH that attaches to subsystem QBATCH that has a default
class of QBATCH. In such a case, using common names for related objects of
different types indicates any horizontal linkage across the 0S/400 entity
hierarchy.

Recommendations

m Use a variation of 0S/400 and convention for those object types that are
scarce, or that are referred to directly by the end user.

- Use 0S5/400 type mnemonics to name such objects and use a single
letter prefix to identify the application.

- Use the form verb/noun for action-based names.
- Use the form noun or adj/noun for subject based names.
- Use work management objects (QPRINT and QPGMR) as shipped.

m Use a separate systematic convention, outlined below, for entities that
occur in large numbers and which are normally referred to only by
technical personnel.

IBM has adopted a similar approach for the system software of iSeries, as may
be seen from the names of the objects in the system library, QSYS, or other
shipped libraries such as QGPL, QRPG, QIDU. Internal objects, such as
programs, are named, using systematic prefixes.

CA 2E Naming Convention

The CA 2E naming conventions are described in this section.

2-14

Standards Guide

25BConstfraints on Naming Conventions

For RPG Il

CA 2E uses a systematic naming convention for application systems whose
main language is RPG III. Overall, the naming convention’s aim is to encode
appropriate information about entity type, attribute, and application into the
names of objects and object components as shown in the following schematic
example.

Application identifier
Functional group
—*— Identifying mnemonics
— Object type

——— Object subtype

Objects: S MMM O X |

Formats: F MM MM 1l

Fields: I NN NN

e - ldentifying
mnemonics

Format identifier
Format type

* ‘

The convention is explained in more detail for each entity level: object,
format, and field, in the following sections. Refer to the appendix, "Naming
Convention Examples," in this guide for more examples.

Because of the severe length restrictions imposed upon names by RPG III, and
to a lesser extent by 0S/400, CA 2E has adopted a positional coding structure;
information is encoded by position as well as value.

Always use two-character mnemonics, rather than the usual three-character
mnemonics of CL. This is so the same mnemonic system can be used at all
levels (for example, in RPG III field names as well as format and object
names) .

For example:

Chapter 2: Naming Conventions 2-15

25BConstraints on Naming Conventions

YM DS MN R |
‘ ‘—*— RPG Il program :
¥ * Display Menus :

* Menu subsystem !

* Advantage 2E utility l

Naming Convention Variation

For Objects

A possible variation on the preceding illustration is to put the object type code
into the second position, rather than the seventh. This gives a greater
emphasis on object type, rather than functional group as a distinguishing
attribute. For example, 'Y R M DS MN'.

When naming 0S/400 objects, the components are as follows:

Application identifier (S AMMMMOX): S Identifies the user system.

Only one letter is used since there will be relatively few application
systems, and the objects that compose the systems are in any case likely
to be separated into different libraries. For example:

I = Inventory management system

Q is reserved for IBM objects
is reserved for IBM S36 environment objects
Y is reserved for Advantage 2E objects

Application Functional group (S A MMMMOX): A identifies the functional
subsystem of the application.

This letter is used to group all objects belonging to a significant functional
group within an application. It is possible that there is only one functional
group if it is a small application. For example:

T - Transaction entry subsystem
O - Order entry subsystem
A - Accounts subsystem

U is reserved for user general purpose functions.

2-16

Standards Guide

25BConstfraints on Naming Conventions

= Mnemonic (SA MMMM OX): MMMM is a mnemonic, normally made up of
two elements (MM + MM), chosen according to the rules described below.
For example:

SLBT
CUDA
DSCU

Select batch.
Customer data
Display customers

m Type (SAMMMM O X): O, a single letter indicating both the 0S/400 object
type and the attribute. It can be any one of the following:

Object Type Attribute

A Data area or physical file defining a data area

B BASIC program or display file used by BASIC program
C CLP program or display file used by CL program

] C program or display file used by C program

D DFU program or display file used by DFU program

H Panel group

$ Printer file used in common

K COBOL program or display file used by COBOL program
I PL/1 Program or display file used by PL/1 program

L Logical file

M DDM file

P Physical file

Q Query program

R RPG III program or display file used by RPG program
T Tape file

m Subtype (SAMMMMO X): X is an optional suffix, whose nature depends
upon the object type.

As program suffixes, the following have special meanings:

@

Command processing program for
commands.

Command validity checking program.
Suffix for suite of programs
compromising a single functional unit.

As file suffices, the following have special meanings:

Chapter 2: Naming Conventions 2-17

25BConstraints on Naming Conventions

For Formats

Display file

$ Printer file

1-Z Logical Data Base file view

0 Primary logical view: unique access path

For example, Display Customers display file: LUDSCUR#; Display Customers
command processing program: LUDSCUC@.

When used to name 0S/400 database and device file formats, the components
of the naming convention are:

m Format type (F MMMMPP): F identifies the format type:

@ Database format
Display format
$ Printer format

For example, customer database file format: @CUDAXC, displays customers
display file format: @DSCU##.

m Format mnemonic (F MMMM PP): MMMM is a mnemonic constructed
according to the rules described in the next section.

m Format identifier (FMMMM 1II): II is a unique two-character format ID.

The format identifier for a physical file format should be unique to that file
throughout the application, and preferably, the system.

The following values are reserved:

$n Printer device files

#n Display device files

@@ Field reference file primary fields
$$ Field reference file secondary fields
Pn RPG Il program parameters

Wn RPG Il program work fields

Device files should use a format identifier of #n for display devices and $n for
printer devices. The identifier #Q is reserved for message subfiles. The format
identifier need not be shown on the actual format names of device files, since
you may want to use names that emphasize the role of the formats within a
standard program type. Such formats will be few in humber and should be
named using the 0S/400 naming principles, but the names should still begin
with a character to indicate the format type. For example:

2-18

Standards Guide

25BConstfraints on Naming Conventions

#SFLCTL - Subfile control | | #PAGHDR - Page Headers
#SFLRCD - Subfile record
#PROMP - Prompt #DTLLIN - Detail line
#CONFIRM - Confirm overlay

Give the format identifiers of database files letter combinations that do not
usually occur in English; for instance JX, QP, ZW, as it is then easier to scan
for a field with SEU’s scan facilities and be certain of a unique match.

For Fields

When naming 0S/400 database and device file fields, the components are:

m Format identifier (II NNNN): II is a unique two-character format identifier,
as described previously.

m Field mnemonic (PP NNNN): NNNN is a mnemonic that identifies the field

HLLs Other Than RPG Il

If your application system is developed in a language other than RPG III, such
as COBOL, C or PL/1, and there is no requirement to support RPG III
programs, use a systematic naming convention that provides more meaningful
names. This mainly amounts to being able to use three-character mnemonics
as shown in the following example:

3 Application identifier
* Functional grouip
* * Identifying
mnemonics
* Object type
*—Object subtype

Objects: S A MMM MMM O X

Il
Formats: F MMM MMM
Fields: MMM MMM MMM

*

- ——*—|dentifying
mnemonics

*| ‘
‘ Format tyFe

m Database format and field names may be up to ten characters long.

m Field names may be qualified by the format of the file from which they
come. This means there is no need to include a format identifier as part of
the field name.

The explanations of subcodes are the same as for the RPG III systematic
convention given earlier.

Chapter 2: Naming Conventions 2-19

26BMnemonics

Mnemonics

Note: It is still useful to indicate the file type (database, display, printer) on
the format. A common variation is to place the object type in either second
position or last.

A mnemonic is a symbolic abbreviation designed to be as memorable as
possible; for instance DSP for Display, CHG for change.

An efficient mnemonic should be as short as possible, but also as clear as
possible. The mnemonic system used for CL command names, in which
mnemonics are generally three characters long and composed of the
phonetically significant consonants, is a good compromise between the
conflicting goals of brevity and recognizability.

CA 2E Mnemonic System

Due to the space limitations of RPG III, the CA 2E convention uses a standard
mnemonic of only two letters, rather than the three characters of CL
mnemonics.

Mnemonics should be made up of two-character components from a strictly
limited vocabulary, for example, DT for date, CD for code, and TX for text. The
same set of mnemonics should be used at all levels, for example, for objects,
source members, format names, and fields.

Mnemonics will generally be used in pairs. Wherever possible, combine
mnemonics as ‘verb+object’ or ‘adjective+noun’. For example, use DSRP for
Display Report and MNCD for Menu Code.

A limited vocabulary of mnemonics should be used. This should be
documented in the field dictionary for a system.

Certain mnemonics are reserved; for instance CD for code and TX for text. See
the appendix, "EJB Option Runtime Example," in this guide, for a list of
reserved mnemonics.

Formulate New Mnemonics

When creating new mnemonics:
m Use a standard abbreviation if one exists, such as Co. or No.

m Use the first letter in each syllable or of each compound word, for example
MV for MoVe, SF for SubFile.

2-20 Standards Guide

27BAdvantages of CA 2E Naming Convention

m Make mnemonics unique and clear.

m Use approximate synonyms to keep the number of mnemonics down. For
instance, maintain, change, alter, and amend can all be described as
change or CH.

m Think of the CA 2E two-character mnemonic as an abbreviation of the
three-character 0S/400 mnemonic. Try to keep a one-to-one
correspondence between two-and three-character mnemonics; for instance
DS - DSP, CH - CHG, DA - DTA.

CA 2E and Mnemonics

The CA 2Eapplication generator has a facility to generate entity names
automatically if the CA 2E YALCVNM model value has a value of *YES.
Mnemonics are generated as follows:

m The first mnemonic is generated arbitrarily to be unique within entity type.
m The second mnemonic is derived from the entity types:

- Field data types (DTE - DT, CDE - CD, TXT -TX).

- File types (REF - RF, CPT - CP).

- Standard function types (EDTFIL - EF, DSPFIL - DF).

CA 2E Naming Convention Exceptions
The following OS/400 objects are exceptions to the CA 2E systematic naming
convention:

m Objects that may be referred to directly and frequently by the non-
technical user:

- User profiles: User profile names should reflect the user’s role. If
there are many users, a common prefix to indicate department and/or
location may be useful. Reserve the prefix ‘Q’ for IBM profiles.

- Libraries: Library names should indicate the nature of the objects in
the library. Reserve the prefix ‘Q’ IBM libraries (QSYS, QRPG,
QRPLOBJ).

Advantages of CA 2E Naming Convention

Using the CA 2E naming convention has several advantages:

m You can easily identify entities at any level:

Chapter 2: Naming Conventions 2-21

28BEnforcing A Naming Convention

Names are made up from a restricted vocabulary of components,
making it relatively easy to learn and remember.

Strict use is made of positional information, so that a name can be
clearly broken down into its components.

Both object type and attribute are encoded in object names. This helps
you to identify objects simply from their names.

On lists, objects are arranged by functional group. Anomalies can be
spotted.

Fields can be related to formats, and formats related to files.

Field names are uniquely qualified by format, so inadvertent file
updates do not take place. Declaring an external file for use in an RPG
III program automatically declares all the fields in the file to be
available in the program. If more than one file contains a field of the
same name, this can lead to undesirable effects in a program that
accesses both of those files. For example, if you chain to a reference
file while binding a transaction file record, and if both files contain a
field of the same name, the field on the transaction file could be
unintentionally updated with the field from the reference file. (Where
field mapping is desired, fields can always be explicitly renamed.)

You can easily manipulate objects and source such as:

Easy copying and inclusion from existing source.

Easy manipulation of groups of entities by 0S/400 and CA 2E 400
Toolkit utility commands. Since many commands work on “generic”
names, this is of considerable practical significance.

You can benefit from greater productivity such as:

You can create or analyze names with ease.

You can include existing programs, source, and sections of source in
new systems with greater ease.

Programmers can understand unfamiliar code faster.

Enforcing A Naming Convention

The following techniques encourage the use of a naming convention:

Define all database fields in a field reference file. Designate one person
who is well versed in your standards to be responsible for issuing field
names in a field reference file.

Provide a standardized skeleton source as a basis to start coding.

Use tools such as CA 2E to generate names automatically, according to
rules.

2-22

Standards Guide

28BEnforcing A Naming Convention

m Consider providing an exit program for the programmer’s menu using the
EXITPGM keyword on the OS/400 Display Programmer menu
(DSPPGMMNU) command. This will check that the names given to source
and object members satisfy your naming convention.

The following techniques ensure that appropriate names have been used; use
the 0S/400 Display library (DSPLIB) and Display object description (DSPOBID)
commands to obtain summary lists of object names.

Use the following CA 2E Toolkit documentation commands to check format and
field names:

m Document program references (YDOCPGMREF) with LSTBYFMT(*YES).

m Document field references (YDOCFLDREF).

m Document file summary (YDOCF).

m Document program summary (YDOCPGM).

Chapter 2: Naming Conventions 2-23

Chapter 3: IBM i General Design

Standards

This chapter describes the principles of a good design method and what
information is needed to start designing. It also provides suggestions for
appropriate tools to use.

Design Methods

When you start to design your system, apply the following basic principles:

Use the computer as much as possible:

Many aspects of the design process can be done automatically.
You can use the computer to index and organize the design.
You can repeatedly modify the design with minimum effort.
You can use any existing designs.

You can easily document the design.

The results of the design can be carried through to implementation
without re-keying.

You can improve the quality.

Use CASE tools, generators, and word processors wherever possible.

Present designs to the end user and reach agreement before programming
starts. This is because:

You must understand what the user wants; the only way you can
verify user requirements is to restate your interpretation for
verification.

It is cost effective to incorporate changes before programming has
begun.

Use prototyping and modeling tools wherever possible:

Use standards to reduce the complexity of the design problem. Omit
features of appearance or performance from the specification that are
covered by standards. This allows you to:

use existing design work
achieve more consistent user interface

improve quality

Chapter 3: IBM i General Design Standards 3-1

29BDesign Methods

Use design and generator tools that enforce standards:

m Ensure that all systems have a consistent user interface—consistent
internally within the application, with SAA CVA standards, and with the
0S/400 system interfaces that will be common to all applications. This:

- reduces the amount of work required to specify a system

- simplifies the process of learning how to use the system

Use automatic layout tools:

m Recognize that the design process is both iterative and experimental. It
will require several passes to try out solutions, explore connections, and
allow for user feedback.

Use prototyping and modeling tools:

m Design in as modular a manner as possible so that you can develop and
test each part of the system separately, and so that you can repeatedly
use commonly required functions.

m Use a systematic method for those processes that cannot be entirely
computer-based, such as testing. The computer can be used to organize
the systematic method.

Contents of a Specification

Design Tools

A significant part of an application system should be implicitly defined by the
0S/400 standards, the CA 2E standards, and standards followed by your tools.
To specify a system for user approval, you will need the following:

m A description of the data model, in particular the database files and what
they represent. This may include entity relation, dataflow, and other
diagrams.

m A description of the user interfaces, in particular the layouts of menus,
displays, reports, and a description of the parameters of commands.

m Notes on the processing specific to the application, including calculation,
long algorithms, and recovery considerations.

You should have tools to design your database, menus, panels, and reports;
for example, the CA 2E application generator and/or the CA 2E Toolkit utility
design aids.

The CA 2E Toolkit utility design aids include interactive aids for specifying
panel and report layouts, and for creating menus.

3-2

Standards Guide

29BDesign Methods

The CA 2E application generator includes interactive aids for data modeling,
automatic panel and report painting, and for specifying processing.

For more information on using the CA 2E Toolkit utilities, refer to the Toolkit
Reference Guide. For more information on an overview of the CA 2E Toolkit
utilities, refer to the Toolkit Concepts Guide.

Designs Prepared with Printed with Presented
with

Menu designs YWRKMNU YDOCMNU YGO

Panel designs YWRKPNL YDOCPNL YDSPPN

Y1 YEDTMDL-edtscr YDOCMDLFU

Y2 N

Rpt designs YWRKRPT/EDTR YDOCRPT n/a

Y1 PT YDOCMDLFU

Y2 YEDTMDL-edtrpt N

File layouts STRSEU/EDTSCR YDOCF n/a

Y1 YEDTMDL-edtrpt YDOCMDLRE

Y2 L

Processing EDTDOC PRTDOC n/a

Y1 YEDTMDL-edtact YDOCFUN*

Y2

Designs Prepared with Printed with Presented
with

Text EDTDOC EDTDOC YDSPHLP

Y1 YEDTMDL-edtact YDOCMDL¥*

Y2

Diagrams YWRKRPT/YEDTR YDOCRPT n/a

Y1 PT CA 2E GUI CA 2E GUI

Y2

The CA 2E Toolkit panel design and menu utilities provide an interactive
simulation of the system from the specification designs.

For more information, refer to the Prototyping section in the Toolkit Concepts

Guide.

Chapter 3: IBM i General Design Standards 3-3

30BDesign Standards for User Interfaces

Design Standards for User Interfaces

Ease of Use

There are some general principles for designing user interfaces that you should
be familiar with.

User interface is a general term used to describe those aspects of a computer
system which are visible to the user, and with which the user interacts when
using the system. To describe it, you need to consider both the static
components, such as keyboard layouts, panel and report designs, and the
dynamic components, such as how programs should respond to the user's
actions.

IBM’s Common User Access (CUA) sets out detailed rules for the appearance
and behavior of user interfaces both for programmable and non-programmable
terminals (NPT). The following sections summarize some of the design
principles behind CUA, as well as some specific rules for applying the principles
to NPTs on iSeries.

To make your system easy to learn, consider the following:

m Make the interfaces consistent. If your interfaces are consistent, then
having learned to understand one interface, the user can understand
related interfaces with little effort.

m Choose objects that are intuitive to the user. This requires that you base
the design on conceptual entities, which are familiar to the user.

m Choose operations on the objects that are intuitive. For example, use
create, change, delete, and work with. Use simple standard metaphors
wherever possible.

m Follow object-action principles. Generally, the user should choose an
object, and then an action.

m Allow backing out. It should be possible for the user to explore the system
without serious consequences.

m Provide feedback to reassure the user at every step.

m Provide online help and search indices.

To make your system efficient to use, consider the following:
m Use as simple of a design as possible.

m Avoid the need for the user to recall information.

= Avoid modes.

m Provide basic and expert paths.

m Make the most common path the default path.

3-4

Standards Guide

30BDesign Standards for User Interfaces

Provide the system ready set up for use.

Only provide additional facilities on a demand basis.

Interface Consistency

IBM’s SAA divides consistency into three levels:

Physical—The actual layout of physical elements such as keyboards must
be consistent. On the IBM midrange, physical consistency is for the most
part taken care of by the hardware.

Syntactic—The use of interface elements must be consistent. For
example, the presentation language (e.g. panel layout), the action
language (e.g. F3=Exit) and CL syntax all need to be consistent. The SAA
standards lay down rules for many aspects of interface consistency. The
0S/400 Guide to Programming Application and Help Displays spells out
how you should interpret these for the iSeries.

Semantic—The meaning of the interface elements and their interactions
must be consistent. For instance, Exit should always take you back from a
panel, without further update.

Note: Software productivity tools can play an important part in the successful
implementation of consistent interface standards by suggesting, supplying,
and even requiring, standardized design defaults.

Aspects of a User Interface

The CUA elements of IBM’s SAA includes standards for the following aspects of
interface behavior. You should strive for consistency with these:

panel management
activity management
keyboard layout and usage
panel (display) interaction
selection action

messages and prompts
color and emphasis

help

national language support

terminology for end users

Chapter 3: IBM i General Design Standards 3-5

30BDesign Standards for User Interfaces

Transfer of Learning

Modal Behavior

We have an innate ability to generalize from related cases—we use it to learn
language. You apply this skill when using computer interfaces as well. For
example, if you know there is a Delete Program command to delete programs,
and you want to delete a new object type, say a ‘glob’, you will expect a
Delete Glob command to remove it.

Try to choose operations that have intuitive metaphors. Most operations can
be presented in terms of a relatively small number of primitive operations, for
example, creating, changing, deleting, moving, merging, and splitting, which
are intuitive to a user.

Users often need to switch between tasks. You should try to avoid constraining
what a user can do next at any point. In particular, avoid ‘modes’. A program
exhibits modal behavior if it restricts the user to a limited range of responses
determined by what has taken place previously. A mode requires the user to
carry out particular actions in steps to exit from the mode. Although it is
almost impossible to avoid modes on the iSeries because of the hierarchical
call-invocation model, you should still try to minimize their effect. Use flat
hierarchies, enable the command line, and allow backing out.

Exploring and Backing Out

The easiest way to learn how a system works is to take the options and see
what happens: exploring is a far more natural learning mechanism than
abstract conceptualizing, (for example, reading the instructions first). To allow
the user to explore safely:

m Provide a ‘backing out’ capability to allow the user to retreat out of
functions without affecting data.

m Stress the points of no return; for instance, by a confirm prompt or an exit
menu.

In general, all update processing should take place immediately after the point
of confirmation. There should not be intermediate displays from which the only
exit route is one that requires further updating of the database, as this
constitutes modal behavior. The commitment control facilities of 0S/400 can
be useful when designing to allow backing out, as multiple updates can be
grouped to take place on an all or nothing basis. For example:

3-6

Standards Guide

30BDesign Standards for User Interfaces

Bad - Good -
FIRST FIRST
F3 - -F DISPLAY
|
UPDATE PART 1
—F SECOND
SECOND DISPLAY
DISPLAY
N__ | CONFIRM
CONFIRM DISPLAY
DISPLAY
UPDATE 1 & 2

UPDATE PART 2

Recall Versus Recognition

It is easier to recognize information than to recall it. For example, even though
you may not necessarily be able to recall a name on demand, you can still
recognize the name among related names. Wherever there is a choice of
values to be entered, you should provide inquiry functions to display a list of
the available options. The CL command prompter provides an example of a
program that includes an inquiry facility. Typically, F4 is used to provide an
inquiry capability.

The following is an illustration of Inquiry Facilities:

Chapter 3: IBM i General Design Standards 3-7

30BDesign Standards for User Interfaces

EDIT EMPLOYEES
Employee *
F4
Jobcode *_
F4 Sex. . . *
] F4
DISPLAY DISPLAY JOB DISPLAY SEXES
EMPLOYEES TYPES Type selection
Type selection Type selection 1=Select
1=Select 1=Select Sex Description
Name No Job Description M Male
1Ecob N 0501 PGM Programmer 1 F Female
Lodge JP 0010 ANA Analyst
Knowles M 0102 CNS Consultant
Wilson P 0112 1 MNG Manager

Novice and Expert Paths

The requirements of a frequent end user who uses a system are significantly
different from those of a first-time end user or of an occasional end user. The
expert will retain much more knowledge about how to use the system and will
want highly efficient paths through normal tasks. The new end user will
require more support. Therefore, you need to try to design systems to have
both a ‘fast path’ and a ‘slow path’. The slow path, typically involving menus
and inquiry facilities, should allow the end user to make use of inquiry facilities
to reassure himself that he is doing the right thing. The fast path system
should allow for as fast of a transition as possible, both through and between
transactions.

The layered prompting of OS/400 provides a good example of this. For
example, the 0S/400 Copy file command (CPYF) can be called from a menu or
entered directly. In either case, the command prompter can be used to guide
the user into entering the appropriate values.

The following is an example of a Command Processing Program:

3-8

Standards Guide

30BDesign Standards for User Interfaces

Menu
1.
? 2. Copy file
ENTER
Copy file
From file. . —
Tofile... ___
From member. *FIRST
To member.. *FIRST
‘ Create file: *NO
F04
CPYF
Enter parms

Layered interface should be intelligent—any choices made should guide what is
subsequently shown on more detailed displays.

Contextual Information

It is difficult to keep your attention focused for long periods of time. When
using a complex system, end users may lose track of where they are,
especially if they suffer interruptions. You should provide information to
remind users where they are and what they are doing.

This should be standardized and in the same place (for example, titles and
instruction areas on a panel) so that it can be ignored unless needed. The
most useful information to establish a context for is generally information
about any immediately related entities; for instance, the customer for whom
an order is raised or the department to which an employee belongs. The
presence of such information makes it possible for the user to establish what
he is doing at a glance—especially when returning after an interruption.
Connections between panels should follow the structure of the data so as to
facilitate this.

Chapter 3: IBM i General Design Standards 3-9

30BDesign Standards for User Interfaces

Shipped Systems

Most people do not learn by studying abstract principles. Rather, they build up
their knowledge gradually. The idea of a shipped system can be used to make
learning to use a system easier. A shipped system provides a workable
environment and sensible defaults for control values, so that a new user can
immediately do useful work. 0S/400 themselves provide good examples of
this—the shipped system contains subsystems and output queues, which are
ready for immediate use, but which may be subsequently modified if desired.

iSeries User Interface Implementation Components

User interfaces for the native iSeries are made up of the following
components:

Commands—The 0S/400 Command Language (CL) provides a user
interface that is rigorously consistent, both in appearance and in behavior.
It is worth using the CL command definition language wherever possible.
When defining commands, you should adhere strictly to the CL
conventions. Some of these are discussed in the sections on designing and
coding commands, later in this guide. However, commands are not
suitable for all occasions; displays are also needed.

Display files—Display files are used to define the panels the user sees.
They should be specified as external files using DDS. When defining
display files, it is important to use a consistent layout, give standard
weightings to the display field attributes, and handle error reporting in a
consistent manner. On iSeries, control features of the programs driving
the display, such as command key usage, cursor movement, and
prompting for confirmation, should also be standardized to follow the SAA
CUA guidelines.

Note: For more information, refer to IBM's Defining iSeries (AS/400)
Compatible Displays Using DDS Specifications.

Help text—Help text is written using UIM help. Examples of how to do this
are given in the IBM publication, The Guide to Programming Application
Panel and Help Displays.

Print files—Print files should be specified as external files using DDS. The
important considerations are to use a consistent layout and to provide
reference information to indicate how, when, and by whom the report was
produced.

3-10 Standards Guide

31BDesign Standards for Display Files

Design Standards for Display Files

Design standards for display files are described in this section. This section
also provides general points for panel design. Detailed rules for panel design
are given in the iSeries (AS/400) Guide to Programming Panels and Help
Displays.

For the IBM Midrange

It is important that all panels in an application system are designed to the
same standards. This makes panels much easier to understand, user education
much simpler, and improves appearance.

On iSeries, the standards set out by the IBM SAA Common User Interface
should be followed. These are described in the Guide to Programming
Application and Help Displays and are exemplified by the 0S/400 system
displays.

CUA Panel Components

You should regard panels as being composed, not of the low level elements
with which you define them (literal characters, fields, indicators), but rather of
higher-level logical components such as a title, a command key explanation
line, a subfile selector, and various fields, each with an accompanying piece of
text. This makes it possible to establish equivalence, and hence consistency,
between different panel types and even different types of workstation; for
example, between intelligent workstation products and dumb terminals.

The generalized SAA CUA standard for panel layout for both NPT and IWS
panels is as follows:

CUA Panel Layout:

Chapter 3: IBM i General Design Standards 3-11

31BDesign Standards for Display Files

Border

S Title Bar N |M

Action Bar (2)

Panel body (3)
v

Scroll Bar

Function Key Area

Border

Key:

(1) On non-IWS, there is no border area.

(2) On non-IWS, the action bar corresponds to selection values.
(3) On non-IWS, the vertical Scroll Bar is implemented via +.
(S) = On IWS, this area displays the System Menu.

(M) = On IWS, this area is to maximize control.

(N) = On IWS, this area is to minimize control.

The panel body is made up of instruction areas, explaining how to use the
panel or data and fields. Each field may have a label and if appropriate, an
explanation of the allowed values.

iSeries Panel Layout Standards

The CUA panel layout standard can be interpreted either strictly, leaving off all
ancillary data such as date, time, or operator identification, or more leniently,
keeping the CUA components in the standard places, while adding in the extra
information.

The following shows the standard display features for iSeries Basic:

3-12

Standards Guide

31BDesign Standards for Display Files

Top instruction
& Option text. Data. Titl

000000000000000000000000 000000000000 0000000000000
000000000000000000000000 000000000000 0000000000000

o (o

= your wish is my command

F3=Exit F5=Reload F6=Add F12=Previous
Have a nice day

Messages. Command key explanations.

Option selection values.

The following shows the standard display features for iSeries Extended:

Panel name.
Company name. User. Job.
Subfile
selection text. Data. Title. Date. Time.
l |
QSECOFR WRKSTNA1
B 0000000000000000000000 00000000000000000000000
B 0O000000000000000000000 00000000000000000000000
your wish is my command
Have a nice day
Messages. Command key explanations.
Option selection values.

Chapter 3: IBM i General Design Standards 3-13

31BDesign Standards for Display Files

Notes On Panel Design

Panel titles should use phrases of the form VERB/OBJECT whenever possible;
for instance, Edit Customer, Add Order, Deplete Stock.

Use a standard layout for the panel header and footer areas (lines 1, 2 and
23). The CA 2E Toolkit Edit Panel Design (YEDTPNL) command and the CA 2E
Edit Screen facility can automatically provide a standard default layout.

Use a standard flow of information and a standard layout for similar types of
panel.

Place dot leaders to connect field text with fields. On iSeries, these should be
double spaced and only end in a colon if the field is protected. Leave as much
space as possible to allow for expansion in translation. Align fields by using a
standard text length. For example:

Customer code BBBB Number, 0-999

,,

For input fields, provide right-hand side text to explain the allowed values.
This should have the form, “general domain, valuen=explanation”. Indicate if a
selection is available. Place the default value first as shown in the following
image:

Customer code . . Il Number, 0-999 1
Order date. BBBBBB Date, DDMMYY
Available B Y=Yes, N = No

2=Female 1
3=Nor known i

User profile. . .. BBBBBBBBBB Name, *NONE,F4

i Gender B 1=Male,
: for list

File name NI Name, F4 for list

! Library name . . Il Name, *LIBL, *CURLIB

3-14 Standards Guide

31BDesign Standards for Display Files

The overall aim is to give a greater emphasis to input-capable fields than to
output-only fields, and the greatest emphasis to input-capable fields for which
an error has been detected, as shown in the following example:

Constant Input Output
i Customer code . . llll I Number, 9999
| Name 000000000000 00000000

If the panel relates to other output, for example, a printed report, try and
design so that the layouts are the same or very similar. This gives the user the
effect of "what you see is what you get.”

Place text giving a summary definition of command key meanings at the
bottom of the display (line 23, or lines 22 and 23). Precede each key
explanation with Fn=. Double-space the key explanations without punctuation.
If there are more command key explanations than will fit on the available
space, use F24 to display the extra values.

For example:

,,,

fz==z=zz===z=======================Z=T==TSZTTZTZ=I=SIZTTZTISTTISITZ=TSIZTTIT=E=SSTISTTZETISTIITSZ=EST=ET=EEa

F3=Exit F5=Refresh F6=Messages F8=Display jobs
F24=More keys

You may also use F11 to condition the introduction of extra detail fields.

Validation error messages should be displayed on line 24 of the display
(usually as a one-line message subfile).

Using Command Keys

Use command keys to provide a quick means of invoking commonly required
functions. If you are designing a system for workstation types other than the
standard models, check that the command keys are available.

Brief explanations of the functions of each command key should be provided
on line 23 of each display. Command keys should be referred to in a standard
format: for the iSeries as “"Fn=text”. Command keys should be listed in
ascending order. For example:

Chapter 3: IBM i General Design Standards 3-15

31BDesign Standards for Display Files

The following standard meanings for command keys should be adhered to
wherever possible:

Standard Command Key Meanings:

SAA Meaning Required SAA iSeries

Help Y FO1 FO1
Help Help

Extended Help FO2 FO2

Help index F11 F11

Help on keyboard FO9

Help table of F23

contents

Display keys F13 F24

SAA Meaning Required SAA iSeries

Exit function Y FO3 FO3

Previous display Y F12 F12

Exit application Y F15

Refresh FO5 FO5

Retrieve command FO9 FO9

Prompt FO4 FO4

Switch forward FO6

Switch back, F18

IGCCNV

Backward FO7 Pgup

Forward FO8 Pgdn

Left F19 F19

Right F20 F20

Switch to action bar F10

Command line F21

3-16 Standards Guide

31BDesign Standards for Display Files

Ideographic support F18

Using Selection Columns

The subfile capabilities of 0S/400 make it especially easy to provide programs
that display a list of data items to the user, one or more of which may be
selected for further processing. This selection facility should be standardized.

When specifying selection options, you should consider several things. If there
is a selection option column, include a summary definition of the selection
values, on the line above the subfile column headings. Precede each
explanation with n=. Double-space the explanations without punctuation. If
there are more key explanations than will fit on the available space, use F24 to
display the extra values. Also, include a line above the definition line,
containing the prompt text, which is usually Type options, press Enter.

For example:

,,,

Type options, press Enter.
2=Change 4=Delete

Standard meanings should be assigned to the values used to make such
selections. One of the two following systems of standard meanings should be
adhered to wherever possible:

Standard Meanings for Selection Values

Meaning Numeric system Alpha system

Select

Change

Copy, Hold

Delete

Display details

Print, Release

Rename

O IN|JojUun |~ |WI[IN |

Display attributes

—
N

Work with entries

N|IN|N|m|T|IN|[O|[O|[mM]|X

—
w

Change text

Chapter 3: IBM i General Design Standards 3-17

31BDesign Standards for Display Files

Subfile Design

Note: There are some inconsistencies in the way that line selection values are
used on iSeries. Where possible, use the values used by the nearest equivalent
system command.

Subfiles normally should be used wherever there is a repeating data structure,
especially if the number of repeating groups is likely to exceed a full page.
Remember the following when designing for subfile use:

m Although up to twelve subfiles can be active at a time, try to program to
use only one (apart from a message subfile) as this simplifies
programming—and the user interface.

m On subfiles, any column for selection values should be on the left hand
side of the display.

m Positioning and subsetting values should be shown at the top.

Basic Panel Display Styles On iSeries

The CUA standard prescribes a limited number of types of basic panel design
for non-programmable terminals, and each one is appropriate for a particular
purpose.

m Entry
m List
= Menu
m Help

You should base all your panel designs on these SAA CUA Types. In certain
cases, SAA panel types can be combined to make a composite panel.

The following is an illustration of Panel Display Styles:

3-18

Standards Guide

31BDesign Standards for Display Files

Entry: List: Entry + List:
(“Subfile”)
Title Title Title
Type changes Type options Type changes
Field A : BBB Fid Field Field Field A : BBB
Field B : BBBBBBBB X Y z Field B : BBBBBBBB
B OOO00O00O0 9999
B 000000009999 | | X Y z
B 00000000 9999 | | B 00000000 9999
B OOOO0OO000 9999
BB OOOO0000 9999
F3=Exit, etc BB OO0OO0000 9999
F3=EXxit, etc
F3=Exit
i Examples 1 ; 1 : \
0S/400 DSPJOBD | 0S/400 WRKOUTQ | 0S/400 EDTOBJAUT
) 2B BSPRCD - "R NSRRIL] JE DSPTRN
EDTRCD

Common Panel Display Variants

In practice on iSeries, the fundamental CUA panel types are commonly used in
a number of specific variants:

m Single object
- ADDOB]J: Entry panel, allowing the identifier and data for a single item
to be added.
- DSPOBJ: Entry panel, showing data for a single item.
- CHGOBJ: Entry panel, allowing data for a single item to be changed.
m Repeated item
- WRKOBJ: List panel, showing repeated items of a given type. Allows
items to be added (F6), changed (Opt=2), or deleted (Opt=4). There
will usually be a positioning field on top.
- WRKOBJTOP: List panel, showing repeated items. Allows items to be
added (Opt=1), changed (Opt=2) or deleted (Opt=4).
- SLTOBJ: List panel, showing repeated items, allowing one to be
selected.
- RNMOBJ: List panel, showing identifiers of items to be renamed.
m Menus

- CMDMNU: Menu panel showing commands and related menus.

- TSKMNU: Menu panel showing simple tasks.

Chapter 3: IBM i General Design Standards 3-19

31BDesign Standards for Display Files

Single Object

ADDOBJ (Add object). Used to add details for a new object. The details may
run over several pages, with the rollup keys being used to scroll between
them. The following example illustrates an Add Object panel.

Add Object
Type changes, press Enter
Key field 1 . . BBBB Values
Attribute 1 . . BBBB Values
Attribute 2 . . BBBB Values

More

F3=Exit F12=Cancel

DSPOBJ (Display object). Used to display details for a given item. The details
may run over several pages, with the rollup keys being used to scroll between
them. The following example illustrates a Display Object panel.

Display Object
Key field 1 . : O0O00O

Attribute 1 . : O000O
Attribute 2 . : OO00O
More

Press Enter to continue
F3=Exit F 12=Cancel

CHGOBJ (Change object). Used to changed details for a given existing item.
The details may run over several pages, with the rollup keys being used to
scroll between them. The following example illustrates a Change Object panel.

Change Object
Key field 1.: OOOO
Type changes, press Enter
Attribute 1 .. BBBB Values
Attribute 2 . . BBBB Values
More

F3=Exit F12=Cancel

WRKOBJ (Work with). Used to work with items of a given type. Usually Change
(Opt=2, shows a CHGOBJ) and Delete (Opt=4) are allowed as options. F6 can
be used to add (shows an ADDOBJ for the item type). Rename (Opt=7, Shows
the RNMOBJ panel) may also be enabled. The following example illustrates a
Work with panel.

3-20 Standards Guide

31BDesign Standards for Display Files

Opt

B
B

Position to . . BBBB Values
Type option, press Enter

F3=Exit F6=Add F12=Cancel

Work with

2=Change, 4=Delete, 12=Details

Name Text

000 0000000000000 00000

000 0000000000000 00000
More. .

WRKOBJTOP (Work with Object, top entry allowed). Allows you to work with
items of a given type. New items may be added using an entry line at the top
of the column (using Opt=1). Change (Opt=2, shows a CHGOBJ) and Delete
(Opt=4) are allowed as options. Rename (Opt=7) will usually be enabled. The
following example illustrates a Work with Top panel.

1

B
B
B

Position to . . BBBB Values
Type options or changes

Opt Name Text

Work with Top

=Create, 2=Change, 4=Delete

BBB
000 0000000OO00OOOO0000
000 0000000000O0OOOO000

More
F3=Exit F12=Cancel

SLTOBJ (Select Object). Provides a selection display, allowing you to select an
item from a list of allowed values. Always called from another pane— usually
when F4 is pressed. Select (Opt=1) is the only allowed option. The following
example illustrates a Select Object panel.

Position to . .

Select one of the following

Select XXXX

BBBB Values

RNMOBJ (Rename object display). Used to rename the identifier of given
existing items. Invoked by taking rename (Opt=7) from a Work with display.
The following example illustrates a Rename Object display.

Chapter 3: IBM i General Design Standards 3-21

32BDesign Standards for Printer Files

Rename Object

Container 1 . : 0000
To rename, type New name.
Old object New Object

000000000 BBBBBBBBBB
000000000 BBBBBBBBBB

More
F3=Exit F12=Cancel

Design Standards for Printer Files

This section describes design standards for print files. Reports, like panels,
should be designed to be consistent and easy to follow. Since they will be used
independently of the machine, reports should always include an indication of
where and when they were produced, as well as for whom.

Standard Report Design Layout

The following is a sample standard report design layout:

Job
Company name Report name
Title User
Program Profile Date
Time Page
name name
YYPRDMP Universal S ro op: FRED WRK1 12/13/92

10:10:10 Page 1

DEMONSTRATION REPORT

Report Contents
Description . . : 0000000

Column Column
heading heading
00 0000

Report Contents
**NO DATA **

If field text and field appear on the
same line
place a colon after text.

If there is no data, print message to say

3-22 Standards Guide

32BDesign Standards for Printer Files

Notes on Report Design

Remember the following points when designing reports:

If a report relates to a panel, for example if it provides a hard copy listing
of a particular panel, then its layout should resemble as closely as possible
the panel from which the information is derived.

Use a standard flow of information and a standard layout for similar types
of reports.

Design reports to minimize the amount of manual attention required from
an operator to change paper, align forms, etc. For instance, try to use
standard forms, and if a different form is required, avoid a change to the
left paper feed tractor to align the paper.

Group related fields together. For instance, place Customer code with
Customer name and Customer commencement date.

Provide explanations of code values alongside the code, essential for a
user unfamiliar with the system (for example, the equivalent of a slow
path).

Where descriptive text and field are on the same line, use a dot trailer and
place a colon between the text and the field that it describes. Leave
adequate space for translation. For example:

Customer code .. OOOO Customer DOB . .9/99/99

Design to minimize the number of print lines and carriage returns, but
avoid “two up” reports if possible, as they require extra programming. For
example:

Library Library name Library Library name

1.0000000 00O000000000000000 2.000000000 000000000000 00000000
3.0000000 0O0000000000000000 4.000000000 000O00COOO00000000000
5.0000000 0O0O000000000000000 6.000000000 00000O0OO000000000000

Include the program name on reports in order to facilitate error correction.
Number all report pages.

Place the company name on all reports—the name should be retrieved
from a data area.

Indicate the program of software release level on the report heading.

Chapter 3: IBM i General Design Standards 3-23

33BDesign Standards for Menus

m If a report is based on particular selection criteria, print the criteria at the
top of the report, so that it is clear how the information on the report was
derived, as shown in the following:

i Selection criteria Data i
3 SLSKLVR STOCK LEVEL REPORT Page 1 i
i Selection |
i Company 00001 Widget company ‘
| Division . .. *ALL All divisions !
i Products ... *ALL All products 3
i SLSKLVR STOCK LEVEL REPORT Page 2 |
i Division Product Units Price i
| 00001 Yellow sprockets 5.0 12.50 |
! Green grommets 100.0 8.00 3
3 00002 Yellow sprockets 6.0 4.50 |
! etc |

If the items on shown on a report correspond to command parameters, show
the keywords such as:

Keywords
} WDSPF Display [file Page 1 i
| WDSPF input parameters i
} File FILE BLEARG }
! Library LIBRARY QGPL |
3 File type FILEATR *PHY 3
o] Detail __ FOLL P |

It may be useful to show the name of the main file and library used to produce
the report—the name of the library in particular can be useful during testing. If
it is @ multi-member file, the member name may also be useful. The names
can be obtained from the file information data structure.

For example:

File........ YPCUDAP
APPTST

Design Standards for Menus

This section describes design standards for menus, including approaches to
consider before you start, and suggests tools to help you create menus.

3-24

Standards Guide

33BDesign Standards for Menus

Menu Design Considerations

A large application system will allow the user to perform many different
functions. The user must choose from a large number of options. It is
important to use the computer to organize and arrange the objects of the
application system so that they are easy to find and to understand. Menus
provide a convenient means of doing so.

Every task in a proposed system should be allocated to a menu as part of the
design process. Housekeeping and system administration functions should be
included—you may need to create extra menus to accommodate such
functions. An object-based design approach can be used to determine which
menus are appropriate. Menus to manipulate each object type should be
provided, as well as menus for similar operations across different object types.

Grouping Iltems On Menus

The allocation of tasks to menus has several purposes:

m Helps define user roles.

m Highlights when task initiation is to take place.

m Provides a checklist for the implementation of the design.

m Enables an interactive presentation of the system design to be made to
the user.

m Provides a syntax free route for users who are not familiar with command
languages.

m Provides a framework for documentation and for training.

Note: Even tasks that are not normally menu-driven may be grouped into a
menu, for one or more of the above reasons.

Appearance of Menus

Your application menus should follow the OS/400 user interface standards for
menus, as seen on the 0S/400 system displays.

0S/400 has two variants of menu:

m Task menus. These menus show the tasks relating to a single subject; for
example configuration. A command line is optional.

m Command group menus. These menus show groups of commands or
menus with a common verb (for example, DSP or WRK) or a common
subject (for example, OBJ). Standard subheadings are used and the
command or menu name is shown on the right. A command line is
common.

Chapter 3: IBM i General Design Standards 3-25

33BDesign Standards for Menus

Task menu with command line is displayed in the following example:

NAME Title
System: SYNUK1

Select one of the following:

1. Option 1
2. Option 2
3. Option 3
Bottom
Selection or command
== >

F3=Exit F4=Prompt F9=Retrieve F12=Cancel
F13=User support F16=System Main menu

A task menu with no command line is shown as follows:

NAME Title
System: SYNUK1

Select one of the following:

1. Option 1
2. Option 2
3. Option 3
Bottom
Selection or command

F3=Exit F12=Cancel
F16=Main menu

A command group menu is shown as follows:

Command or Menu

NAME Title

Commands

1. Command 1

YXXXXXXX
2. Command 2

Y XXXXXXX
3. Command 3

YXXXXXXX

Related command menus
4. Menu 1

AAL A 44444

5, Menu-2

YXXXXXXX

3-26 Standards Guide

33BDesign Standards for Menus

Arranging Menus

Order of options

In some cases, it will be more appropriate to group tasks into menus by
function, such as Order Entry, and in others by when they are invoked, such
as Month End Processing.

You should provide several different menu arrangements of the functions so
that users may use alternative search paths to find ways to a function. For
example:

m All commands in alphabetical order

m Commands by functional group, such as End of year commands or Order
entry tasks

m Commands by subject, such as configuration commands
m Commands by verb, such as all commands beginning with DSP)

m Commands by object, such as all commands for manipulating folders

The disadvantage of using menus is that if there are a large number of
functions in the application system, it may take several steps to find your way
to the appropriate menu. It is therefore desirable to provide a command line
on menus that will be used by experienced users.

The 0S/400 and the CA 2E system menus provide examples of alternate menu
arrangements.

Menus should not contain additional input-capable fields apart from the option
input or command line.

On command group menus, options should be arranged in alphabetical order
by command.

On task menus, options should be placed on menus in the order in which they
are likely to be used. In particular, place options to manipulate an entity in a
sequence that follows the life cycle of the entity. For example, of the following
two possible arrangements, the second is better than the first:

Chapter 3: IBM i General Design Standards 3-27

33BDesign Standards for Menus

Menu Names

Customer menu
Select one of the following:
1. Delete Customer
2. Print Customer
3. Rename Customer
4. Print Orders for Customer
5. Create new Customer

Option no: 1

Customer menu
Select one of the following:
1. Create new Customer
2. Rename Customer
3. Print Customer
4. Print Customer s Orders
5. Delete Customer

Option no: 1

Menu names are likely to be used by the end user, so they should be designed
to be as meaningful as possible. You need to ensure however, that the names
do not coincide with those of 0S/400 system menus, so we recommend that
you use a single-level prefix.

Names for command group menus should have the form: application prefix +
CMD + mnemonic; for example, YCMDDSP for a menu of all display (DSP)
commands.

Names for task menus should be single nouns, preceded by an application
prefix; for example, YDOCUMENT, YDEVICE. Longer terms can be abbreviated
using 0S/400 style mnemonics; for example STKLVL: stock levels, ORDENT:
Order entry.

Tools for Creating Menus

Menus can be created with the CA 2E Toolkit Work with Menu (YWRKMNU)
utility. The menu utilities provide a standard layout.

The Toolkit menu display program can provide a number of commonly
required facilities. For example, it can provide a confirm prompt to check that
the user really wishes to take an option, it can display Help text associated
with an option, and can submit a request to run in batch rather than
interactively.

3-28

Standards Guide

34BDesign Standards for Help Text

Design Standards for Help Text

This section describes design standards for Help text and includes a brief
discussion of reasons for providing Help text. It details Help Text standards for
panels, commands, and menus. Information on search indexes is also
provided.

Help Text Design Considerations

It is important to provide Help text for all panels, menus, and commands of an
application in order to make the applications easy to use.

Because Help text is generally used mostly by new or inexperienced users, it is
important that it is itself easy to use.

Use a standardized structure that can be related to the panel that it explains.
Follow the 0OS/400 standards.

Use simple language. Avoid jargon, and explain what the panel and its fields
are for, rather than how the program internals work. Make sure that
terminology on panels matches with that in the Help text.

Follow UIS standards for the use of emphasis.

Use boldface type for headings and allowed values. Use underline for default
values and for hypertext links (automatic) extended headings. UIM will do this
automatically if you use the correct tags. Do not make an excessive use of
emphasis, as it is distracting to the reader.

Designing Help Text

Help text should be created and edited, using the UIM help manager. As well
as being consistent with 0S/400 System panels, UIM allows windowing,
hypertext links, a layered interface, search indexes, and is also fast.

0S/400 UIS conventions for Help text should be followed. These are specified
in the OS/400 Guide to Programming Application and Help Displays. As well as
overall rules, there are specific additional conventions for commands, menus,
and interactive panels.

Help text should have different entry points—panel level, area level and field
level. It should be possible to navigate between different entries regardless of
entry point. The UIM help manager will provide this function automatically.

A sample Help Text Panel Connection is shown as follows:

Chapter 3: IBM i General Design Standards 3-29

34BDesign Standards for Help Text

HELP FO2
Panel Panel introduction T ;
Help text ¢ Full listing !
field. A ; . :
field. B i . Intro :
1 2.0Opts [
Field ! 3

[! 3.Data
field. C ‘ ‘
Felp text ; Field A ... :
3 Field B . .. :
| FieldC ... :
Command % . ‘ 1
F3=Exit key text 1 unc keys |
HELP text o !

Panel Help Text

All interactive programs should have operating instructions that should be
displayed when the HELP key is pressed. The help text should follow the UIS
standards used on system panels and should contain:

1. Function: A synopsis of the purpose the program; for example, what the
program does for the user, or for the application system. This may contain
hypertext links to related objects.

2. Option values: A brief description of any line selection functions (for
example, 4=Delete).

3. Field descriptions: A description of all data items, including all allowed
values and any input validation rules.

4. Notes and examples: Any special notes or additional comments that may
be useful to the user.

5. Function keys: A short description of any command key functions (for
example, F3=Exit).

Command Help Text

Help text should be provided for each command. The help text should follow
the UIS standards used on system panels and should contain:

1. Function: A synopsis of the purpose the command; for example, what the
program does for the user, or for the application system. This may contain
hypertext links to related objects.

2. Parameter descriptions: each parameter should be described, along with
any allowed values.

3-30

Standards Guide

35BDesign Standards for Commands

Menu Help Text

Help text should be provided for each menu. The Help text should follow the
UIS standards used on system menus and should contain:

1.
2.

Search Indexes

Function: A summary of the subject covered by the menu.

How to use the menu: A standard paragraph on how to use a menu should
be provided

Option descriptions: Each option should be described, under a heading,
giving the option number. The introduction help group for the option
object can be used. For example, if the option is a command, use the
overview help text for the command.

Function keys: A short description of any command key functions (for
example, F3=Exit).

Help panels assist users who already know how and why to start a command
or program. Search indexes provide users with a way of finding out how to do
something in the first place. You should provide a search index for your
application, which should include

entries for each command and each menu
“how” entries for commonly required operations

“what” entries for fundamental concepts—the objects and entities on the
system

0S/400 standard root keywords, for example How, What, Novice
entries for common synonyms, for example, “create, make, build”

an entry on how to use the search index itself. You can reference the help
group of the system menu

Design Standards for Commands

This section describes standards for designing CL commands. It lists reasons
for using commands, and details standards to use when specifying names,
parameter key words, values, and prompt text for commands.

Chapter 3: IBM i General Design Standards 3-31

35BDesign Standards for Commands

Why Use Commands?

Most user application systems will be menu driven. However, you should
consider providing commands to invoke the main programs in a system, for
example those programs that are called as menu options. There are several
reasons for this:

Using commands can simplify and standardize design, and also reduce the
amount of HLL programming required. The command definition language
should be regarded as a specialized HLL in its own right that is specially
suited to both validating input data and translating external values into
internal values.

Commands have a great capacity for enhancement and modification.
Additional parameters can be added to commands without affecting the
existing usage of the command either by programs or menus.

An expert user often finds it more efficient to use commands because it
requires fewer transactions with the computer to achieve a desired result.
This is especially important in a remote environment, where it might be
tedious to have to follow a many-level menu tree to reach a particular
menu option, and also for the experienced user.

Commands are a good ‘hook’ on which to hang system documentation. In
terms of the system architecture, each command is the entry point to a
function, and all the salient points about the use of that function may be
summarized at the command level. Help panel groups can be used to
provide full help.

The CL command syntax notation is available as a concise and rigorous
notation for documenting commands. Apart from brevity, the command
syntax notation has the following advantages:

- It is unambiguous.
- It is complete. It shows all permitted values for parameters.

- It provides visible defaulting. The actual options used are always
explicitly stated.

Commands are a “consistent user interface”, with which most users of
iSeries will already be familiar.

Commands have an intuitive “verb-object syntax” that is easy to learn. It
is interesting to observe that two thirds of the 400 or more 0S/400
commands are constructed using a common vocabulary of just ten verbs.
As a result, a user need remember very little to be able to invoke a wide
range of functions.

Commands allow for both “fast” and “slow” user paths:

- A positional facility, and the provision of default values, gives expert
users an efficient interface.

3-32 Standards Guide

35BDesign Standards for Commands

- Sophisticated prompting and syntax checking functions support the
novice user—commands are error tolerant, and usually give

meaningful diagnostics.

- Help text, prompt overrides, Prompt control, and dynamic choice text
can provide further guidance.

Commands, being the entry points to using the particular functions, are
convenient objects on which to implement security, for example to grant

or revoke object authorities.

Commands can be used to set the product library, for example to find the
appropriate National languages version.

Note: The standards that should be applied to the design of commands are

described below.

Naming Conventions

The chapter on naming conventions gives a suggested convention for
commands—commands are relatively scarce and the end user may possibly
see their names. Names should be meaningful and consistent with the
conventions used in CL. The following is a summary of the convention:

Command:

|

MMM MMM MMM

]

]

!

——*— Noun, noun/adjective mnemonics

Verb mnemonic

System prefix

For example:

YDSPHLP

YEDTOBJLST

LDSPSHP

- ‘Display Help text’
- ‘Edit object list’
- ‘Display shops’

Note the following points when naming commands:

Names should not conflict with any existing 0S/400 commands, nor with
any commands that IBM may introduce into OS/400 at a future date. For
this reason, a prefix letter should be used.

Use a “verb-object syntax”: the command name should consist of

VERB+NOUN or VERB+ADJ+NOUN, for instance, CRTOBJ, RTVCLSRC,

YCPYMNU. There should always be a verb.

Chapter 3: IBM i General Design Standards

3-33

35BDesign Standards for Commands

m Use existing CL mnemonics wherever possible, both for verbs (for
example, CRT, DSP, CPY) and for objects (for example, PGM, OB]J,
DTAARA). A complete list of keywords can be found in the appendix of the
Control Language Reference Manual for both machines.

m Follow the distinctions made by OS/400 in its use of pairs of antonymous
mnemonics, for example:

Antonym — Antonym Description

CRT — DLT To create/delete an entity
ADD — RMV To add/remove data within an entity
STR — END To start/end a function

STR — TRM To start terminate a process
SND — RCV To send/receive data

HLD — RLS To hold/release a function
SAV — RST To save/restore a function
OPN — CLO To open/close a function
ALC — DLC To allocate/de-allocate

GRT — RVK To grant/revoke a function
CHG — RTV To set/retrieve an attribute

m Preserve the distinction made in 0S/400 between verbs that operate on
objects and verbs that operate on the contents of objects:

Object Internal
CRT ADD
DLT RMV
CHG EDT
DUP CPY

m Preserve the distinction made in 0S/400 between working interactively on
a list of entities (WRK verb) and working interactively on an individual
entity (EDT or STR verb).

m Follow the distinction made in OS/400 between operating on an object and
operating on the description of an object; for instance, DSPSBS versus
DSPSBSD.

Design Standards

Command syntax diagrams should be prepared for each command at the
design stage. The diagrams should use the 0S/400 standards.

3-34 Standards Guide

35BDesign Standards for Commands

Choosing Parameters

For more information on conventions, refer to the 0S/400 Control Language
Reference Guide. For an example of conventions, refer to the appendix,
"Programming and Coding Examples," in this guide.

Command parameters should be ‘orthogonal’—each parameter should
represent the values of only one variable. For example, rather than have four
values for a parameter OUTPUT (values: *PRT, *DSP *PRTDTL, DSPDTL), you
should have two separate parameters, OUTPUT (values: *, *LIST) and DETAIL
(values: *PRT, *DSP). This allows future values to be added.

Keep the number of parameters to a minimum.

Do not place parameters specifying work management attributes (for instance
job priority, switch settings, output queue) on commands, unless the
command is specifically concerned with the initialization of a job or jobs; for
example, a special version of the SBMJOB command. This is because it is
generally preferable to control work management values through the job.
Where it is useful to have an override on a particular command, you should
make the default value to be that of the job (*JOB).

Order of Command Parameters

Use existing 0S/400 syntax order whenever possible. For example, — LIB/FILE
MBR

JOBNBR/USER/JOB

Place the parameters that are needed to identify the object or entity operated
on by the command before any other parameters. For example, - EDTSRC
FILE(X) OPTION(3).

Place the parameters that are most likely to be changed before the parameters
that are unlikely to be changed; optimize for frequency of use. On iSeries, you
should use the PMTCTL(*PMTCTL) keyword to hide ancillary parameters from
the initial prompt displays—such additional parameters will automatically
appear after the main parameters, if displayed by pressing F10. For example:

CRTPF FILE(QGPL/X) AUT(*USE)

Place any required, for example, mandatory (MIN(0)) parameters, before any
non-required parameters. Do not use the reordering facility of the command
definition language to place required parameters after non-required
parameters.

If either TEXT or OUTPUT parameters are present, they should normally be
placed after all other parameters.

Chapter 3: IBM i General Design Standards 3-35

35BDesign Standards for Commands

Command Parameter Keywords

Use existing CL keywords, such as FILE, OUTPUT, or TEXT whenever possible,
not FL, FIL, OUTPT, TXT.

For more information on all of the CL keywords, refer to Appendix F of the
iSeries (AS/400) Control Language Guide.

Keywords should be in the singular; for example FILE, not FILES.

If an entity type occurs more than once as a command parameter, distinguish
between instances by an appropriate prefix on the keyword; for example,
FROMFILE, TOFILE, FROMLIB, TOLIB. If it is creating a copy, you should use
NEWxxx; for example, NEWOBJ.

Command Parameter Values

Supply default values for command parameters whenever possible. Default to
the most commonly required value. For example:

CPYSRCF TOMBR(*FROMMBR) MBROPT(*REPLACE)

If a parameter is optional, rather than allowing it to take a blank value, use a
special value of *ALL or *NONE to specify what the meaning of the default
value is—that is to say use ‘visible defaulting’.

Special values for command parameters should always begin with an asterisk,
for instance *ALL, *LIST, *NONE, *YES, *NO. A special value indicates a
function or default action. Explicit values should not begin with an asterisk, for
instance the default name of a file that is to be used, such as QTXTSRC.

If a special value other than *ALL is used for the first element of a qualified
name representing a library/object reference, then it should be a single value.
For example, REFOBJ(*PGM), not PGM(*LIBL/*PGM).

Specify the most important values first so that they appear first in the CHOICE
text that appears on the right-hand side of iSeries commands. Specify the

default value first.

Do not use *N as a special value, as it is reserved as the Null value for the CL
command parser.

Where two values are opposites appearing in a list, use *NO as a prefix for the
antonym. For example, *SRC/*NOSRC, *SECLVL/ *NOSECLVL.

Where a special value relates to another parameter, it should be derived from
the keyword for the based-on parameter, for example:

FILE(file-name) MBR(*FILE)

3-36

Standards Guide

35BDesign Standards for Commands

JOBD(job-description-name) OUTQ(*JOBD)

If the values allowed for a parameter are conditional on the value entered for
another parameter, you should use the CL ‘Dependent Definition’ (DEP)
statement to cross-check the values. On iSeries, you can use the PMTCTL
keyword to direct the prompting of the second parameter.

If it is necessary to supply a default name for a library in which to create
objects, the special value *CURLIB should be used. For example, UCRTPF
FILE(*CURLIB/X)

Use existing 0S/400 special values where possible. For example:

Standard Values - Validation:

*ALL - All values
*NONE - No value
*BLANK - Blank
*SAME - Use existing value
*NOCHK - No check
*NOMAX - No limit on number of
*RQD instances
*“VARY - Required

- Vary length
*ENABL
ED - Enabled
*DISABL - Disabled
ED

- Yes
* - No
*YES - No check
NO v
*PARTIA - res
L - Under control
* - Delay
*(N:ﬁ.?:r - To take immediate effect
D - After IPL
“DLY - At IPL
*IMMED
*AFTIPL
*IPL

Standard Values - Defaults:

Chapter 3: IBM i General Design Standards 3-37

35BDesign Standards for Commands

*CLS
*CURREN
T

*JOB
*JOBD
*GRPPRF
*OUTFILE
*PRINT
*SRCMBR
TXT
*SYSVAL
*SYSRPY
L
*USRCLS

*USRPRF
“WRKSTN

- Use value for class

- Current values

- Current value, especially job
- Use value from invoking job
- Use job description value

- Use value from group profile
- Use oultfile

- Direct output to printer
(AS/400)

- Use source member text

- Use system value

- Use system reply list

Standard Values - Libraries:

*CRTDFT

*ALLUSR
*CURLIB
*LIBL
*SYSLIBL
*USRLIBL

- Use default creation library

- All user values

- Current library

- Current job’s library list

- System part of library list
- User library list

Standard Values - Authorities:

3-38

Standards Guide

35BDesign Standards for Commands

*LIBCRTAUT - Use library create authorization
*CHANGE - Change authority
*ALL - All authorities

*USE - Use authority
*EXCLUDE - Exclude authority
*AUTL - Use authorization list
*READ - Read authority
*OBJEXIST - Object existence
*OBJMGT - Object management
*OBJOPR - Object operation
*ADD - Add authority

*DLT - Delete authority
*READ - Read authority

*UPD - Update authority
*ALLOBJ - All objects

*JOBCTL - Job control

*SPLCTL - Spool control
*SAVSYS - System save

*PGMR - Programmer
*SECADM - Security administration
*SECOFR - Security officer
*SYSOPR - System operator
*USER - User

*SERVICE - Service

*SECADM - Security administration

Standard Values - User Classes:

*PGMR - Programmer

*SECDA - Security administration
M - Security officer
*SECOF - System operator

R - User

*SYSOP

R

*USER

Standard Values - Assistance Levels:

Chapter 3: IBM i General Design Standards 3-39

35BDesign Standards for Commands

*BASIC - Basic
*INTERMED - Intermediate
*ADVANCE - Advanced
D

Standard Values - Message Delivery:
*NOTIFY - Notify
*BREAK - Break
*HOLD - Hold
*DFT - Use the default

Standard Values - Relational Operators:

*GE - Greater than or equal to
*GT - Greater than
*LE - Less than or equal to
LT - Greater than
*EQ - Equal to
*NL - Not less than
*NE - Not equal to
*NG - Not greater than
*CT - Containing
Standard Values - Data Types:

*ALPHA - Alphanumeric

*CHAR - Character

*NAME - Simple name

*BIN2 - Binary

*BIN4 - Binary

*CMD - Command

*DEC - Decimal

*DATE - Date

*DTS - Date & time stamp

*HEX - Hexadecimal

*LGL - logical

*NAME - System name

*NULL - Null

*QTDCH - Quoted character

AR - System space pointer

*SSP - System pointer

*SYP - System name

*SNAME - Time

*TIME - variable name

<%-4>*<

%-5>VA

RNAME

Standard Values - Database:

3-40 Standards Guide

35BDesign Standards for Commands

*ARRIV
AL
*KEYED
*ASCEN
D
*DESCE
ND
*RRN
*KEYB

*KEYBE
*KEYA
*KEYAE
*INP
*ouT
*UPD
*DLT
*UNSP

- Arrival sequence
- keyed sequence
- Ascending

- Descending

- relative record number
- Key before

- Key before equal
- Key after

- Key after equal
- Input

- Output

- Update

- Delete

- Delete

Standard Values - Locks:

*SHRRD
*SHRNU
P
*SHRUP
D
*EXCLR
D
*EXCL

- Shared read

- Shared no update
- Shared update

- Exclusive read

- Exclusive

Standard Values - Compiler Options:

E
*GEN

*XREF

*SQL
*SYS

*SOURCE
*NOSOURC

*NOGEN
*SECLVL
*NOSECLVL

*NOXREF

- Source

- No source

- Generate

- Don’t generate
- Second level

- No second level
- Cross reference
- No cross reference
- SQL naming
convention

- System naming
convention

Chapter 3: IBM i General Design Standards

3-41

35BDesign Standards for Commands

Command Parameter Text

Prompt text for iSeries command titles should be in lower case but with initial
letters capitalized.

Prompt text for iSeries command parameters should use lower case and not
end with a colon (the compiler will automatically add trailing dots). The initial
letter should be capitalized.

The prompts for objects should not have the word ‘name’ appended. For
example, it would appear as ‘Program’, not ‘Program name’.

For iSeries command parameter prompts, allowed values should be shown in
the CHOICE text. The 0S/400 command compiler will add them automatically
in the order in which they are coded. You should place the default value first in
the source so that it appears first.

If a parameter is returned to the calling program (in other words
RTNVAL(*YES) is specified for it), include the keyword and the length of the
variable in the prompt text.

Prompt text should normally be stored in an external message file, to enable
easy translation.

Required Parameters for Commands

Commands that are to be run in batch should not have optional parameters
that will invoke functions requiring interactive intervention; if a command can
be used in batch, it should be usable in all circumstances.

Note: An example of where this rule is violated can be found in the CA 2E
Toolkit Build object list (YBLDOBILST) command. It is possible to use the
YBLDOBILST command in batch, but if a value of FILTER(*YES) is specified, it
will crash when it attempts to prompt for filtering values.

If RTNVAL(*YES) is specified for a command parameter, MIN(1) should also be
specified. If the command is for use in CL programs and is to have a value
returned to it, it should be compulsory. If MIN(1) is not specified, execution of
the command may result in the Command Processing Program (CPP)
attempting to return a value to a non existent parameter (there is no way of
detecting a null pointer in a HLL CPP).

3-42

Standards Guide

36BDesign Standards for Database Files

Design Standards for Database Files

A good database design is crucial for the success of any application system. To
achieve such a design, you should be aware of what database facilities are
available on iSeries and use design techniques that help you take advantage of
the facilities.

This section provides some guidelines for designing databases for iSeries,
including recommendations for data modeling and normalization.

Design Goals

Your goal is to design databases that are:

m Comprehensive: Every item of information that is relevant to the
organization should be recorded (provided that it is cost effective to do
S0).

m Non-redundant: Every item of information should appear only once. This
not only saves resources, but also ensures that the data is concurrent;
that the computer does not hold two conflicting versions of what should be
the same item of data.

m Consistent: There should be no mutually incompatible representations of
information, nor conflicting rules about what can be done with the data, so
that system data integrity can be preserved. Data modeling can assist you
to achieve this aim.

m Efficient: The access times to retrieve or process data should meet the
business requirements. Some consideration of the processes that will
operate upon the database is necessary to check that this aim is satisfied.

The Database of iSeries

The database of iSeries is based upon relational database principles. Relational
databases are built on a body of formal mathematical work on the optimal way
of structuring data. An understanding of the principles of the relational theory
is vital for good database design.

The iSeries Database as a Relational Database

In essence, the database of iSeries is relational—data is kept in ‘flat’ tables
and may be assembled into logical views. It has facilities for building access
paths to assemble, order, and select data. The database has built-in facilities
for recovery (via journaling and commit control), security, integrity, and
concurrency control. It falls short however, of the full theoretical
implementation of a relational database in a nhumber of ways.

Chapter 3: IBM i General Design Standards 3-43

36BDesign Standards for Database Files

For instance:
m The relational terminology of tables, columns, and rows is not used.

m A metamodel is not available to describe the database handler’s own
facilities with the same mechanisms as the database that it produces.

Much of the system information may, however, be materialized into an
accessible format using the OUTFILE parameter on the various 0S/400 display
commands. From V2R1, there are also APIs to retrieve some of the
information. The SQL/400 interface to the database has SQL catalog facilities
that may be queried, using SQL.

m The join facilities of the 0S/400 database are limited—they are read only,
and limited to an equi-join. If fields from the secondary join file are used
as keys (for instance with the 0S/400 Open query file (OPNQRYF))
command, then true concurrency is not maintained.

m In the native interface, there are only limited facilities for manipulating
sets of data within the database, and these are not presented explicitly in
terms of the operations of the relational calculus (Union, Intersection,
Subtraction, Addition, Select, Project, and Join) acting upon sets.

Selection can be specified in DDS (but is early binding).

A join can be specified in DDS (but is early binding). Fields from the secondary
join file may not be used as key fields. The HLL read equal statement (for
instance RPG III ‘READE’,) gives what is in essence access to a set of data.

Set level operations are of significance in that they provide a greater level of
economy in specifying programs—in relational languages such as SQL, a single
statement may often serve to specify what would be in most HLL's be a ‘Do
loop’ containing many lines of code.

The OPNQRYF command allows for dynamic joins and selections.

SQL/400 provides join specifications and a number of set level operations.

m There is not a full capability for field level security. It is possible however,
to build logical views containing only a subset of the fields in the file and to
restrict authority differently to different views.

m There are only limited capabilities for specifying rules for preserving the
integrity of the database. Any further rules have to be incorporated
explicitly in HLL code. For instance:

- to test that foreign keys (that is, non-key fields on a file which are
themselves the keys of other files) match prime key values

- to test that instances of referenced keys cannot be deleted if they are
used in dependent relations (“referential integrity”)

3-44

Standards Guide

36BDesign Standards for Database Files

Data Modeling

m There is not proper support for a null value. This is significant because in a
truly relational database, primary keys must not be null (“"Entity integrity
must be preserved”).

m In device file DDS, a blank value cannot be distinguished from a null value.

m Many features of the database are “early binding”—facilities such as
selection and key order are built into a compiled object. Although this
gives a better performance, it also limits the flexibility of the database.

m Relations are implicit—from the presence of fields on files—rather than
explicit.

Overall, the database of iSeries can be characterized as relational, but ‘early
binding’—information about how to use the database information is
incorporated at compile time rather than execution time.

The fact that iSeries has reasonably-sophisticated databases does not
guarantee that you will automatically achieve a sophisticated and reasonable
database design. To achieve the design goals given above, you will need to
discover the correct structure of your data, in particular to examine it for all
forms of redundancy. To do this, the techniques of data modeling may be
used. Data modeling provides a formal method for transforming business goals
into a database design as follows:

Business —+ Business mode — Data model —»Database design

CA 2E includes a data modeling tool that enables you to design a database,
and then implement it.

Note: A full discussion of how to turn a business model into a data model, or a
data model into a database design, is beyond the scope of these standards.
There are, however, various points about the database of iSeries that analysts
new to the machine may find useful, and also a few guidelines that
programmers new to analysis may find helpful.

For more information on data modeling, refer to Defining a Data Model.
Useful Questions to Ask

The following are usually critical questions to decide when data modeling is
important:

m Is this item a file or a field? (for example, a thing or a property of a
thing?)

m How is this item identified on the computer? What is the prime key of the
database file that represents the item? In particular:

Chapter 3: IBM i General Design Standards 3-45

36BDesign Standards for Database Files

- Is it unique?

- Is it independent? (for example, the only key), or only unique within
something else, (for example, subject to a superordinate key)?

- Can it be changed? (in which case, it is probably not a key, or should
not be used as a key).

Every file should be regarded as having at least one set of unique keys. For
reference or master files (for instance a ‘Customer’ file, a ‘Product’ file), the
unique key will usually be obvious. For transaction detail files (for example,
Invoice details) it may not be strictly necessary to have a unique transaction
key. It may be sufficient to have the records kept in arrival sequence, within
major keys (for example, Invoice number). However, if you do this, it is more
difficult to access a detail line by itself.

Normalization

Normalization is a process that can be applied to data relations to ensure that
they are structured in *‘normal form’. It can be shown that relations in normal
form will satisfy certain basic criteria, such as non-redundancy, which are
desirable when representing data on a computer.

There are in fact several different normal forms, each representing a stage of
increasing rigor. Each successive stage encompasses the previous stage, thus
‘Third normal form’ includes ‘Second normal form’, which in turn, includes
‘First normal form’.

The steps of normalization can be outlined in a non-technical language by
using the term *field’ rather than the more correct attribute as follows:

m To be in first normal form, every field must represent an atomic set of
values. A field should not, for example, contain both customer code and
customer type (either concatenated or as alternatives).

3-46 Standards Guide

36BDesign Standards for Database Files

m To be in second normal form, every non-key field in the table (for
example, record) must depend on the prime key. For example, properties
of customer type should be on a separate customer type entity, and not be
repeated on every customer instance.

m To be in third normal form, every non-key field must be:

- mutually independent of the other non-key fields (it can, for instance,
be updated independently of the other non-key fields)

- fully dependent upon the prime key

Considerations for Database File Design

Even if you do not have a data modeling tool, it is beneficial to use data
modeling techniques, and in particular, to design in terms of a logical schema
that represents the overall structure of your organization’s data. The logical
schema can then be translated into a physical schema that gives an efficient
implementation.

On the first design pass, ignore interrogation requirements. An accurate
business data model will normally permit sensible interrogation. When the
essential model is established, test it against interrogation requirements. In
particular, you may wish to introduce redundancy in order to achieve faster
access. Where redundancy is introduced, only one occurrence of the redundant
fields should be regarded as definitive, and it should be made clear which
occurrence this is. For instance, in order to provide rapid response for
telephone ordering, you might provide a current outstanding credit total for a
customer as a summary field, although it is theoretically possible to build the
figure up from outstanding invoices and orders.

m You will usually find that the user has a very good intuitive feel for the
data that he handles. Ask for a critique of a non-technical presentation of
your data model.

m Never allow programming to proceed until you are entirely satisfied with
your data model. The accuracy of the data model in its relation to the
business is by far the most important feature of a design.

Design Tips for OS/400 Databases

Design strictly in terms of externally defined files; field offsets must not be
conditional. Do not specify that a field is to represent one data item in some
circumstances and a totally different data item in other circumstances.
Instead, introduce a separate field.

Chapter 3: IBM i General Design Standards 3-47

36BDesign Standards for Database Files

Avoid repeating groups of items within a record. For instance, ‘Order quantity
1’, *Order quantity 2’ ‘Order quantity 3’. In a database of fixed length records
like that of iSeries, unnormalized data of any repeating group imposes a
limitation on the number of groups allowed. It also requires more complicated
programming.

Do not concern yourself with design detail, in particular, field attributes such
as lengths, edit codes, and allowed values, until you have established what the
contents of your data model should be. Then, create a field reference file (FRF)
entry for each field description, and refer every occurrence of the field to the
FRF entry. For example, the FRF will contain a definition for Customer number,
to which Customer numbers in the Sales order, Sales ledger, and Sales
analysis files will refer. Every different type of date should have its own FRF
entry: Date of birth, Expiry date, Order date. One of them may one day need
to be changed to a different format. Define total and accumulator fields as
having the base field length + n digits.

On your later design passes, consider interrogation requirements, especially if
a rapid response is required. IBM gives a performance guideline of not more
than 25 database accesses per transaction. The ‘Join’ operation may be used
to lessen the need to introduce redundancy to achieve performance.

General Points for Field Usage

Place key fields before other fields in the file. Place major keys (for example,
keys fields which are also the keys of other files) before minor keys.

Place other fields on the file in the order in which they generally appear on
input and output displays. This makes the use of software tools that create
device file layouts directly from the database file (such as Query) easier.

Even if all the values for a code will be numeric, define the code field as being
character rather than numeric. It will then be possible to introduce character
codes at a later date if the numeric code values have all been employed. It will
be also easier to program an enquiry function to display the allowed values for
the field because a ‘?’ may be entered directly into the code field—0S/400
does not permit the entry of a *?’ into numeric fields.

Avoid the use of zoned numeric fields. The native storage format for numeric
fields on iSeries is packed, so it is more efficient to pack numeric fields.

Packed fields should be defined with an odd number of digits, even if this
makes the field a digit larger than is actually required. This is because:

m even-length packed fields are less efficient than odd-length fields

m no additional storage is required

m it is not possible in RPG III to define a packed field of even length within a
data structure

3-48

Standards Guide

36BDesign Standards for Database Files

Note: Blank or zero values should not generally be allowed for prime keys,
since they represent a null value. If they are required, try to assign some
other value to represent a null value. For instance '-99999’ for a numeric field,
**NONE' for an alphanumeric field.

Categories of Database File

In designing application systems, it is often useful to differentiate between
different types of files on the basis of the type and latency of data the files
hold. Different design considerations apply to each of the five categories of
files discussed:

m reference data: master files and tables
m transaction data

m transaction summary data

m archive files

m work files

Note: Frequency of use and of turnover, which is the primary consideration in
categorizing files in the above scheme, is also the main criterion for selecting a
backup strategy for saving data to an offline medium.

Note: Avoid designing files that have a ‘mixed’ function.
Reference Data Files

Reference data files contain system reference tables and codes, for example, a
customer file, VAT code file, or address file. The files are relatively small; their
contents are relatively constant over time (they are “non-volatile”), and many
programs usually refer to the files in the system.

Do not mix reference and transaction summary data in the same file. The two
types of data have different activity levels. Except when actually being
maintained, usage of reference files should be “read only”.

Where the applicability of a reference file record is time dependent, for
example, for a currency or a price rate, cancellation of a record should be
recorded via an “active date”, or an “inactive date”, not by a marker. Users
will rarely cancel a record at the precise time at which it becomes inactive.
Consider an “active date” to permit items to be entered in advance of their
availability for processing.

Consider, where appropriate, providing an indication that the code defined by
a record has been referenced by a transaction. This helps to preserve the
referential integrity of the database: a record in use may not be deleted.
Users may however create “provisional” records that are subsequently never
referenced, and may be purged.

Chapter 3: IBM i General Design Standards 3-49

36BDesign Standards for Database Files

Transaction Data Files

Transaction files contain the main system data. They are generally large, and
have a high turnover. They may well require frequent archiving.

Certain reference data will attach to each transaction. Consider whether the
historic or the current view, or both, is relevant in subsequent interrogation.
For example, does the sales manager need sales reported by the customer’s
representative at the time of the sale, or by the customer’s current
representative? In the former case, the representative must attach to the
transaction; in the latter case, it should not.

Consider the latency of the data. A sales invoice record is current only so long
as it is outstanding, however, the same data may be required for sales
analysis over a much wider time span. The same data thus services two
different information needs.

Transaction Summary Files

Transaction summary files contain summaries of the transaction files.
Introduce summary files to provide summary totals of transactions for rapid
interrogation, for example customer’s aged debt, and stock levels. They
impose an overhead on processing, and may restrict interrogation possibilities

if no supporting detail is maintained.

Introduce summary files only when space or response considerations mitigate
against maintaining and interrogating open item transaction files.

Try to design summary files so that they can be rebuilt from the transaction
files in the event of an error or a crash.

Archive Files

Archive files are used to hold obsolete data, usually from the transaction files,
but sometimes from the reference files as well.

Archive files may be introduced to contain transactions no longer current.
Before introducing such files, investigate the user’s requirement carefully. It is
attractive in principle to have two years’ sales history on line, but is there a
valid business need?

Wherever possible, archive files should use the same format as current
transaction files. Interrogation programs may then use either.

Work Files

Work files are used to facilitate processing.

3-50

Standards Guide

36BDesign Standards for Database Files

Decide whether the work file will be required just for the job in hand (for
example, for a print program), or whether it must exist from job to job (for
example, a batch entry work file). In the first case, it will probably be best to
create a copy of the file in QTEMP, while in the latter case, it would be better
to use a work member within a permanent file.

Consider the recovery and cleanup implications. Can the work file be thrown
away or not?

Work files can be useful for reducing the number of database accesses
required to interrogate the database, especially where data is to be selected
on one access key but ordered on another. The method is not so much to use
them as sort files, but rather to provide project and/or join operations that
simplify programming. Records can be extracted from the database using the
most efficient existing logical view (the 0S/400 Copy file (CPYF) command is
often sufficient to make the extraction). A logical file may then be built upon
the extracted data, and the data presented, using a simple report program.

Access Paths

The following apply when defining access paths:

m Break up fields to the smallest component that will be required when
creating keys to access the data. Data fields may be required as
components in several ways:

- for select and omit usage on access paths
- for key specification

- for program usage (though fields may be redefined in programs
through the use of data-structures)

For example, if you have a stock code field made up of three parts,
prefix/stem/suffix (ZXXXYYYY), and you know that you will require the
enquiries of all items with a given prefix, or suffix range, define the field as
three parts.

m Do not add unnecessary key fields to the logical view, as the number of
key fields determines the size of the logical view.

m Numeric sub-fields that are to be concatenated back into a single key field
(for example, possibly YY, MM, DD), should be defined as zoned.

m Dates should always be in YYMMDD order, so as to give easy historical
access.

Note: An alternate collating sequence or a field level translation table is
needed to put lower case alpha characters into true alphabetical order. IBM
supplies a table to make the translation: QSYSTRNTBL.

Chapter 3: IBM i General Design Standards 3-51

36BDesign Standards for Database Files

A ALTSEQ(QSYS/QSYSTRNTBL
) |
A R @CUDAJJ PFILE(SLCUDAP) |
A JJCUT X20 COLHDG('Customer’ ‘Text) |

Access Path Performance Considerations

An excessive number of access paths can have a serious impact on
performance. Note the following points:

m Access paths that are required only for occasional batch jobs (for example,
for reports), should be specified with delayed access path rebuild. A value
of MAINT(*REBLD) on the 0S/400 ‘Create file’ commands (CRTPF or
CRTLF).

m Keep the number of immediate maintenance access paths on a given
physical file within reason, for example, minimize the number of
operational indices.

m If a large number (IBM cites a value of more than 10 percent) of
databases add are taking place in a batch procedure, it is quicker to
remove all non-essential access paths and add them back afterwards.

m An access path determines:
- the order that records are presented
- the criteria that are to be applied to select or omit records

- which fields from the records are to be included. A particular use of
this is to restrict access to particular fields on a database file

For a given file, the number of useful ways of selecting or omitting the data is
usually far greater than the number of useful ways of ordering the data. For
this reason, it is often a good idea to leave the selection to the programs that
read the file, or to use a ‘dynamic’ access path—rather than building it into the
access path permanently (‘static’ selection). This is particularly true when the
‘cardinality’ of each key set (for example, number of records with the same
key, or partial key, that have to be read), is small.

m 0S/400 will automatically share the access paths of files which have the
same keys. If you are specifying select or omit criteria using the database
facilities, consider using ‘dynamic’ rather than ‘static’ selection, so as to
allow sharing of access paths.

3-52 Standards Guide

37BDesign Standards for Programs

Design Standards for Programs

Design Goals

Program Types

Program design needs to be considered both generally, covering issues such
as modularization, structured design, encapsulation, and interface principles,
and specifically, looking at issues such as code structure, choice of HLL,
syntax, naming conventions, and the use of data types.

You should try to design your programs so that they satisfy the following
overall design goals.

Programs should be:

m Correct: Above all, programs should do what they are meant to do. The
simpler and clearer both the design and specification are, the more likely
this goal is to be achieved. The use of standard program types can help
simplify the specification of the design and reduce the likelihood of errors
in the logic. More formally, programs should generally follow structured
principles, for example, be made up of constructs which can be
transparently replaced with prime structures.

m Transparent: Programs should be as readable and as understandable as
possible. This requires that you structure programs sensibly, avoid tricky
programming, document properly, and use helpful names, notations, and
standard techniques.

m Modular: Programs should be as modular as possible, so that changes to
any one part have a minimal effect on other parts. You should also design
to be independent of any system specific facilities.

m Robust: Programs should handle any routine errors sensibly without
crashing. If a serious error occurs, they should preserve the integrity of
the database and collapse in a tidy manner; for example, not leave objects
allocated or locked.

m Efficient: Programs should perform their function in a way that uses as
little machine resource as possible.

Just as there are types of buildings, the instances of which, although
individually different, are within type all fundamentally similar by the very
nature of the purpose they are intended to fulfill, so are there program types,
whose structure is dictated by the underlying structure of the data on which
they operate.

Chapter 3: IBM i General Design Standards 3-53

37BDesign Standards for Programs

An effective use of program type can vastly increase productivity. If programs
are written to be as data independent as possible, then writing a program of
an existing type to work on a new file is mainly a matter of changing the
names of the references to the external database. Changing names is a much
less error prone process than changing logic.

Such an approach is carried to its logical conclusion in CA 2E, which has a
number of standard program types. Each program type is available to operate
on any file in the database—nominating a file and a function type is sufficient
to specify an entire program.

You should try to design your application using standard types, in as ‘pure’ or
unmodified of a form as possible.

Choosing Standard Programs

The data structures upon which standard programs on iSeries are most
commonly based are either those of iSeries database from which the programs
obtain data, or of the CUA panel types which the programs use to present the
data to the user. In many cases, both are relevant. In the commonly required
cases, the data structure is either a record, a repeating group of records, or a
combination of the two.

The following table shows this:

CUA Program No. of Fmts

Type

0S/400 example CA 2E example

Single record 1 DSPDTAARA
display

Entry

DSPRCD

Multi-record n DSPOBID DSPFIL
display

List

Multi-record n SELRCD
display with
selection,

List

DSPOUTQ

Single record 1
update
Entry

DFU single record EDTRCD

Mulit-record 1+n DSPSYSSTS EDTTRN

(header + details)

Single record 1 DSPDTAARA PRTFIL

report

3-54

Standards Guide

37BDesign Standards for Programs

Multi-record report n DSPFD generic PRTFIL
- With level breaks
and/or totals

Organizing Programs into Modules

Organizing the functions of your application system allows you to:
m insulate against change

m allow independent development and testing

m simplify the design

m make the system more robust

Modularization should serve to hide most of the internals of the module. The
interface to each module should explicitly reference all the information
required to use the module, and be the only way of invoking the module.

Modules should be chosen according to a number of criteria. Each module
should be concerned with one fundamental task and should not carry out
functions that are similar to or overlap with any other module—it should be
‘orthogonal’. Each module should have strong internal cohesion and weak
coupling with other modules.

Coupling and Cohesion

In deciding how to modularize a system, pay attention to the concepts of
coupling and cohesion—only combine related functions into a module,
minimize the interfaces between modules; and do not pass complicated
directives from one module to another.

Coupling

Coupling is a measure of the interdependence of two modules. The closer two
procedures are coupled, the harder it is to design, test and rely on them as
separate modules. We can identify a continuum of degrees of coupling,
ranging from the strong to the weak. Generally speaking, the weaker the
coupling, the better.

Chapter 3: IBM i General Design Standards 3-55

37BDesign Standards for Programs

Degrees of Coupling
The following displays an example of degrees of coupling:

STRONG

a. Accessing another module’s code.

b. Branching to a place other than the module’s
entry point.

c. Accessing another module’s private data directly.
d. Shared or global data.
e. A procedural call with a switch as a parameter.

(e.g. passing an operation code)

A procedural call with pure data parameters.

g. Passing a serial data stream for another module
to
process.

WEAK

Cohesion

Cohesion is a measure of why particular components are grouped together in a
module. There is a continuum of increasing validity.

Degrees of Coupling
The following is another example of degrees of coupling:

WEAK

. Coincidence.

a
b. Logic - components share some common logic.

O

. Temporal {e.g. at program initialization).

d. Communicational: components share some
common data.

®

. Sequential: components need to be invoked
serially.

f. Functional: components are interdependent.
STRONG

3-56 Standards Guide

37BDesign Standards for Programs

Program Modularization

The following practical rules can be applied to the modularization of programs:

Do not combine unrelated or weakly related functions onto the same
panels. For example, one panel, one task is easier to understand,
program, and maintain.

Place commonly required functions into standard type subprograms; for
example code validation, enquiry functions. This allows faster, less error-
prone coding.

Both capability checking (whether a user is allowed to carry out a task)
and entity manipulation (for example, the creation and deletion of records
representing entities) are generally best modularized into standard
functions.

Provide a single entry and exit point.

Do not place repeatedly required subroutines in programs using automatic
storage allocation (PASA), for example, CL programs. The repeated re-
initiation overhead is very high. Instead, use programs written in a
language employing static storage allocation (PSSA), for example, RPG III,
and do not close down the program when exiting from the programs.

Alternatively, it may be more efficient to place a sub-function that is to be
repeatedly called into a subroutine (once per record read when reading a
large dbf).

It is more important to have well structured, clearly written programs that
are easy to understand and to maintain, than to have programs optimized
to the last byte and call. ("It is easier to make a working program fast
than a fast program work”).

Do not attempt too much in one program. A rule of thumb for RPG III
programs is that programs start becoming unwieldy at 1,200 lines, are
quite large enough at 1,500, and are getting unmanageable at 1,700 lines.
At 2,000 lines, they are epic. (Ideally RPG III programs should be less
than 700 lines).

Remember that RPG III and COBOL programs cannot be called recursively; for
example, twice in the same invocation stack for a job. This puts limitations on
how programs can be linked together. For example, if a maintenance program
ca CAll an inquiry program, and the inquiry program ca CAll the maintenance
program, the situation might arise whereby a recursive call is attempted.

Note: You may achieve a logical or design modularization which may be
implemented in a redundant manner; for instance by the use of /COPY or
%INCLUDE members in HLLs, or by the use of CA 2E internal functions.

The interface between any two programs can be regarded as a database
format; it may be implemented as such, using externally-described data
structures in order to allow for change.

Chapter 3: IBM i General Design Standards 3-57

37BDesign Standards for Programs

Error Recovery

Error Handling

When designing an application, you should consider what would happen when
an error occurs, both normally (data validation error), and abnormally (system
crash).

The following are some principles that can be applied when designing for error
recovery. Refer to the section on ‘System Recovery’ for a general discussion of
recovery considerations.

In the event of a crash, programs should always collapse to a safe point that is
one where no special corrective intervention will be required to synchronize
the database. Commit control can be used to ensure that this happens, even
on transactions involving many updates to the database.

Decide what the recovery unit will be should a crash occur. A critical
consideration is usually whether the whole file can be regarded as recoverable
as a single unit or not; this is normally equivalent to considering whether
many users will be using the file at the same time.

If the file may be regarded as a single recovery unit; for example, during its
use for update by a batch process, the whole file may be restored from a
backup copy, taken at the start of the process.

If the whole file cannot be restored, say because of locks likely to be held by
other users, (for instance as when one of several interactive programs using a
file fails), the recovery unit cannot be the whole file. Journaling can be used to
select a recovery unit within a file—recovery units can range from the whole
job down to an individual access to the database. Commit control can be used
to group individual database accesses into functionally useful recovery units
(for example, a whole batch of transactions).

Make programs restartable. Programs should be written so that when they are
rerun after a crash, they pick up where they left off, and resume processing.

You should be able to reassure yourself that a system is synchronized after a
crash—provide inquiry programs and integrity checkers.

Good error handling design should serve to contain the damage from errors.
Errors should be brought to the operator’s attention, but the system should
retain its integrity, and, if possible, continue.

In general, you should aim for defense in depth. Assume things will go wrong
at every level.

3-58

Standards Guide

37BDesign Standards for Programs

Record Locking

The default error handling features of 0S/400 provide an excellent framework
for error handling, and can be used as the norm. The only design decision
required is as to when, if ever, you should override the handling with your own
processing.

Errors fall into three general classes:

m Application generated (for example, “record not found”), since you create
the messages you are handling them by definition.

m System generated, because of pathological errors (for example, decimal
data errors, errors due to missing programs or files). Do not attempt to
handle pathological errors. Let the message handling capabilities of
0S/400 force a request for the operator’s attention.

m System generated because of routine errors (for instance, due to record
locks). You will probably want to handle such errors explicitly so that
automatic recovery can take place and processing can continue.

One of the main differences between the design requirements of batch and
interactive programs lies in the error handling.

For interactive programs, error handling is relatively straightforward. An error
message can be issued, suggesting one or more options, and the program can
wait for immediate guidance. Where a partial update has taken place, it is
possible to indicate what has and what has not been implemented.

For batch programs, error handling is more complicated. You must allow for
errors of varying levels of severity, ranging from terminal errors, which require
immediate and complete abortion of the process, to warning errors, which
require the program to take default action in order to be able to continue
unattended. In any case, the operator needs to be alerted as to the potential
problems. You should also consider whether, if a fatal error occurs, subsequent
jobs should be allowed to continue.

0S/400 error handling imposes a certain overhead. You should code so that
exception handling is invoked on the least used path. For example, say that
you are adding/updating records on a file. If the record will not normally
already exist on file, you should attempt to add the record, and monitor for an
exception, in which case, you will chain and update the record, rather than
vice versa.

Always make allowance for the possibility of records being inaccessible due to
locks by another job. In RPG III, this should normally consist of testing the
result indicator (col 56-57) on file access operations. The appropriate action to
take will depend upon the context.

Chapter 3: IBM i General Design Standards 3-59

37BDesign Standards for Programs

Subfile Processing

For single record updates in interactive programs, it will normally be sufficient
to abandon the update and report a ‘record in use’ error message.

For multiple record updates in interactive programs, and all batch updates,
you will either need to rollback and report a ‘record in use’ error message, or
carry out whatever partial update is still feasible. In the latter case, you must
be able to report back what has, and what has not, been updated.

Note that file design may be used to reduce multiple record updates to what
are effectively single record updates. Potential lock situations can usually be
designed out of an application. For instance, if an invoice maintenance
program requires a lock on the invoice header before it will allow editing of
invoice details, it will probably not be necessary to check for locks on the
invoice detail records.

There are two basic strategies that can be adopted with regard to the locking
of data records:

m Pre-allocation: A record that is to be updated is locked before the data to
update the record is processed. The lock is held until the update is
completed. This method allows for simple programming and may be
appropriate for interactive programs, when the files that are being updated
are not required for update by other processes at the same time.

m Rollback: A record that is to be updated is locked only for the instant of
update. This generally removes problems of contention. However, it
requires an extra database read, and if the update is being done on the
basis of existing record values, it will usually require programming to
check that a record has not been altered by another process between the
initial access and the actual update. If such an update has taken place, it
will be necessary to report the error, and it may be necessary to execute a
rollback to undo any associated updates that have already been completed
on the premise that a record could be updated (for example, update of a
batch header before update batch records).

Subfiles should not load more records than they need, as to do so is slow and
consumes storage. Use program controlled roll up. Each consecutive page of
the subfile should only be loaded when the ROLLUP key is pressed (this
requires allocation of an indicator to the subfile rollup key). An exception to
this rule may occur when control totals for the subfile contents need to be
calculated or checked, so all the records must be read in any case.

For more information, refer to the section, Design Standards for Display Files.
The following technique can be used to give a fast performance when

processing an input-capable subfile loaded from database records, which
requires subsequent update back to the database:

3-60

Standards Guide

37BDesign Standards for Programs

1. To load the subfile, use an input-only logical view of the database file to
read the records in the desired order, a subfile page full at a time.

2. Store the relative record numbers of the database records as hidden fields
on each subfile record.

3. Use relative record processing with a second, arrival-sequence access path
on the database file to update the changed records from the subfile to the
database.

Journaling for Audit Trail Purposes

The journal will contain a record of every update made to every file being
journaled. This record is an ideal source for any sort of audit trail report, for
instance file maintenance reports. Such reports can be run retrospectively for
any span of time, provided that the journal receivers are on-line. Any of the
selection criteria of the 0S/400 Display Journal (DSPJRN) command, such as
user or job name, starting dates or ending dates, can be used to specify which
entries or range of entries are to be listed.

Program
Work PF
Update or put
Maintenance:
report
PF
Receiver

The Journal as a Debug Aid

The journal can be used to trace the cause of anomalies in the database. Most
notably, the updates made to the database by a particular program can be
examined in detail, or the program responsible for a particular update can be
discovered.

Choice of Language
In which HLL language should you implement your application? Obviously
there are some functions that are best coded in a particular HLL because of

the facilities available in that particular language.

Choice of language is important because it will affect:

Chapter 3: IBM i General Design Standards 3-61

37BDesign Standards for Programs

m Productivity: This will depend upon the ease of use and the power of the
language, and the familiarity of the developer with the language.

m Reliability: The ease of use of a language will affect the quality and
correctness of the implementation.

m Functionality: only certain functions are available in each language.
Criteria for Choosing an HLL

Apart from the availability of staff with the appropriate language skills, there
are several criteria for assessing an HLL:

m Expressiveness: The extent to which the language makes obvious the
intention of the programmer is important both when writing and when
maintaining programs. This will be affected by factors such as the data
structures available, the syntax and layout facilities, and the ability to use
qualified names and other name restrictions. The simplicity, conciseness,
consistency and rigor of the language all contribute to its
understandability, and hence its expressiveness.

For example, RPG, because of its fixed format and limited data types, is
particularly poor.

m Completeness: The extent to which all objects and operations of interest
can be described. The more sophisticated the capabilities of a language,
such as the ability to support recursion, complex data structures, pointers,
multi-dimensional arrays, or floating point arithmetic data types, the more
complete it is likely to be.

Again, RPG is weak. Basic C lacks straightforward database field manipulation
types.

m Generality: Some languages are better at specialized functions. Languages
may support functions in a number of areas: I/O, mathematical functions,
string handling, access to the Operating System, and data types.

RPG is good at database access but poor at string handling. CL is good at
Operating System functions and string handling, has excellent access to
system facilities, but has very limited database capabilities. Only C and PL/1
support pointer types, and so are the only viable languages for system
programming.

m Openness: The ability to connect to other languages. This will be affected
by the call mechanisms and parameter passing capabilities of the
language, and the basic data types supported. Other factors such as
character set dependencies and exception handling will also be relevant
(such factors often tend to be machine dependent and so to have
implications for portability).

3-62 Standards Guide

37BDesign Standards for Programs

Most of the iSeries languages have broadly equivalent call mechanisms,
although PL/1 supports more complex features. System C provides the
capability to access certain low level functions that are not available to other
languages.

m Extensibility: The extent to which new objects and/or operations can be
added to the language. This has important implications for systems
programming type applications. The capability to use macros or copy
facilities, Abstract Data Types (ADTs), and external calls can all be
relevant.

The CL command definition language is a strong mechanism for extending CL.
Once again, RPG III is weak and PL/1, with internally described procedures
and functions, is fairly strong. The C standard libraries and precompiler make
it the most extensible of the iSeries languages.

m Efficiency: How fast do programs using the compiler run.

RPG is strong; COBOL and PL/1 are almost as good. C is at present particularly
weak because of the additional overhead of the runtime environment. REXX,
an alternative to C, is interpreted and so also quite slow.

iSeries High Level Languages

CL—CL is the best 0S/400 language for simple access to system facilities,
such as authority checking and message handling. CL cannot handle database
updates or complex display file handling. It has poor control structures (no
subroutines, no DO WHILE construct) and limited data types—binary is not
supported. It can be used recursively and has good string handling.

CMD—The CL command definition language is specially designed for defining
call interfaces and can be used to reduce the complexity of any validation
required.

RPG III—RPG III is compact, efficiently implemented, and good for batch
processing and display file handling because it has good I/0 facilities. It has
poor structural capabilities. It is difficult to write well modularized RPG III
programs because there is no ‘privacy’; all variables are global, and subroutine
variables are not explicit. The variable naming capabilities are very restrictive.
The fixed format reduces expressiveness. Recursion is not allowed and the
data structures (for example, arrays) supported are limited.

COBOL—COBOL ‘85 has more modern control structures than COBOL ‘74, but
there are still some significant shortcomings on the iSeries implementation. It
is free format and therefore, quite expressive. It has reasonable I/0 facilities.
It is not extendable and has poor exception handling. There is no recursion, no
ADTs, and limited typing.

Chapter 3: IBM i General Design Standards 3-63

38BDesign Standards for Internationalization

PL/1—Of the iSeries languages, PL/1 has the widest range of cated
capabilities. It allows a block structure, recursion, and is rich in its data types.
It has good I/0, including some special features, good string handling, and
good expressiveness. It is also extendable through functions and has good
exception handling—though access to system data is not always as good as
RPG III. It has limited typing and is complex.

C—Of the iSeries languages, C has the most powerful low-level capabilities.
System/C can be used to access system function not available in other
languages. Like PL/1, it allows a block structure, recursion, and is rich in its
data types. It tends to be cryptic. It is also extendable through functions and
has good exception handling.

Design Standards for Internationalization

General Principles

This section describes some of the considerations for designing systems to run
on other national language versions of 0S/400.

For more information on guidelines for using national language versions, refer
to the IBM National Language Information and Design Guide, Volume 1.

For information on specific advice for iSeries efer to the iSeries (AS/400)
National Language Support Planning Guide, Volume 2.

The design aims for multinational support are to implement systems as
follows:

m Different national language versions of the same system can be built
without requiring programming changes.

m Different national language versions of the same system can coexist on
the same machine with a minimum of redundancy among the application
objects.

To achieve this, all Machine Readable Information (MRI) information seen by
the user, for example, text for panels, report headings, menus, and Help text,
must be held externally to the applications so that it can be translated into
other national languages and the translations can be retained through
subsequent upgrades to the software. In addition, you should parameterize
and retrieve all factors that may vary between countries, such as date display
format and currency symbol, at execution.

Ideally, you should be able to use just one set of HLL source, in conjunction
with different sets of national language-specific text objects, to build different
national language versions of the software.

3-64

Standards Guide

38BDesign Standards for Internationalization

MRI Translation

Translation Levels

IBM uses the term enabled to describe an application product that has been
designed with translation in mind, even though it may not initially be
translated. An enabled product (for example, 0S/400) can then be
implemented in any particular language easily, usually without a coding
change. An application that is not enabled will require a retrofit in order to
obtain a national language version.

You can attempt two different degrees of translation:

m Translate End User Text: Only the text visible to the end user is
translated— device file output, messages, and Help text. This is the
normal requirement. If, however, the user will be using interrogation tools
such as Query, you should also translate the field text on database files.

m Total translation: You translate all the descriptive text for entities along
with source comments and system documentation. It is seldom
commercially attractive to do this.

There are three levels at which you need to consider the implications of a
national language—the physical, the syntactic and the semantic.

Physical

At the Physical level are the purely mechanical factors needed to support
specific languages—different character sets, multilingual keyboards, and
storage codes. Generally, iSeries applications are insulated from direct
consideration of these factors by the capabilities of the hardware and the
operating system. For instance, device configuration takes care of the
keyboard mapping, and various extended character sets are available for the
different national alphabets.

It may simplify design if the restrictions of different keyboards are taken into
account. For instance, avoid the use of characters which are present in English
but which are not common to all character sets (' ', @, #), because on some
keyboards, they can only be keyed as hexadecimal values. There are also
considerations to be taken into account if you need to input or display data
input in one character set at a device that uses another national character set,
and if you collate extended character sets.

For more information, see the discussion of the CHRID and ALTSEQ keywords
in the 0OS/400 manuals.

Chapter 3: IBM i General Design Standards 3-65

38BDesign Standards for Internationalization

Syntactic

At the Syntactic level, you have all the cosmetic aspects of an application that
require conversion for a different NLS version. This includes the main task of
translation—providing appropriate versions of text literals in the target NLS.
Text can be classified as syntactic rather than semantic as it is not
‘meaningful’. From the point of view of application design, a literal is simply a
label, albeit one which must follow the rules for its given language.

On iSeries, there are a number of specific software facilities that make the
translation of text easier, such as externally-described messages. It addition
to the mechanisms to facilitate text translation, there is also operating system
support for variable properties such as currency symbols, decimal point
characters, and date formats. You should design your applications to use these
facilities wherever appropriate. You should also design to parameterize those
cosmetic aspects not covered by the standard mechanisms. For instance, the
values a user enters to indicate ‘Yes’ or ‘No’ tend to be language dependent.
One of the many reasons for following the SAA CUA standards for application
user interfaces is that the standards are to some extent language
independent; for instance, they advocate the use of numbers to select items
(4= Delete), and have been devised with the possibility of a translation
requirement in mind.

Semantic

At the Semantic level, you have those aspects of application design that
contain cultural or linguistic dependency which varies by language; you must
either parameterize these, or compartmentalize them into replaceable
language-specific modules.

An example might be a module to write out a check—you have a check-writing
program that spells out any amount in grammatical English, for example “Two
million three hundred and forty five dollars and six cents”. The rules for
stringing numbers together are different in different languages, so to translate
this into German, for example, will take more than a word-for-word translation
of the words used.

Any form of string processing tends to have cultural assumptions in it; for
instance, extracting a zip code from an address line (and zip codes
themselves). Implicit assumptions are also often made in the use of different
units of measurement and conversion factors, currencies in particular—not just
in the symbols, but also in the precision of the units. For example, useful
amounts of lira and yen have too many zeros for a 15-digit RPG III numeric
field, and they may need to be stored in a truncated format. Calculations
dependent on human law rather than natural law, for instance tax, are also
highly specific to particular countries. Certain applications tend to be so culture
specific, for example payroll tax or accounting rules, that it is almost
impossible to “internationalize” them without coding entirely separate
modules.

3-66

Standards Guide

38BDesign Standards for Internationalization

There are also national differences in the rounding method used; in the
convention for showing a negative amount (*-’, ‘CR’), and in the symbol used
for a percentage (*%’ or ‘pct’).

National Language Groups

National languages can be classified into three main groups according to the
type of representation needed to store the characters on a computer.

Single Byte Character Set (SBCS):

These are languages that can be represented with a simple, single byte
character set (SBCS). For example, the letter ‘A’ can be stored as hex ‘C1’; ‘B’
can be stored as hex 'C2’. The group can be subdivided into those languages
which use a Latin alphabet or an extension of it (for example, English, French,
German, Italian, Swedish) and those languages which use a non-Latin
character set (for example, Greek, Russian, Thai) but which still use a small
alphabet in a straightforward way. In both cases, characters are always
processed Left to Right (LTR) and there are no significant differences from
English in how characters are processed in general. When you translate into
these languages, you need only the alternative character sets that the
hardware provides.

Bi-directional SBCS languages:

These are languages which can also be represented with a simple SBCS but for
which the general direction of text is right to left, for example, Hebrew or
Arabic. Numbers and Latin character phrases are still written from left to right
in such languages, so rather than being simply Right to Left, the languages are
bidirectional. Designing for bidirectional languages introduces some additional
considerations that will be discussed later. Incidentally, many of the Arabic
languages have a further complication still—different forms of the letter are
used according to the relative position of the letter in a word. As a concept,
this is just like the use of 'f’ for 's’ in certain circumstances in old-fashioned
English usage.

Ideographic languages:

Japanese, Chinese, and Korean require a Double Byte Character System
(DBCS) implementation. DBCS languages introduce extra problems from the
point of view of application design, and require a special version of the
hardware and the operating system. Special considerations are discussed later
on.

User Interface Design:
When designing displays and designs, you should leave as much space as

possible to allow for translated versions of text, which may be longer than the
English versions.

Chapter 3: IBM i General Design Standards 3-67

38BDesign Standards for Internationalization

m Place one field per line whenever possible.

For example, do not do the following:

Display Customers 01/04/92 10:10:10
Cust code. . BBBB Name: OO0000000000000000000000000000000
Start date . 99/99/99 Customer status: OO0O00O

F3= Quit without update

But rather:

01/04/92 10:10:10

Display Customers

Type changes, press Enter

Customer code BBBB Code, F4 for list

Customer name: 000000000000000000000000000000000
Startdate. 99/99/99 Date, YY/MM/DD

Customer status : 00000

F3=Exit

m Pad out column heading literals to take up all the available space.

For example, do not do the following:

‘Customer code’ ‘Price’
BBEBBBBBEBBBBBBBBBEBBBBBBEBEBBBBBBBBB 9999999999
But rather:
‘Customer code ’ ‘Price
BBEBBBBBEBBEBEBBBEBEBBEBBEBBBBEBBBBBB 9999999999
But rather:-

m Pad out panel and report titles with blanks up to a standard length.

For example, do not do the following:

‘Display Customers'’

But rather:

3-68 Standards Guide

38BDesign Standards for Internationalization

‘ Display Customers

m Place the base language version of the literal in the source as a TEXT.

Considerations for MRI (text) Translation

The fundamental principle for handling MRI is that all text literals should be

isolated from the HLL code for the application, whether for a program (RPG III,
CL, COBOL, PL/1, C) or a device file (DSPF, PRTF) or a command (CMD). Some
specific programming requirements are given later on. There are several sorts
of text that may need translating:

m Command prompt text: Although externally defined messages are
supported by the PROMPT keyword of the CL command definition
language, the 0S/400 command compiler compiles command text into
command objects at compile time—it is “early binding”. You will need
separate sets of commands for each national language, which you will
probably want as the commands are used to set the product library.

An example of an early binding text:

USR0001= Kundenname Lang 3 ||
\
USR0001= Nom de Client Lang 2 \
\
USR0001= Customer Lang 1 \
name PROMPT | Lang 3
MSGF ‘
} Lang 2
USR0001| CMD | Lang 1
SOURCE |— CRTDSPF —m } CMD
(PROMPT) ‘ OBJECT
\

Kundenname

Nom de client

Customer name

Chapter 3: IBM i General Design Standards 3-69

38BDesign Standards for Internationalization

m Device file constant text. The DDS MSGCON and MSGID keywords allow
the use of external message descriptions. In effect, MSGCOn is early
binding; MSGID is late binding. MSGID is preferred for panels as it gives
greater flexibility, but is not supported for print device files. (You may
emulate MSGID for print files by defining fields and using a CL program
with the 0S/400 Retrieve message description (RTVMSGD) command—or
the V2R2 0S/400 QMHRTVM API—to retrieve the text within the program).

An example of an early binding device text - PRTF MSGCON:

\
\
USR0001= Kundenname Lang 3 |
USR0001= Nom de Client Lang 2 }
\
USR0001= Customer Lang 1 |
name PROMPT | Lang 3
MSGF \
| Lang 2 Kundenname
\
USR0001| PRTF DDS ; Lang 1 Nom de client
SOURCE CRTDSPF ‘ PRTF
(MSGCON) |~ | OBJECT| Customer name
|
|

An example of a late binding device text - DSPF MSGID:

USR0001= Kundenname

USR0001= Nom de Client

USRO0001= Customer
name

USR0001| DSPF DDS
SOURCE |— CRTDSPF
(MSGCON)

Lang 3

Lang 2

Lang 1
PROMPT
MSGF

Lang 1
DSPF
OBJECT

Customer name

m Execution message text. This text will vary at runtime, and so should be
“late binding”. All such messages should be placed in a message file and
retrieved as required by a standard CL message-sending program, or from
V2R2, an 0S/400 message handling API QMHSNDPM.

Late binding text with explicit message sending:

3-70 Standards Guide

38BDesign Standards for Internationalization

- Text in database file fields. Certain text items will probably be held in
the form of database field values in database files, for instance code
descriptions. If such items need translation, conversion utilities will be
needed to retain translations through version upgrades.

- Late binding text - database fields such as the following:

Lang 3
Lang 2
USR0001= Customer
name
Lang 1
DBF
\
\
\

USR0001| DSPF DDS | Lang 1
SOURCE |— CRTDSPF ———— DSPF
(MSGCON) \ OBJECT | Customer name

\

m Help text. UIM Help text is compiled. Separate source is required for each
national language. You should use message descriptions with the text for
headings and standard terms to ensure consistency and fast translation.

An example of an early binding device text - UIM help text:

Lang 3
Lang 2
Lang 1
PROMPT Lang 3
Lang 3 MSGF
Lang 2 Lang 2

Lang 1 Lang 1
PNL — CRTDSPF —— — PNLGRP
SOURCE OBJECT

Since help text is created automatically for programs generated with the CA 2E
application generator, translating the application model and skeleton help text
and regenerating is sufficient to translate end-user help text.

m Menu text. On iSeries, menus are normally display files and can be treated
as normal device files for the purposes of translation.

Chapter 3: IBM i General Design Standards 3-71

38BDesign Standards for Internationalization

Necessary Multilingual Objects

For each national language in a multilingual application, you should have:

a message file containing prompt text used for compiling device files and
commands

a message file containing execution messages

a set of device display files, accompanied by the appropriate prompt
message file

a set of device printer files, compiled with the appropriate prompt message
file

a set of command definition objects, also compiled with the appropriate
prompt message file

a set of Help panel group objects compiled with the appropriate prompt
message file

a set of menu objects
a set of database files containing any translated code descriptions

a set of alternate collating tables, if necessary

Note: It may be useful to collect the commands necessary to create each
message file into a CL program.

The following is a diagram of Use of Multi-lingual Objects:

3-72

Standards Guide

38BDesign Standards for Internationalization

Early binding | Late binding
\ MSGID
Lang 3 }
|
Lang 2 |
\
Lang 1 | Lang 3
PMT MSGF| |
| Lang 2
MSGCON,&MSG
PRTF,CMD PROMPT | Lang 1
PNL === CRTxxxF, CRTC|\4D=== >| PRTF/ICMD
SOURCE | PNLGRP Lang 3
|
| L S Lang 2
PGM,DSPF ‘
SOURCE ====CRTxxxPGM===5====> | PGM,DSPF Lang 1
\ OBJECTS |«— | DBF
RCI |
\
‘ QMHSNDPM,
} QMHRTVM,
| Lang 3 User tools
} Lang 2
\
\
[Lang 1
| EXC MSGF
|

Using System Values

0S/400 has several system values available, which can be used to help with
internationalization. Store date fields on file in YMD format and convert them
to local display format at execution, using the 0S/400 QDATFMT and the
QDATSEP system values.

For more information on date handling, see the chapter, “"General Coding
Standards.”

You should normally use the system edit codes to edit monetary amounts so
that the currency symbol shown is that specified by the 0S/400 QCURSYM
system value. If you carry out your own editing (for instance, to cater for
variable decimal place fields), then you should retrieve the currency symbol
from the QCURSYM system value.

Use the system edit codes to edit numeric fields so that the decimal point
symbol shown is that specified by the 0S/400 QDECFMT system value. If you
carry out your own editing (for instance, to cater for variable decimal place
fields), you should retrieve the decimal point symbol from the QDECFMT
system value.

Chapter 3: IBM i General Design Standards 3-73

38BDesign Standards for Internationalization

Use the QIGC system value to condition any special processing required if
ideographic support is present. Equally, it can be used to condition special
processing only available if ideographic support is not present. For example,
there is no support for the DUP key on ideographic workstations.

Use non-alphabetic characters such as @, $, #, carefully, since they are not
readily available in some multi-national character sets.

Note: For more information, refer to the information on the QCHRID 0S/400
system value for further details.

Collating sequences in different alphabets may be slightly different especially
for characters that are not found in the standard English alphabet. This may be
significant in inquiry programs that show items in name order. If necessary,
alternate collating tables should be used—this will require different sets of
logical files in each language version.

Another system-supplied mechanism that can be useful is the translation
table. This is a 256-byte table that can be used to control character mapping
and usage in various circumstances, for instance in collating sequences,
mapping of characters at devices, or translation within a program. Table
objects are created from simple source members using the 0S/400 Create
Table (CRTTBL) command.

Tables can be especially effective when used in conjunction with the system
supplied QDCXLATE program, which can be used to translate any character
string, using a specified table.

Do not use compile time arrays to hold messages. If for performance reasons
you need to hold messages in core storage (for example, because you send
them many thousands of times in the course of a typical run), then you should
load the messages from an external source at the beginning of the run.

Don't build up text strings in programs—the syntax rules will be different in
different languages. Don't use text strings as substitution variables in
messages for the same reason.

If you have programs that override a display from a system-supplied device
file and then process the subsequent output, you should be aware that the
output may have a different layout in different language versions of 0S/400.
You can get around this in one of two ways—either write your program so that
it looks for the keywords rather than fixed positions, or ship a copy of the
English language file, renamed, and override to that, instead.

There are considerable variations in the standard paper sizes used in different
countries. Never hard code the forms length or overflow attributes of a printer
file in RPG III programs. Instead, use the values stored as the print file
attributes. If necessary, these can be retrieved at runtime from a file
information data structure.

3-74

Standards Guide

38BDesign Standards for Internationalization

To avoid coding text in programs, text can be stored in as messages in a
message file and retrieved using the 0S/400 Retrieve message (RTVMSG)
command. For instance, if you have a CL program that creates an object, it
should retrieve the text to be given to the object from a message file:

RTVMSG MSGID(USX0033) MSGF(QUSRMSG) MSGDTA(&MSGDTA) +
MSG(&MSG)

CRTDTAARA DTAARA(CMPTXT) TYPE(*CHAR) LEN(50) TEXT(&MSG)

Make use of existing OS/400 messages whenever possible; that way,
translation is done for you by IBM. Specifically, use the technique of trapping
and resending system and other application’s diagnostic and escape messages,
rather than originating your own. For example:

I*H: 1. Check for existence and authorisation
CHKOBJ OBJ(FORTKNOX) OBJTYPE(*FILE) AUT(*READ)
MONMSG CPF0000 EXEC(DO)
RCVMSG MSGTYPE(*EXCP) MSGDTA(&MSGDTA) MSGID(&MSGID) +
MSGF(&MSGF) MSGFLIB(&MSGFLIB)
SNDPGMMSG MSGID(&MSGID) MSGF(&MSGFLIB/&MSGF) +
MSGTYPE(*ESCAPE) MSGDTA(&MSGDTA)

ENDDO

Writing Text for Translation

Remember that translators are principally linguists—they may not necessarily
be that familiar with either computer concepts, or with the concepts of your
application domain. Usually, they will not be native English speakers. For those
reasons, it is important that all text is worded as simply and as clearly as
possible. There are a few stylistic principles you can follow in order to make
your MRI clearer and therefore reduce the chances of a mis-translation.

For example:

m Messages and other displayed phrases should be complete phrases and
not be constructed from individual words or other phrases. Consider the
following example. You have four different states to report: Terminal
operational, Terminal offline, Control unit operational, and Control unit
offline. One way of doing this would be to hold four short phrases
(Terminal, Control unit, Operational, Offline) and to permutate them as
required to build up messages. However, in French, this would not work
because operational is declined (for example, takes a different suffix)
according to gender—and control units are feminine. Thus, you need
separate messages for Terminal operational and Unit de control
operationelle.

Chapter 3: IBM i General Design Standards 3-75

38BDesign Standards for Internationalization

m Avoid abbreviations. For example, do not use Cust nm for customer name.
Abbreviations generally do not appear in a dictionary and are hard for a
non-native speaker to decipher. Avoid telegraphic style as it is hard to
understand.

m Avoid compound phrases. It can be very difficult to tell when the adjective
stops and the verb starts, especially for a non-native speaker. For
example, does Record error mean an error has occurred on a record (for
example, adjective+verb) or does it mean Log the error somewhere? (for
example, verb+noun). Likewise, would Program definition mean a
definition of a program or definition by a program? It is better to be as
explicit as possible even if it takes slightly more space.

m Avoid negative questions. It is often not clear what the answer means or
even what the question is; for example, ‘Do you not want to delete QSYS?’

m Avoid slang, jargon, idiom and humor. It may be hard for the translator to
find the terms in a dictionary, and the humor may be culture-specific.

Ideographic Support

Some special considerations apply to the design of applications with
ideographic support, such as is needed for Japanese versions.

For more information refer to the iSeries (AS/400) DDS Reference Guide.

It may be useful to know that the Japanese language has two separate
phonetic alphabets, the Katakana and the Hiragana, as well as a system of
ideographic characters, the Kanji. The Katakana alphabet is used for foreign
loan words, such as computer terms. Thus, XX (obu-je-to) is object, YY (jo-bu)
is job, etc. Hiragana is used for Japanese words; it is possible to spell out
every Kanji character in a Hiragana equivalent.

The Katakana phonetic alphabet is handled on a computer in much the same
way as is a language such as Greek—it is merely a different mapping of codes
to graphic symbols. The Kanji ideograms, however, require additional facilities
for implementation because there are so many of them. We can summarize
further considerations under the following headings:

m Using upper case

m Double Byte Character Support

m Using ideographic shifts

m Providing ideographic conversion (IGCCNV)

m Avoiding ideographic restrictions

3-76

Standards Guide

38BDesign Standards for Internationalization

Using Upper Case

DBCS Support

Ideographic character (IGC) support requires a special version of 0S/400 and
special workstations. Ideographic workstations support upper case English
characters, but not lower case ones. Any lower case characters may appear as
semi-random garbage. This means that if you want to run your application on
an ideographic workstation, even just in English, you should translate all
characters in an application to upper case.

The system program QDCXLATE can be used in conjunction with the system-
supplied translation tables (QSYSTRNTBL for the basic set, QCASE256 for the
extended character set) to convert characters to their upper case equivalents.
There are some CA 2E utilities to assist with this, in particular a tool to convert
a database file data to upper case. The tool examines the database file object
definition to find out which fields are alphanumeric. It also reads through the
file, converting all such fields in all records to upper case (QCASE256 can be
used). The same utility can be used to convert source members.

Files containing ideographic data that needs to be created or modified should
have IGCDTA(*YES) specified for them.

DBCS is used to represent ideographic characters. It is necessary to indicate
when DBCS coding is being used in a string. This is done using two special
characters—'Shift in’ (Hex OE) and ‘Shift out’ (Hex OF). Characters lying
between these are interpreted as being double byte.

For example, normally a string of the four hexadecimal codes 93, FA, 96, and
7B would code for four separate characters |, v, o, and #, respectively.
Enclosed within the shift characters, they would be treated as two ideographic
characters:

Non-ideographic: 93 A596 7B
|l v o #

Ideographic: OE 93 A5 96 7B OF
|
Shift in | Shift out
1st character 2nd character

An implication for your application design is that space must be left on device
files for the shift characters (one byte each), which must always be used in
pairs. Furthermore, not only do DBCS characters take more space to store, but
they are also physically larger on display; twice the size. However, since each
character represents a whole word, fewer of them are needed.

Chapter 3: IBM i General Design Standards 3-77

38BDesign Standards for Internationalization

Ideographic Shifts

When printing ideographic characters mixed with alphanumeric characters, you
may want to ensure that the characters are of a uniform size, otherwise the
mixture of large ideograms and small letters can look very untidy. There are
some special facilities to do this, in particular the DDS (IGCANKCNV) keyword
ideographic alphanumeric conversion.

Be careful of string manipulation. If you have any procedures which take an
arbitrary string and process it, for instance to double up the apostrophes or
look for a blank, a comma, or other punctuation mark, you should make sure
that they ignore characters lying between the shift in and shift out characters.
A code that normally represents a punctuation character may occur as part of
a double byte character representing something else. For instance, 7D
normally represents an apostrophe (%), but lying within a DBCS string (for
example, ‘0E 45 7D OF') it is part of a different code (the DBCS for the Kanji
character for ‘Beauty’). You must also take care when truncating or
substringing a DBCS character string. If you simply chop the end off, you may
lose one of the shift characters.

Although you may use DBCS characters within message text, you may not
directly add the message descriptions from the command entry program. The
commands to add or change the message text should be placed in a CL
member and compiled into a program. SEU provides support for IGC
characters.

Data areas containing ideographic data cannot be displayed using the 0S/400
Display Data area (DSPDTAARA) command.

Ideographic support provides additional keyboard shift types in DDS. Just as in
non-ideographic DDS, you must specify (for example) whether lower case
characters may be entered into an alphanumeric field, so in ideographic DDS,
you must specify whether ideographic characters can be entered. On IGC
machines, three possible additional keyboard shifts are allowed: ')’
(ideographic characters only), ‘E’ (either alphanumeric or ideographic
characters) and ‘O’ (both alphanumeric and ideographic characters are
allowed). Fields with an ‘E’ or 'J’ shift must have an even length.

It is not possible to edit or compile DDS with IGC shifts (E, J, O) or IGC
keywords (for example, IGCCNV) on a non-IGC machine. However, a special
keyboard shift is available on non-IGC machines - ‘W’ - which is equivalent to
the ‘O’ shift, i.e. it specifies that on an IGC machine, both alphanumeric and
Kanji input will be allowed for the field. Certain DDS keywords cannot be used
in conjunction with ideographic fields, notably COLOR and LOWER.

On non-IGC machines, you should use the ‘W’ shift for fields for which
ideographic characters will be allowed if the application is run on an IGC
machine.

3-78

Standards Guide

38BDesign Standards for Internationalization

The DUP key is not available for IGC shift fields or on Japanese keyboards.

Ideographic Conversion

The Japanese version of OS/400 has a special feature called ideographic
conversion, which is used to assist with input from a keyboard. If ideographic
conversion is enabled, then when keying input into an ideographic field, the
user may press a command key to obtain a special input-capable field at the
foot of the panel. The user may then type into this field Katakana phonetic
characters to spell out a word. The system will convert the word into a list of
possible DBCS characters. Typically, there will be only a few candidates, one of
which can be selected.

Make this facility available on your displays by using the IGCCNV DDS file level
keyword. The command key used to produce the input-capable field should be
F18 on iSeries.

Coding IGC Source

To avoid maintaining separate sets of source on non-IGC and IGC machines,
the additional IGC information should be coded as comments. The technique
should be used for:

m those DDS keywords which are only valid on an IGC machine

m those IGC shifts which are only valid on IGC machines

m those DDS keywords which are not valid with IGC fields

For example, the following DDS source would compile on a non-IGC machine,

but is marked up so that simply by flagging and unflagging the comments, it
would be appropriate for an IGC machine.

! J A* 18 IGCCNV ;
i E: A FLDNAM B 15 2 i
3 J: A* FLDNAM BJ 15 2 |
| E: A LOWER !
J A 18 IGCCNV !
3 E: A FLDNAM B 15 2 i
| J: A FLDNAM BJ 15 2 |
| E: A LOWER |

,,,

Chapter 3: IBM i General Design Standards 3-79

38BDesign Standards for Internationalization

Bi-directional Language Support

Those languages which are read generally right to left, such as Hebrew,
present some special problems that make it difficult to make one set of source
and one set of program objects suffice for all languages.

Right to Left Panel Layout

Use the DDS CHECK(RL) keyword to make the cursor move right to left within
a field. It also defaults the keyboard shift to the alternative (for example,
Hebrew) alphabet. Literals should appear on the right of the fields that they
describe. For a full conversion, you should reverse the whole display layout
and the overall cursor movement should be right to left and top to bottom—
the DDS file level keyword CHECK(RLTB) specifies this. You will also need to
position the cursor explicitly at the top right hand field of the panel when you
first display it.

A display which appears such as the following in English:

Customer code:
Cursor

Movement Type options, press enter
1= Select

Customer Customer name
code
00001 MOSHE_DAYAN

=

Should appear as follows in a bi-directional language:

: edoc remotsuC
retne sserp ,snoitpo epyT Cursor

tceleS=1 Movement

eman remotsuC remotsuC
edoc
NAYAD EHSOM 00001

|—

3-80

Standards Guide

38BDesign Standards for Internationalization

Reversing the fields like this requires an alternative set of DDS source and
recompiling all programs which use the revised display files.

Collating Right to Left (RTL) Fields

Bi-directional languages also raise some special considerations for ordering
data. Consider what happens when you create a logical view, using an
alphanumeric field as one of the key fields—records are collated using the
characters in the field in a left to right order. For bi-directional language
words, this is back to front. It would be as if we ordered the English list shown
on the left below in the order shown on the right:

123456 654321
FRANK ADIERF
FRED DIERF
FRIEDA KNARF
FRIED DERF

There are three different techniques you can use to overcome this:

1. Hold a second copy of the field on the record with the characters reversed
(requiring a modification to the database and all programs that change the
field’s values).

2. Always reverse the field on input or output. It is then stored in reverse,
but displayed or printed in proper RTL order. This requires modification to
all programs that use fields. If you use this method, you should introduce
a RTL ‘data type’ and a standard routine to carry out the reversal.

3. Store the field in proper RTL order, and use the DDS substring (SST)
keyword to reverse the order in the logical file.

Chapter 3: IBM i General Design Standards 3-81

Chapter 4: General Coding Standards

This chapter describes coding standards applicable to all source types.

Coding Principles

Source code should contain all the information necessary to re-create the
object. This should include information about compile time overrides and
object attributes.

Source code should be edited and viewed interactively as much as
possible. Source listings should only actually be printed in special
circumstances. Use the browsing and scanning facilities of the iSeries to
examine source and compilation listings. Adopt layout conventions that
facilitate this approach.

Use the machine to find syntax errors and basic mistakes. The editors and
compilers of the iSeries give excellent diagnostics, and can be used to find
low-level syntax errors.

Take an incremental approach to development. 0OS/400 provides an
interactive development environment. Rather than writing and testing
programs as entirely separate steps, you can program from top, down.
Write the main control structure of a program first, compile and test it,
and then add the detailed coding, such as field validation.

Strictly regulate source versions. One version of the source should be
regarded as definitive. If changes are required, additional versions of the
source should be copied to a separate development library and only be
transferred back, together with the changed object, in a carefully
controlled manner. For more information, refer to the section, Operating
Environment Standards, in this guide.

Contain documentation within the source so that it is updated along with
the code, and available when looking at the code. The documentation may
be extracted and summarized using the CA 2E Toolkit Document Program
(YDOCPGM) command.

The CA 2E Toolkit Compile pre-processor utility provides several useful
functions common to all source types, including compiler overrides. See the
Toolkit Concepts Guide for further details.

Chapter 4: General Coding Standards 4-1

40BStandard Source File Names

Standard Source File Names

0S/400 standard shipped system names for source files for each type of
source (QCLSRC, QRPGSRC, QTXTSRC, QDDSSRC, QCMDSRC, QCBLSRC,
QPLISRC, QPNLSRC, QCSRC) should be used since they are the default values
on all the CL and CA 2E Toolkit commands that use source files; for example,
the OS/400 Create physical file (CRTPF) command or the CA 2E Toolkit Create
Object (YCRTOBJ) command.

Keep in mind:

m PL/1 copybook members should be kept in a QPLICPY file.

m C standard members should be kept in a file H.

You can use the CA 2E Toolkit create source physical files (YCRTSRCPF)

command to create a set all of these files in a specified library, including
descriptive text.

Source File Member Names

The name of each source file member should always be the same as the
corresponding compiled object name. Thus, if a program’s nhame is FRED, the
source for the program should be in a member called FRED. This makes it easy
to find source and check to ensure the source has a matching object. If the
object is a copy of another object, for instance, a work file that is a duplicate
of a permanent database file, create a dummy source member with the
appropriate name that contains the instructions for creating the duplicate
object from the original object.

E /*T: YOBJLST standard object list outfile :
! /*Y: CRTDUPOBJ OBJ(QPDSPOBJD) LIB(QSYS) OBJTYPE(*FILE) i
i /*Y: TOLIB(*CURLIB) NEWOBJ(YOBJLST) .

Standards for Text Descriptions and Titles

To allow for the automatic documentation and indexing of application systems,
create and maintain all fields, formats, file members, and objects with
descriptive text. Use the TEXT parameter on the commands to define or create
the respective entities. The descriptive text of source members should be the
same as the title line in the source. The descriptive text of objects should be
the same as the source member text. The text for commands should be the
same as that of the prompt text specified for the command (for example, as
on the PROMPT keyword on the CMD statement).

4-2

Standards Guide

40BStandard Source File Names

The CA 2E Toolkit Compile pre-processor will update member and object text
automatically from '‘Title’ source directives (T*) entered as comments in the
source. For more information, see the Toolkit Concepts Guide.

Title Lines for Database Files

The text for database files should provide information about the access path.
An index of the available access paths can then be effectively obtained directly
from a listing of the object descriptions (using the 0S/400 Display object
description (DSPOBJD) or Display library (DSPLIB) commands), from a listing
of the names of source members (made with the OS/400 Display file
descriptions (DSPFD) command with an option of TYPE (*MBRLIST), or using
the select facilities of SEU (EDTSRC/STRSEU)).

Standard text lines for database files:

i CL /*T: YDSPRPT Display report Command processing :
i program */ |
i RPG T*: YDSPRPT Display reports i
f DDS T*: YDSPRPT Display report display file |

T *PP: ‘Filename’ (0| MM MM..|MM) (MM="x’) :
L Information about selection :

Information about key order :

0 = Unique, *NONE = none :

Descriptive text |

Format id. i

Title Lines for Execution Objects
The text for execution objects, for example, programs and device files, should
contain the object name of the command by which the objects are invoked, if

any.

Examples of text lines for execution objects:

Chapter 4: General Coding Standards 4-3

41BCommon Source File Coding Standards

™ YQ: Menufile (0]MNCD)
Menu file : format id is YQ, key order is
MNCD, UNIQUE key.

i ™ ZX: Batch file ("NONE)

Common Source File Coding Standards

The common coding standards for source files are described below.

Standard Banners in Source

The standard banner MUST be used in all source types. The purpose of the
banner is to indicate the author and original development date of the source,
and the system to which it belongs. The banner, which should be entered as
comment lines flagged as Header (*H) source directives, can be automatically
extracted by the CA 2E Toolkit Document Program (YDOCPGM) command to
form part of the system documentation.

Standard banner for fixed format types (RPG III, DDS, COBOL):

H/TITLE Calculate age of Methelusah. :

H* SYSTEM . THE WIDGET COMPANY. Sprocket stock system. : i
H* DATE-WRITTEN . 01/04/85 |

i H* PROGRAMMER . Aloysius Nebuchednezzar O’'Ther :
! H* (C) COPYRIGHT 1985 WIDGET CO LTD. : |

| [*T: Calculate set of sets not members of a set. */ !
! /*H: SYSTEM : THE WIDGET COMPANY. Sprocket stock system */ |
i /*H: PROGRAMMER : Ambrose Nero O'Veer */ f
i [*H: DATE-WRITTEN : 01/04/84 */ i

[*H: (C) COPYRIGHT 1984 WIDGET CO LTD. */ !

Standard banner for tag types (UIM):

4-4 Standards Guide

41BCommon Source File Coding Standards

i *T: Command help text for Widget commands i
! *H: SYSTEM : THE WIDGET COMPANY. Sprocket stock system |
i *H: PROGRAMMER : Ambrose Nero O’Veer i
: *H: DATE-WRITTEN : 01/04/84 i
i *H: (C) COPYRIGHT 1984 WIDGET CO LTD. |

Copyright Notice in Source

All source should contain a copyright notice in the banner with the form (C)
COPYRIGHT 20xx ‘Company name’.

Copyright Notice in Objects

You can use the following techniques to ensure that a copyright notice is
present in the binary code of an object:

m Device files: Use a constant conditioned never to be displayed.

E @CPYR 1. 30 1 COPYRIGHT i
*@CPYR B
COPYRIGHT 1987 Widgets Ltd. i

3 Copyright .
3 77 COPYRIGHT PIC X(26) i
i VALUE ('COPYRIGHT 1987 Widgets Ltd’) .

ENDPGM: RETURN
; COPYRIGHT: YCOPYRIGHT COPYRIGHT(Fred’) WIDGETS(*YES) DATE(1987)
: ENDPGM

Chapter 4: General Coding Standards 4-5

41BCommon Source File Coding Standards

Maintenance Comments in Source

If source is modified after the initial development, ‘maintenance’ source
directives (M*) should be added as comment lines to explain the reason for
the change. Each comment line should give the date of the change, who made
it, and a brief description of the purpose of the change.

Example of maintenance comment statements:

/*M: 84/01/04 FRED Add function to display totals if FO5 pressed */ i
/*M: 85/05/85 BASIL Correct bug in VAT calculation. */ |
/*M: 85/05/85 FRED Correct bug in BASILs correction. */ ‘

Formatting Source Code

On modern computers, most source is edited at a workstation display. This
means that source should be formatted to be as readable as possible when
viewed through the small (24 x 80) window of a workstation.

When you are formatting source code:
m Do not use an excessive number of blank lines

m Keep within 79 columns per line (71 for CLP, PL/1 and CMD source), so
that there is no need to window to read source

m Do not leave obsolete source lines ‘commented out’; delete them. Where
you must leave an obsolete source line, use several asterisks to help
highlight the fact that it is a comment line: it is easy to fail to notice that
an executable source line has been made into a comment. For example, it
is easy not to notice that the Z-ADD statement in the following line has
been commented out:

C* CALCULATE VALUE

IR Z.ADD*ZERO @QT.QT
C 5 MULT YYDVQT @QT,QT
C DIV YYDVPC @QT,QT

The following would be slightly better:

C 5 MULT YYDVQT @QT,QT
C DIVYYDVPC @QT.,QT

! c* Z-ADD*ZERO @QT.QT !

m Use section divider comments to mark off sections of source (see below).

4-6 Standards Guide

42BDDS Coding Standards for Files

Section Dividers in Source

To emphasize the logical subsections of code when viewing code at a
workstation, it is helpful to have dividing lines across the source. The same
three-level system should by used in all source types. Examples are given in
the appendix, "Programming and Coding Examples," in this guide.

Standard for section dividers of code:

FHEA KA XX KHRFEE Major section boundary
=========== |ntermediate boundary
................. Minor Boundary

DDS Coding Standards for Files

The following general standards apply to coding DDS for all file types (PF, LF,
DSPF, PRTF):

m A field reference file should be used, with all database field definitions
based on it.

m If specified, the DDS REFFLD keyword should be on the same line as the
field name:

m Where possible, both formats and fields should be coded in order of
usage/appearance. For instance: (1) key format, (2) detail format, (3)
confirm prompt.

The text specified for the DDS COLHDG keyword should be in lower case, as it
is the origin of the field text seen on most documentation, and should
furthermore be broken up into component words, if possible.

i A AGFLNM 10 COLHDG(' Input’ file’ ‘name’)

Chapter 4: General Coding Standards 4-7

43BHLL Coding Standards for Programs

HLL Coding Standards for Programs

Program Layout

Program coding standards are designed not only to make programs as
readable as possible at a workstation, but also to achieve a high degree of
consistency in the way in which programs are structured and the style in which
they are laid out. This makes it much easier for different programmers to
examine and maintain each other's work. It also makes it easier to copy
sections of code from one place to another.

There are a number of general principles to which HLL code should adhere,
regardless of the HLL used. Good code should be:

m Clear: It should be obvious from the code what the code does.

m Consistent: Use the same standard techniques throughout.

m Modular: Function should be isolated into self-contained units that can be
reused. Each module should have a well-defined interface.

m Structured: Each module should be systematically built up from regular
constructs.

m Robust: You should avoid coding in limits (for instance array size). You
should anticipate possible errors and code for a graceful collapse.

The following general standards apply to coding source for all program types,
such as RPG III, CL, PL/I, and CBL.

Program layout should be standardized. In order to reduce the time
programmers need to spend looking for information, place the same type of
information in the same relative location within the source. For instance, entry
parameter definitions should be at the beginning, and general error handling
at the end. The following is a generalized order for an HLL program:

1. Title

Banner

Global declarations, Entry parameters
Mainline

Subroutines

o v oA W

Standard subroutines

4-8

Standards Guide

43BHLL Coding Standards for Programs

Programs should be self-documenting. All programs should contain a synopsis
of function as Header (H*) source directives entered as comment lines at the
beginning of the program. There should be comments through the program,
making the overall structure clear. The synopsis should be sufficient to
establish the purpose of the program. The synopsis will be extracted by the CA
2E Toolkit documentation utilities. For example:

i SYNOPSIS: Displays customers in name order. New :
! customers may be added by pressing F09, 1
3 which invokes a separate program. 1

For more information, see the Toolkit Concepts Guide.

It is particularly important to document the relationships between data
structures. You normally need to understand the structures used in a program
in order to understand the program. When a structure is itself an element of
another structure, provide diagrams to illustrate the relationships, for
example, in PL/1 source.

The following is an example of a pointer-structure diagram:

,,

1 1. OBJs may have one or more OBJENT’s
OBJENTS are a doubly linked list

1 1.1 Each OBJENT may have one ore more OBJENTENT i

i OBJENTENTS are simple stack |

oBJ

! DTA_ptr OBJ_DTA
FST_mnuopt_ptr

LST_mnuopt_ptr

OBJENT

PRV_ptr

NXT_ptr
! DTA_ptr OBJENT_DTA
LST_mnuoptpar_ptr

*

*

OBJENTENT
’ PRV_ptr i
! DTA_ptr OBJENTENT_DTA !

Document programs with summary comments so that it is possible to
determine what is being achieved, without going into detailed code. For
example:

Chapter 4: General Coding Standards 4-9

43BHLL Coding Standards for Programs

* Calculate VAT

i C Z-ADD*ZERO @QT,QT i
: c @V1X LOKUP@VTY 60 3
i C 60 @Vvi MULT YYDVQT @QT,QT |
! * Calculate net price !
i C EXSR BBCANT !

The overall effect should be such that reading the comments should give an
overview of the program: structured English or pseudocode conventions may
be useful.

1. FOR EACH CUSTOMER !
1.1 READ ORDER FILE IN ORDER SEQUENCE i
1.2 FOR EACH ORDER FOUND i
1.2.1 ACCUMULATE ORDER QUANTITY1.2.2 PRINT ORDER DETAILS |

1.2 PRINT TOTALS FOR CUSTOMER i

Code and document your programs so that they can be read top to bottom.
For instance, consider the following two ways of coding the same control
structure:

| * Process each item in entry list :
i LOOP: IF (&COUNT *GT 10) THEN(GOTO NEXT) If all processed */ E
i &COUNT = (&COUNT + 1) i
3 do ... i
! GOTO LOOP !
3 NEXT: i

i * Process each item in entry list 3
! LOOP: &COUNT = (&COUNT + 1) !
i do ... i
i IF (&COUNT *LE 10) THEN(GOTO LOOP) if any remain */ i

The second way of coding the structure should be easier to follow because the
test condition is at the beginning. This is especially true if there is a significant
amount of intervening code within the loop.

Always write documentation at the time of development. This is not only to
ensure the documentation is written, but also because writing the
documentation as you go along should serve to clarify your thinking and make
it easier for you to program.

Documentation should always be concise and relevant. Too much
documentation is almost as useless as too little. Avoid repeating what is
already evident from the context, and try to make comments add meaning,
rather than just repeating the obvious.

4-10 Standards Guide

43BHLL Coding Standards for Programs

Document call interfaces carefully. The parameters, including allowed values
for a program, should be documented so that the program can be used with
reading the internal documentation.

If a program is called from many different places, its entry parameters should
be documented within the program source by means of a dummy call. The
correct code needed to invoke the program can then be included in the source
of a calling program by means of the “browse-copy” facilities of SEU.

The following is an example of coding dummy ENTRY call: RPG program
“Dummy” call:

,,,

e XALL ‘XDDSHPR Display Help

e WWMBNM PARM $SMBVN 10 I: Member name |
H***+* WWFLNM PARM $$FLVN 10 I: File ‘
e PARM $$LBVN 10 B: Library |
s PARM WWRTVM $$RTVM 7 O: RETURN MSG !
How used: I = tnput
0= Out?ut only
B =Input and output

Specify the names of called programs with literals. This will give better
documentation. For example,

CALL PGM(*XXUSX")

and not:

CALL PGM(&PGM)

If a program name must be a variable, consider placing dummy statements
with all the possible values coded as literals. The dummy statements will cause
the correct program linkages to appear in the output of the CA 2E Toolkit
Document program (YDOCPGM) and Document execution references
(YDOCEXCREF) commands.

The following is an example of coding dummy call statements.

In RPG III:

* CALL PRINT PROGRAM

i Cc¥* 01 CALL 'YDPRFLR’ Print file i
| Cc** 02 CALL ‘'YDPRFMR’ Print format i
! c¥* 03 CALL ‘'YDPRFDR’ Print field !
| C CALL $$PGNM Print program i

C PARM $$MBVN 10 I: Member name !

Chapter 4: General Coding Standards 4-11

43BHLL Coding Standards for Programs

/*H: Call print program

/* CALL PGM(YDPRFLR) Print file */
(

/* CALL PGM(YDPRFDR) Print field */

/ CALL PGM($PGM) PARM(&MBR)

i /¥ CALL PGM(YDPRFMR) Print format %/ !

Note: Keep subroutines small (two to three pages at most). Avoid heavy
nesting (four or five layers at most). This can be done by introducing routines,
and/or using CASE constructs rather than nested IF THEN ELSES. Use spaces
to make code readable.

For example, not:

IF ((&TIME *GT &0OPENING) & (&THIRST = ‘GREAT’) & (&MONEY *NE +
‘NONE’) CALL PBBYDRK (&GLASS &DRINK &SIZE &NUMBER &MONEY +
&LOCATION &RTNCDE)

IF ((&TIME *GT &OPENING) +
& (&THIRST = ‘GREAT’) +
& (&MONEY *NE ‘NONE’)) +
THEN +
CALL PBBYDRK (&GLASS &DRINK &SIZE &NUMBER &MONEY +
&LOCATION &RTNCDE)

,,,

Use parentheses to make clustering obvious. For example, ‘A=(B+1)*2’ is
preferable to ‘A= B+1 * 2'.

Avoid tests on negative conditions. Double negatives are harder to follow.
Company Name— The company name used on system reports, display
panels, and other places should be picked up from a data structure. The data
structure should be called YYCOTXA, and have 30 characters. This allows for

easy changing in the event of legal changes, takeovers, etc.

RPG III code to include company data area:

} C *NAMVAR DEFN YYCOTXA 40 :
! C IN + *NAMVAR !

4-12 Standards Guide

43BHLL Coding Standards for Programs

Date Handling—A lack of standardization in the format in which dates are
displayed to users (YMD, DMY, MDY) is a common source of confusion,
especially in multinational application systems. When you are programming to
handle dates, meet the following objectives:

1. Ensure the format in which dates are displayed is consistent throughout
the system

2. Ensure the format can be changed without reprogramming.

3. Ensure that the database’s normal access path facilities can be used to
retrieve records containing date fields in historical order.

; IS@SKDA E DSLSSKDAP
E *JX . Stock file. (0 Stock id fields)

**

It should be noted that there is an 0S/400 system value (QDATFMT) that
specifies the display format for dates. Recourse to this value should be made
when handling dates for display or for entry.

Given the above considerations, the following standards should be adopted to
ensure that dates are correctly handled:

m All dates should be stored on file in YMD format. In particular, the format
CYYMMDD is recommended, where C = zero for 20th century and one for
the 21st century. This may be held in packed format (P7.0) (or as YY +
MM + DD if read equal on year or month is required). Note that IBM use
the convention (where C is not specified) that when YY has a value
between 40 and 99, the year is between 1940 and 1999, while for YY
between 00 and 39, the year is between 2000 and 2039.

m File dates should be converted to display format by a call to the System
API QWCCVTDT. This can be used to convert from YMD format to the
format specified by QDATFMT.

m Display dates should be converted to file dates also by the QWCCVTDT
API.

m Where UPDATE is referenced in an RPG III program, care should be taken
to ensure it will always be in the correct format, regardless of system date
format (for example put a Y on the RPG III header specification to force it
to YMD).

Program Interfaces—Do not pass long lists of parameters between
programs; instead, pass them as a single parameter. Break up the single
parameter into individual fields, using an externally defined data structure in
the calling and receiving programs. This is more efficient in execution (each
parameter requires 512 bytes) and easier to change.

Chapter 4: General Coding Standards 4-13

43BHLL Coding Standards for Programs

Coding for iSeries

If you have a requirement to maintain versions of the same application on
iSeries, you should code to accommodate this requirement.

For this you will need to:

m Avoid using machine specific features (for example native iSeries CL
syntax)

m Parameterize or develop automatic conversion techniques for those
aspects of the application which should be different on each machine (for
example, command key usage)

In general, it is easy to code DDS, RPG III and command source to be
compatible on either machine, even in native mode. CL is more problematic.
Most of the considerations are given in the IBM *Migration Manual’. The
following specific tips may be useful.

DDS—Do not qualify names that appear in DDS, for instance with the DDS
REF, PRINT, or MSGCON keywords. Do not even use *LIBL as the qualifier
value.

Be consistent in your use of the following panel components:

m Command keys (for example, use FO3 for Exit on iSeries)

m Command key explanations (for example, ‘F3=Exit F5=Refresh’ on iSeries)
m Field leader characters (for example, ‘Customer . . :" on iSeries)

RPG III—There are no significant constraints on coding RPG III so that it can
be run on either machine. If you need to execute request strings dynamically,

use QCAEXEC (which is present on both machines) rather than QCMDEXC, the
iSeries native program.

Commands—Because of the slight differences between the 0S/400 and CPF
versions of CL, it is not always possible to design commands that are 100%
compatible with both 0S/400 and CPF.

For commands where such differences occur, you should:
m Design a common command processing program
m Create an alternative version of the command, following iSeries

conventions

Coding CL—You may use the presence or absence of the data area Q5728SS1
in QSYS to determine whether or not you are on iSeries (it only exists on
iSeries). The result can be used to condition subsequent processing.

4-14

Standards Guide

Chapter 5: Coding Standards for
Database Files

This chapter describes coding standards for database files. It details standards
for coding both field reference files and physical and logical files.

Note: Each application system should have a single field reference file,
containing definitions for all the fields in all the database files.

For more information on examples of the standards, refer to the appendix,
"Programming and Coding Examples".

Data Dictionary/Field Reference File

A data dictionary is a centralized repository of field and data definitions. It is
intended to:

m facilitate documentation—all definitions are in only one place

m minimize coding—definitions need to be coded only once

m facilitate change—definitions need be changed in only one place

The function of the data dictionary may be achieved effectively on the IBM i by

having a special physical file containing no data. Such a file is generally known
as a field reference file.

CA 2E can automatically generate a field reference file. However, since each
CA 2E model is effectively a data dictionary, you will probably only wish to
have CA 2E generate a field reference file if the generated applications will be
running on a machine that does not have CA 2E installed. CA 2E has a model
value YFRFVNM, which controls whether the code generated by CA 2E for files
refers to a field reference file or not.

Standard for Field Reference Files

The following standard applies to field reference files:

Chapter 5: Coding Standards for Database Files 5-1

Data Dictionary/Field Reference File

m If you are using the CA 2E systematic convention, always call the file
ssFDRFP, where ss is the System prefix and contains a single format called

@FDRF$$.

m The file should be structured into two parts: primary fields and secondary
fields. Refer to the appendix, "Programming and Coding Examples," for
examples.

Referring to the Field Reference File in DDS
Files of all types, device and database, should reference the field reference file
directly, not via another file. Logical files are an exception to this rule: they
always reference a physical file. This means that you can resolve all inquiries
about a field by looking directly in one place. It also simplifies the order in
which you need to recompile objects.

The following example illustrates the use of field reference files.

CA 2E Standard Method:

LF REFFLD
Field
REFFL reference
file
DSPF
REFFL REFFL REFFL

From the point of view of expressing design dependencies, the second method
is preferable. The first method is the recommended CA 2E standard for purely
pragmatic reasons.

5-2 Standards Guide

Data Dictionary/Field Reference File

Structuring the Field Reference File

A standard method should be used for organizing the field reference file for a
hand-coded application. The method provides a central dictionary of all fields
with as little effort as possible. The method suggests that you divide the field
reference file into two sections: a short primary section containing definitions
of field types (standard domains), followed by a larger secondary section,
which constitutes the main field dictionary. Both sections should be in
alphabetical order to facilitate inquiries and maintenance.

Primary Reference Fields

The primary reference field section should contain definitions for standard data
types used in the system; for example, dates, names, indicators, and standard
amount sizes.

Primary fields should not be referenced, except by secondary fields in the field
reference file; for example, system files should not refer to them directly.

POA @@DTDS 6 0 COLHDG('Date * * DD/MM/YY") 3
LA EDTWRD(/ / 0") |

The format identifier used for all primary fields should be ‘@@’.

Include a field for each of the dimensions used for system quantities; for
example, pounds sterling, tonnes weight, meters, and square meters.

Secondary Reference Fields

The secondary field section should contain definitions of all fields in the system
database files.

When the field is of a standard type, for example, already defined as a primary
field, the field should be defined by reference to its primary field—that is to
say using REFFLD(*SRC). In such cases, only the column headings need to be

redefined.

! A $$BTDT R REFFLD(@@DTDS)
! A COLHDG('Date of ‘Birth’ + |
| A (YYMMDDY) 1

Fields should only be defined with reference to a type field when there is a
genuine dependence. A simple test of this is to ask the question: If I were to
change the definition of the based-on field, would I want the definition of the
dependent field to change as well?

When appropriate (for example, for total fields) use relative lengths (+-)n to
increase or decrease field lengths with respect to the based-on field.

Chapter 5: Coding Standards for Database Files 5-3

Physical and Logical Database Files

Each field should be fully defined with edit codes/words, text, ranges, values,
display attributes, etc. Use the DDS COLHDG keyword rather than the TEXT
keyword as it provides neater documentation.

Note: It is important that definitions are as full as possible, as they constitute
the central reference information for the whole database.

The format identifier for all secondary reference fields should be ‘$$’. (This
may be controlled in CA 2E generated databases by the YFRFPFX model
value.)

Fields should be in alphabetical order within the section. They should be

indexed by mnemonic. This provides a self-updating list of the mnemonics that
have been used.

Physical and Logical Database Files

This section describes coding standards for database files. See the appendix,
"Programming and Coding Examples", for examples.

Database File Coding Standards: File Level
Use level checking on files in order to detect errors arising from changes to the
database definition—for example, specify LVLCHK(*YES) on the 0S/400 CRTPF
and CRTLF commands.
Create files that will continue to grow with SIZE(*NOMAX). Use the CA 2E

Toolkit Compile preprocessor to do this automatically every time you
recompile.

Format Level
The names of formats in logical files should be the same as for the format in
the underlying physical file, with the number of the particular logical view
appended, if necessary.

Field Level
All fields should be defined by reference to the field reference file.

Field names should be issued according to the CA 2E Systematic naming
convention cited at the beginning of this manual.

5-4 Standards Guide

Physical and Logical Database Files

Use the DDS COLHDG keyword to define the descriptions for all fields. Make
use of lower case. The descriptions you place on the field will be used in many
places; for example, DFUs, queries, and documentation, so it is worth making
them as “cosmetic” as possible.

Pack all numeric fields. The IBM midrange HLLs handle packed numeric fields
more efficiently than zoned numeric fields. Note, however, that you cannot use
the sub string function on packed numeric fields.

Make fields that hold text descriptions an even length, and specify a W shift.
This ensures they can be used for ideographic translations without the
truncation of ideographic shifts.

,,,

! A TEXT 50 REFSHIFT(W)
| A COLHDG(TEXT)

Include, as the last part of the COLHDG information, the abbreviation, in
brackets, for the dimension of the field (for example, the units in which the
field is held) or, if it has restricted values, the permitted values. For example:

,,

COLHDG(‘Order’ value' “($)")
COLHDG('Stock’ quantity’ ‘(QT)")
COLHDG('Discontinued’ ‘flag’ ‘(Y/N)’)
COLHDG('Member’ ‘Name’ ‘(VNY)’))

The following are standard abbreviations for units:

Abr - Unit Abr - Unit Abr - Unit
YYMMDD - Date $ - Value VN - Valid name
YY - Year QT - Quantity VM - Valid msg
WW - Week # - Number

MM - Month KG - Kilograms

Day - DD M - Meters

Chapter 5: Coding Standards for Database Files 5-5

Coding Standards for Display Files

Arrays

DDS does not provide support for arrays (for instance an OCCURS facility)
because the relational model upon which it is based does not allow arrays.
Even if you group fields into arrays within HLL programs, you should still
always define each element as a discrete database field, otherwise it cannot be
changed with DFU, or listed with Query. In other words, do not define an array
as a single field in the database and redefine it in a program.

Array fields should be given humbered names, for example PR0O1, PR02, PR0O3.
In the field dictionary, the definition of all elements should be based on that of
the first element by using the DDS REFFLD keyword.

! A $$TLO1 6 0 EDTCDE(3) :
3 A COLHDG(January’ ‘Total’) '
! A $$TLO2 R REFFLD($$TLO1) :
} A COLHDG(‘February’ ‘Total’) E
! A $$TLO3 R REFFLD($$TLO1) :
! A COLHDG(‘March’ ‘Total’) i
! A $$TLO4 R REFFLD($$TLO1) i
3 A COLHDG(‘April’ ‘Total’) i

Coding Standards for Display Files

This topic describes standards for coding the DDS for display files. For more
information, refer to the section, Design Standards for Display Files, in the
chapter, "IBM i General Design Standards".

Related Design Utilities

File Level

You can generate standardized DDS for panels directly from an CA 2E Toolkit
utility panel design by using the CA 2E Toolkit 0S/400 Create DDS from Panel
Designs (YCRTPNLDDS) command. CA 2E generates standardized DDS for
display files automatically.

SDA and RLU can be used to adjust designs.

This example shows the standard layout for all sources:

5-6 Standards Guide

Coding Standards for Display Files

1. Header block.
1.1 Title (T*: source directives).
1.2 Compile overrides (Z*: source directives), if any.
1.3 Standard banner (H*: and M*: source
directives).
2. Main body.
2.1 Formats in order of use.
2.2 Exception formats (e.g. Confirm prompt).
2.3 Program message subfile.

m Use the DDS CHGINPDFT keyword as a file level standard to set the
display default attributes.

If several formats are to be displayed at a workstation at the same time by
overlaying, use a value of DFRWRT(*YES) when creating the display file with
the 0OS/400 Create display file (CRTDSPF) command. This prevents there being
a flash as the separate formats are overlaid, and is also more efficient.

m Use a value of RSTDSP(*YES) on the CRTDSPF command so that if a
subprogram is called (for instance the Help display), the panel is restored
on return.

The CA 2E Toolkit Compile pre-processor can supply the necessary compiler
overrides automatically:

The PRINT key should be allocated on all panels: it should normally be
assigned to a print file called YPRTKEY$. This allows you to separate out print
key output, which is usually wanted locally and immediately, from other
system print output.

Use the DDS INDTXT keyword to document special indicators. You should also
specify text for each command key and each DDS SETOF statement.

A CAO03(03 ‘Exit program’)
A SETOF(31 ‘Invalid code’) !
A INDTXT(89 ‘ADD mode’) 1

,,,

Note: Wherever possible, use indicators in a standard manner; for example,
30 for HOME and 31-70 for field indicators. Do not use the alphabetic
indicators (KA-KG).

Chapter 5: Coding Standards for Database Files 5-7

Coding Standards for Display Files

Format Level

For more information on standard indicator usage, refer to the section,
“Coding Standards for HLL Programs”.

The alternative roll keys should be enabled so that scrolling can be done on
workstations with roll keys.

| A ALTPAGEDWN(CF07)
| A ALTPAGEDUP(CF08)

,,,

Enable the HELP key so that UIM help operates. You should also enable
ALTHELP. Declare a search index—use the system one if you do not have one
for your application.

! A HELP
! A ALTHELP
! A HLPSCHIDX(QSCHIDX)

Sub file sizes can be kept to a minimum by sizing them to be self- extending;
for example, SFLSIZ = SFLPAG + 1.

A subfile should stay positioned to the page last displayed by the user, unless
a validation error occurs, in which case it should be positioned to the first page
containing an error.

Make use of SFLNXTCHG with READC facility to reduce the number of records
that must be re-read to validate a subfile.

The following standards apply to coding Display file DDS at a format level:

m Use the DDS BLINK keyword as a record level standard—this makes the
cursor more visible.

m Use the DDS KEEP keyword on the last panel displayed by the program—
this prevents blank panels appearing between programs.

m Make FO3 a command action key (CA03, rather than a command function
key (CF03). This saves the user from having to enter values into fields to
satisfy DDS validation checks, as specified by the VALUES and CHECK
keywords, when ‘backing out’.

For example, with the following code, the user would have to enter a value of
‘Z' or ‘X" into field ##XX, even if he wished to merely press FO3 to exit:

A CF03(03 ‘Exit program’) 1
A #1XX 1 B 6 3VALUES(X ‘Z) !

,,,

Standards Guide

Coding Standards for Display Files

Help Text

[As a corollary, make the other command keys command function keys
(CFnn). This ensures that the user has to enter fields to meet DDS
validation checks when proceeding normally.

m Use the standard subfile names to relate subfile control records with their
subfile records. Use related names for the two additional formats needed
to show function key explanations and to show a *‘No items found

message’.

Record:Control

Description

#SFLRCD1: #SFLCTL1
#SFLRCDn: #SFLCTLn

First sub file
Nth sub file

#CMDTXTn:
#NODATAnN:

Nth command key text
Nth no data format

#MSGRCD : #MSGCTL

program Q message sub file.

Note: For CA 2E, these values are provided from the Device data table.

The following standards apply to coding Display file DDS help specifications at

a format level:

m Use the DDS HLPARA with *NONE to provide an overall default area.

m Use the following names for the labels of help groups:

HLPTITLE(' Select screen’) |
HLPARA(*NONE) :
HLPPNLGRP('ZSFCTZ1/PNL/ALL |
YYEDSCH) !

m Use the format name plus the following special names for standard

elements.

Standard help group names:

fmt/PNL/ALL
fmt/PNL/TOPINS
fmt/PNL/BOTINS

Catch all
Options
Command keys

Otherwise, use the format and field name as the label of help groups. Replace
any illegal characters (for example #), with a ‘Z".

Chapter 5: Coding Standards for Database Files

5-9

Coding Standards for Display Files

! * HELP TEXT :
HLPTITLE('Select screen’) !

H HLPARA(*NONE) |

HLPPNLGRP(ZSFCTZ1/PNL/ALL !

YYEDSCH)

* Header fields

H HLPARA(03 02 03 80)

HLPPNLGRP('ZSFCTZ1/Z1SFSL)
YYEDSCH)
H HLPARA(03 02 03 80)
HLPPNLGRP('ZSFCTZ1/TOPINS’)
YYEDSCH)

>>>r>>r >>>>

* Subfile columns
H HLPARA(10 03 19 06)
HLPPNLGRP(‘'ZSFCTZ1/Z1SFSL) |
YYEDSCH) 1
H HLPARA(10 04 19 14) i
HLPPNLGRP('ZSFCTZ1/Z1SCVN’) i

>r>>>>>

YYEDSCH)

,,,

Field Level

The following standards apply to coding Display file DDS at a field level:
m Define fields by reference to the field dictionary, using the DDS REFFLD

keyword.
! A REF(YYFDRFP)
! A #1CUCD R B 6 3REFFLD($$CUCD) !

m Use relative positioning for device file field positioning; for example, *+n’,
rather than absolute positioning (row n, column m).

m Use DDS field editing and validation where possible. This is more efficient
than program editing.

! A DATE EDTCDE(Y) |
3 A TIME EDTWRD(: :) |
! A #1CUCD R B +1REFFLD($$CUCD) CHECK(M10) |
3 A #1CUNM R B +2REFFLD($$CUNM) CHECK(VN) |
! A #1CUSS R B +2REFFLD(3$CUSS) CHECK(AB) !
| A VALUES(X 'Y") |

Make fields that hold text descriptions an even length, and specify a W shift.
This ensures they can be used for ideographic translations without truncation
of ideographic shifts.

Display File Coding Using MSGID

We recommend that you use MSGID for all your text literals. The following
particular standards apply:

m Always make MSGID and MSGCON fields an even length. This ensures
there will not be truncation of ideographic shifts.

5-10 Standards Guide

Coding Standards for Display Files

m Hard code the last colon or dot, if you are using MSGID or MSGCON for
your literals. This allows you to reuse messages, and ensure that
translators do not introduce errors.

Note: If you are using MSGID for your literals, use the message description
as the field name. The field name does not appear in your program. You may
need to append a letter to ensure that field names are unique.

For the panel title, column headings and other text elements, which occur on
most panels, use standard names to identify them.

Standard Text Element Field Names

The following are standard field names for text elements. (Ten characters are
used so that they do not clash with RPG program names).

PNLTTLMSID Panel title
OPINNMSID Top instruction
COLHDNnMSID Column headings
NODATAMSID No data
BOTTOMMSID “Bottom’
MOREMSID “More”
BOTINnNMSID Bottom instruction

Allow padding space for translation. Make instruction and column heading lines
the full length of the line.

Use the same message descriptions for help text headings as you use for field
prompts.

Display File Coding - Field Emphasis Standards
The use of emphasis (underline, high intensity, and color) should correspond
to standard meanings. For the IBM i, the display at tributes should follow the

recommendations of SAA CUA.

The preferred standards are as follows:

Standard Field Display Attributes

IBM i (CUA)
Field type HI UL PC RI CLR
Title Y WHT
Top BLU

instruction

Chapter 5: Coding Standards for Database Files 5-11

Coding Standards for Display Files

Standard Field Display Attributes

Label GRN
Data - Input Y Y WHT
capable:

Error

Data - Input Y GRN
capable

Data - GRN
Output only

RHS text GRN
Column Y WHT
heading

Note: Both standards place maximum emphasis on error fields and minimum
emphasis on the least important fields; for example, constants.

Do not use blink (DSPATR(BL)), as it is more annoying to the user than
helpful.

Fields that are in error should be highlighted in reverse image DSPATR(RI).
The cursor should be positioned at the first field in assigned to each input
capable field.

Wherever possible, reset error indicators from the panel using the DDS
SETOF(xx) keyword.

All panel text and column headings should normally use both upper and lower
case. Field labels that appear on the same line as the field they describe
should have a trailer and end with a colon.

Display File Coding Standards - Field Editing

The following standards apply to field editing:

m Suppress signs on numeric fields where they are irrelevant; for example,
on numeric codes, by means of the appropriate edit code or edit word.

m Edit dates, using the DDS edit word facility EDTWRD(* / / 0Q'). This
ensures that input capable fields, which are dates, are blank when zero.

m Edit time fields with EDTWRD(* : : 0). This ensures that input-capable
fields, which represent times, are blank when zero.

5-12 Standards Guide

Coding Standards for Printer Files

m Suppress leading zeroes when displaying amounts—but print zero
balances, since columns stand out better if they do not contain holes. For
example:

- The DDS PUTRETAIN keyword will normally be used with input-only
fields, so the operator may see the last field value entered.

- Right adjust with blank fill for numeric input fields; the DDS keyword
CHECK(RB) should be used.

If a list of allowed values is specified for an input-capable field using the DDS
VALUES keyword, set the MDT tag when first displaying the field, so as to
ensure that the field is checked (DDS validation is only applied if a field is
changed).

Coding Standards for Printer Files

This section describes standards for coding print files. Standards for file,
format, and field levels are described below.

An example of source for a printer file is given in the appendix, "Programming
and Coding Examples."

Related Design Utilities

Standardized DDS for reports may be generated straight from an CA 2E Toolkit
utility report design by using the CA 2E Toolkit Create DDS from a Report
Design (YCRTRPTDDS) command.

CA 2E creates standardized print file DDS automatically.

General Considerations
Certain general considerations apply to the coding of printer files.
Externally described print files should normally be used in preference to
program-described files, because:
m They are easier to code and change.
m They may be standardized to a greater degree.
m They provide support for translation into other national languages (for

example, by use of the MSGCON keyword).

The only circumstances under which it might be worth considering using a
program-described print file are if:

Chapter 5: Coding Standards for Database Files 5-13

Coding Standards for Printer Files

m there are a large number of arrays to be output

m complex overflow processing is required and the RPG cycle is being used

Sometimes, a program need only create a report in particular circumstances.
For example, a file maintenance program might need to produce a report only
if a change to the database was made. In such cases, you should make the
opening of the print file explicit (use the RPG III OPEN operation code), so that
unnecessary empty spool files are not created.

FORDERS$ OF E PRINTER uc
*$$: Printer file.
* if print requested, open order file

c $$OPFL IFNE Y’

C

C MOVE Y’ $3OPFL
c END

c WRITE$SORDHDR

OPEN ORDERS$ |

This example shows the standard layout for all source.

1. Header block.
1.1 Title (T*: source directives).
1.2 Compile overrides (Z*: source directives), if
any.
1.3 Standard banner (H*: and M*: source
directives).
2. Main body.
2.1 Page header formats.
2.2 Formats in order of use.
2.3 Exception formats (e.g. *NO DATA*).
2.4 End of report format.

File Level

The following standards apply to coding printer file DDS at a file level:

5-14 Standards Guide

Coding Standards for Printer Files

Format Level

m If a report will normally be printed on a special forms type, include a ‘line
up’ triangle to help the operator.

m If a report is produced at all by a program, it must have headings—even if

there is no data (print *** NO DATA **' in such a case).

m Printed reports should end by printing *** END OF REPORT **’ as the last
line in the report. This enables the user to be confident of having all the
pages of a report.

The following are the default printer file names:

QSYSPRT System prints, and system print
key.

QPRINT Program described reports.

QPJOBLOG Job logs.

YPRTKEY$ Print key: a different file is used

from QSYSPRT, so that print key
output (which is usually required
locally) can easily be redirected to
a local printer.

Note: Printer files should normally be created with scheduling defaults of
SCHEDULE(*FILEEND) and HOLD(*YES). This means that they must be
explicitly released on demand.

The following standards apply to coding Printer file DDS at a format level:

m Use space before (SPACEB) in preference to space after (SPACEA), so that

spacing only occurs if a format is actually printed.

m Use the standard names for device formats when possible. They are as

follows:

Standard Names Device Formats
ZRPTHDR Report headings.
ZPAGTOP Page top.
ZPAGHDR Page headings.
ZDTLHDRnN Item headings.
ZDTLRCDn Item detail line.
ZDTLTTLn Item totals.

Chapter 5: Coding Standards for Database Files 5-15

Coding Standards for Printer Files

Field Level

Standard Names Device Formats
ZFINTTL Grand totals.
ZENDRPT ‘End of data’ format.

For CA 2E, these values are provided from the Device data table.

Use the same indicator to detect overflow in all printer file programs.

The following standards apply to coding Printer file DDS at a field level:

Define fields by reference to the field dictionary using the DDS REFFLD
keyword:

Where printer file field names need to be different from the names of
database or display device fields from which they are derived, use a ‘$ for
the first character, instead of the system prefix.

Isolate text literals into message file descriptions.

Use relative positioning for device file field positioning, that is, *+n’ rather
than absolute positioning: this makes changing code easier.

777

DATE EDTCDE(Y)
TIME EDTWRD(" : :)

#1CUCD R B +1REFFLD($$CUCD) CHECK(M10)
#1CUNM R B +2REFFLD($$CUNM) CHECK(VN) |
#1CUSS R B +2REFFLD($$CUSS) CHECK(AB) ‘

VALUES('X YY)

Device File Coding - Use of MSGCON

Use MSGCON for all text literals. The following particular standards apply:

Always make MSGCON fields an even length. This ensures there will not be
truncation of ideographic shifts.

If you are using MSGCON for your literals, hard code the last colon of field
labels. This allows you to reuse messages, and ensure that translators do
not introduce errors.

o m e m o
|

* Output only field

! A USR0001 32 4 MSGID(USR0001 QUSRPMT) |
| A +1) 3
| A ##CONM R o + 3REFFLD($$CONM) 3
! A TEXT'Country’) w

5-16 Standards Guide

Coding Standards for HLL Programs

Allow padding space for translation. Make instruction and column heading
lines the full length of the line.

Printer File Coding Standards - Field Editing

The following standards apply to field editing:

Suppress signs on humeric fields where they are irrelevant, for example,
on numeric codes, by means of the appropriate edit code or edit word.

Edit dates using the DDS edit word facility, thus: EDTWRD(* / / 0'). This
ensures that input-capable fields that are dates, are blank when zero.

Edit time fields with EDTWRD(* : : 0). This ensures that input capable
fields, which represent times, are blank when zero.

Suppress leading zeroes when displaying amounts—but print zero
balances, since columns stand out better if they do not contain holes. For
example,

Not 12 But rather [12 00 |
| 45 . 00 45|
| | . 00 00 ;
14001 50 | 400.0 50.0 |

,,,,,,,,,,,,,,,,

Coding Standards for HLL Programs

This section describes coding standards for HLL programs, including CL, RPG
III, COBOL, and PL/1.

The program coding standards should not only make programs as readable as
possible at a workstation, but also achieve a high degree of consistency in the
way in which programs are structured and the style in which they are laid out.
This makes it much easier for different programmers to examine and maintain
each other's work. It also makes it easier to copy sections of code from one
place to another.

General Principles

There are a number of general principles to use when coding, regardless of the
HLL used. Good code should be:

Clear—It should be obvious from the code what the code does.
Consistent—The same standard techniques should be used everywhere.

Modular—Function should be isolated into self-contained units, which can
be reused. Each module should have a well-defined interface.

Chapter 5: Coding Standards for Database Files 5-17

Coding Standards for CL Programs

m Structured—Each module should be systematically built up from regular
constructs.

m Robust—Avoid coding in limits (for instance array size). Anticipate
possible errors and code for a graceful collapse.

Coding Standards for CL Programs

All programs should follow the standard layout. For example:

1. PGM statement, with any parameters.
2. Header block.
2.1 Title (T*: source directives).
2.2 Compile overrides (Z*: source directives), if
any.
2.3 Standard banner (H*: and M*: source
directives).
3. Parameter declarations (DCL statements), if
any.
4. Main body.
4.1 Parameter processing.
4.2 Authorisation and object existence checks.
4.3 Main processing.
5. Error handling.

Indent the program source to follow the logical structure of structured
program constructs, such as IF, ELSE, and DO. For example:

! IF CND(&FREDDY = “*FAT’) + !
| THEN(DO)]
| CHKOBJ OBJ(FATCAT) OBJTYPE(*PGM) !
: MONMSG MSGID(CPF9801 EXEC(DO) 3
| CALL PGM(CRTCAT) PARM(&FREDDY) !
! RETURN |
1 ENDDO }

All programs should use ‘H*:" source directives to document the main
processing stages. These will then automatically appear in the summary
documentation and provide a program synopsis.

For more information on documentation and the CA 2E Toolkit utilities
Document Program (YDOCPGM) command, refer to the Toolkit Concepts
Guide.

Declare entry parameters before all other parameters, and in the order that
they appear in the PGM statement. Include a text description of the variable
against each DCL statement. Where a field is a data structure, show
declarations of sub-fields, indented, below that of the major field. If the
parameter is an aggregate data structure, for instance a list parameter passed
by a command, document the structure as part of the comment:

5-18 Standards Guide

Coding Standards for CL Programs

/* Input parameters */

DCL VAR(&FL) TYPE(*CHAR) LEN(20) /* File. library (10 + 10)*/
DCL VAR(&FILE) TYPE(*CHAR) LEN(10) /* File name */
DCL VAR(&FLIB) TYPE(*CHAR) LEN(10) /* Library name */
DCL VAR(&MBR) TYPE(*CHAR) LEN(10) /* Member name */

DCL VAR(&MBROPT) TYPE(*CHAR) LEN(8) /* “ADD/ *REPLACE */
DCL VAR(X&CVTOPTS) TYPE(*CHAR) LEN(18) /* (2B+(2x8)) Convert opt */
DCL VAR(CVTOPTN) TYPE(*DEC) LEN(5 0) /* No of elements */
DCL VAR(XCVTOPTX) TYPE(*CHAR) LEN(8) /* Single element */

/* Work parameters */
DCL VAR(&MSGID) TYPE(*CHAR) LEN(7) /* Message identifier */

MONMSG MSGID(CPF0000) EXEC(GOTO ERROR)

Place general error handling at the end of the program. The standard error
handling should trap and resend any exception message.

This can be done as follows:

3 DCL &MSGID *CHAR 7 /* Message identifier */
3DCL &MSGF *CHAR 10 /* Message file */
'DCL &MSGFLIB *CHAR 10 /* Message file library */

MONMSG (CPF0000 YYYO0000) EXEC(GOTO ERROR)

/*H: 99. ERROR HANDLING */
ERROR: RCVMSG MSGTYPE(*EXCP) MSGDTA(&MSGDTA) MSGID(&MSGID) +
MSGF(&MSGF) SNDMSGFLIB(&MSGFLIB)

V2R2 of 0S/400 has new message APIs that allow you to handle messages
more efficiently. You should use them once they are available. The following
code carries out the same standard exception handling as shown above.

DCL &KEYVAR *CHAR 4 /* MESSAGE KEY */
'DCL &ERRCDE *CHAR 4 X'00000000°
MONMSG (CPF0000 YYY0000) EXEC(GOTO ERROR)

-
I
I

ENDPGM: RETURN

D

=

/*H: 99. ERROR HANDLING */

ERROR: RCVMSG MSGTYPE(*EXCP) RMV(*NO) KEYVAR(&KEYVAR)
CALL QMHRSNEM (&KEYVAR &ERRCDE) /* RESEND */
MONMSG CPF0000

GOTO ENDPGM

Field Names in CL Programs

Variable names should be meaningful. Variables used in commands should be
named after the relevant keyword with ‘&’ appended to the beginning; for
example SRCFILE(&SRCFILE). Use 0S/400 standard abbreviations where
possible.

Chapter 5: Coding Standards for Database Files 5-19

Coding Standards for CL Programs

For more information, refer to the 0OS/400 Programmer’s Guide.

Parameters passed between programs should, where possible, have the same
name in the calling and the called programs.

Calling program CL:

3 CALL PGM(UXCVTXC) PARM(&FILE &MBR)

,,,

/* Input parameters */ ;
DCL VAR(&FILE) TYPE(*CHAR) LEN(10) /* File name */ !
DCL VAR(&MBR) TYPE(*CHAR) LEN(10) /* Membername */ :

Parameters passed to command processing programs should, where possible,
have the same name as the parameter keyword—as specified by the PARM
statements in the command source.

Command source:

| PARM KWD(MBR) TYPE(*NAME) PROMPT(‘Member name:’) 1
| DFT(*FILE) SPCVAL(*FILE) |

/* Input parameters */

DCL VAR(&MBR) TYPE(*CHAR) LEN(10) /* Member name */

Use three-character mnemonics to build CL program labels; for example,
‘ENDPGM:’, ‘SNDERR:".

Where a parameter is a data structure passed from a command, for example,
a qualified name, use a short name for the parameter and give the sub fields

full names.

Command source:

5-20 Standards Guide

Coding Standards for RPG Il Programs

PARM KWD(OBD) TYPE(L) PROMPT(‘Job description:’) + |

| SNGVAL((*JOB))
HaL: QUAL TYPE(*NAME) DFT(QBATCH) /*OBJ*/
! QUAL TYPE(*NAME) DFT(*LIBL) SPCVAL((*LIBL) +

(*USRLIBL) (*ALLUSR)) PROMPT(‘Library:")

PGM PARM(&JL)
/* Input parameters */
DCL VAR(&JL) TYPE(*CHAR) LEN(20) /* Jobd.library
(10+10)
DCL VAR(&JOBD) TYPE(*CHAR) LEN(10) /* Jobd
description */
DCL VAR(&JOBDLIB) TYPE(*CHAR) LEN(10) /* Library name
*
CHGVAR &JOBD (%SST 110 &JL)
CHGVAR &JOBDLIB (%SST 11 10 &JL)

Coding Standards for RPG Ill Programs

This section describes coding standards for RPG III programs. For more
information, refer to the appendix, "Programming and Coding Examples".

These guidelines focus on designing programs that are easy to follow. The
discussion is grouped under the following headings:
m Program layout—Basic conventions for documentation and spacing.

m Coding structures—For historical reasons RPG III permits you to code
many different ways (for instance with or without the cycle, using
indicators or IF statements). Some of the ways should be avoided.

m Naming standards—Conventions for naming variables, formats, fields,
arrays, and indicators in a consistent manner.

m Techniques—Date handling, job information, file information, and
calculation checks.

Program Layout

All programs should follow the standard layout. Use continuous lines to break
the program up into its logical sections. Three characters are assigned
standard meanings:

Chapter 5: Coding Standards for Database Files 5-21

Coding Standards for RPG Il Programs

KKk Kk kkkkkk Kk Kk Kk kK Kk Kkk Kk kK Majorsectionboundary

a. Change of specification type.

b. Start of Main line C specs.
c. End of Main line C specs.

d. Between blocks of subroutines

===================== Minor section boundary
a. Start of subroutine.
b. End of subroutine.

c. Start of main line section.

............................... Subsection boundary

a. Section within subroutine.

Structured programming constructs should not cross subsection boundaries;
that is, the following should not occur:

Subroutines must be preceded by one or two lines of text to indicate their
function. This should follow the BEGSR statement. Use SR in columns seven
and eight of the BEGSR and ENDSR statements for greater readability, for
example:

m Different specification types should be separated by ‘/EJECT' statements.
Subroutines should also be separated by /EJECT' or ‘/SPACE 3’ statements.

Each file must be followed by a comment statement, which states its contents.
For logical files, the access path will preferably be indicated. (Text should be
the title line for the file). The comment should be after rather than before the
statement, as that gives a better effect on compilation listings:

FYDSCDAL1IF E K DISK
| * SA: SCREEN FILE (0] SCSQ | SCVN) !

Each input record/data structure should be followed by a comment statement
to indicate such things as its function and contents. For example:

5-22

Standards Guide

Coding Standards for RPG Il Programs

i IPGMDS ESDSY2PGDSP
* Program data structure.

IJBDTTM DS

* Job dateftime.

i I 1 60##JDT !
| 1 208HIYY
| | 3 408#IMN

,,,

Code files in order of frequency of use—input primary or display files should
appear first. Place ancillary files last.

RPG lll Coding Structures and Program Logic

Use of GOTO

Except where there is a good reason for using the RPG cycle, programs should
be fully procedural. Procedural programs are generally easier to follow, as well
as to debug. In addition, if you are using the RPG cycle, the input primary file
of an RPG III program, which updates the file, is allocated to the program with
an exclusive update lock. This is not recommended as it can prevent other
users from accessing records on the file.

Structured programming operations should be used wherever possible; for
example use IF rather than COMP. This is because they are easier to follow
than COMP statements and indicator comparisons, and therefore are less likely
to contain coding errors. The corresponding END and ELSE statements should
indicate the matching operation in the comment column (positions 61-79). The
CA 2E Toolkit Tidy RPG III Source (YTDYRPGSRC) command can be used to
document structured constructs automatically.

Avoid explicit branching altogether, that is, the use of the RPG III GOTO, CAB,
and TAG operations. If you do use explicit branching, restrict it so that you
only employ structured programming constructs, NEXT and PREVIOUS; that is,
branch only to the beginning or end of the current loop, never to an arbitrary
point. The only legitimate use of the GOTO or CAB statements should be to
achieve an ‘ITERATE' or a ‘QUIT".

ITERATE DOW
GOTO

END

QUIT

Chapter 5: Coding Standards for Database Files 5-23

Coding Standards for RPG Il Programs

Only use a GOTO statement to branch to a point within the same subroutine.
Never use a GOTO statement to branch from a subroutine to a point in the
mainline code.

Use CAS operations in preference to nested IF/ELSE operations; they are
easier to follow:

Do this Not this
A CASEQB X1VLRC A IFEQB
A CASEQC X2VLRC .
A CASEQD X3VLRC ELSE
END A IFEQC
ELSE
A IFEQD
END

Avoid nesting structured programming operations too deeply—for instance
more than three or four levels of nesting in a given subroutine level. If more
are needed, use another subroutine.

Keep the amount of code within structured programming constructs as short
as possible. RPG III comment lines may be indented to follow the logical
programming constructs:

* Read all records from DBF file
*INLR DOWEQ' O’
READ QLIDOBJD LR
For each record found:-
C NLR DO

Do something

Programs should be as structured as possible. A program is not ‘structured’
just because it only uses structured operation codes. A structured program is
one that is modularized in an efficient way, and built up out of the structured
programming constructs—SEQUENCE, CONDITION (CASE) or ITERATION, and
structured combinations thereof. The constructs might even be implemented
logically (for instance with GOTOs and TAGs used in a structured manner)
rather than with specific HLL structured operation codes.

Avoid testing compound negative conditions when possible because they are
harder to understand.

5-24

Standards Guide

Coding Standards for RPG Il Programs

CALL SUBPROGRAM, END IF CKO01
C CALL ‘XXXX’ LR
LR RETRN

,,,

F3 (IBM i) should result in the user exiting completely from a program. Where
a program calls several levels of subprogram, each subprogram may need to
test for the exit condition.

Calling Program Exit Conditioning Logic:

CALL SUBPROGRAM, END IF CKO01
C CALL XXXX' LR
C LR RETRN

,,,

PROGRAM XXXX, IF CK01 end
01 SETON LR EXIT
RETRN

The RPG III statements used to code the reading of a group of records from a
file should be highly standardized.

A standard loop should be used because:

1. It stresses the device independence of the data. The file name, which is all
that differs between different instances of the loop, appears at the
beginning of the code.

2. It serves as a standard construct that other programmers can instantly
recognize as signifying the retrieval of a set of records. Although RPG III
only has operation codes that will process one record at a time (for
example, READ/READE), there is very often a requirement to process a
whole set of records from a file (for example, all order records for a given
customer). The loop construct emphasizes the set nature of your
processing, which is generally easier to understand.

There are two ways of coding such a loop:

m Using two READs and a single DOW loop.

Chapter 5: Coding Standards for Database Files 5-25

Coding Standards for RPG Il Programs

* Read all records from file
* Position on file & read first record
SETLLfilename XX
READ filename XX
. No records found processing

C
C

*

For each record found:-
C * INxx DOWEQ0
* ... Record found processing

*

*

Read next record

C READ filename XX
C * INxx IFEQ 1’
* ... Last record processing
C END Fl xx= 0
C END WOD *xx= ‘0’

m Using one READ:

* Read all records from file
* Position on file

C SETLLfilename XX
* ... No records found processing

*

Cc * INxx DOWEQ'0
* Read next record
C READ filename XX
* For each record found:-
Cc * INxx IFEQ ‘0’
* . Record found processing
C ELSE XFl *xx =0’
* ... Last record processing
C END Fl xx= 0
C END WOD *xx= ‘0’

Which standard loop is preferable? The second method is probably slightly
more efficient because it requires only one READ statement (each READ
statement requires a large number of MI instructions to execute). However,
the first loop is ‘less tricky’, and therefore, preferable. Here are two examples
of using the loop:

Standard Loop Reading a Database File:

* Read all batches
* Position on batch and read first record

C KBTDA1 SETLL@BTDAZX 87
C $$BTCD READE@BTDAZX 87
* For each record found:-
C *IN87 DOWEQ' 0O’
* If stock is current, accumulate quantity
C ZXBTSS CASEQQ’ BAUPRC UPDATE REC
* Otherwise, delete record
C CAS BADLRC DELETE REC
C END SAC ZXBTSS=Q
* Read next record
C $$BTCD READE@BTDAZX 87
C END WOD *87 =0’

5-26 Standards Guide

Coding Standards for RPG Il Programs

Note: If appropriate, the SETLL and initial READE may be combined as a
CHAIN.

Standard Loop Reading a Sub file:

* Read changed subfile records
C READC#SFRC#1 88
* For each record found:-
C *IN88 DOWEQ'0’
*1f‘Z, display item
C ##SLSS CASEQZ BAUPRC DISPLAY REC
*If P, print item
C ##SLSS CAS ‘P BBPRRC PRINT REC
C END SAC ##SLSS=Z
C READC#SFRC#1 88
C END WOD *88 =0

Use the RPG III EXFMT operation code in preference to a separate WRITE and
READ statements for display files because it is more efficient.

Standard RPG Il Subroutines

System-wide subroutines should have names beginning with the letter *Z’. You
may use the RPG III /COPY statement to include the subroutines if you wish.
The following are two common examples:

Message Sending Subroutine—This subroutine calls an CA 2E Toolkit utility
subprogram to send a message to the calling program’s message queue. From
V2R1 of 0S/400 the QMHSNDPM API can be used instead.

*IF FIRST MESSAGE IN CYCLE, SEND

f C N99 CALL 'YYSNMSC’ 3
| C PARM #PGVN 10 Message q. :
! C PARM *SAME’ ##PGRL 5 REL queue |
| C PARM MSGID 7 Message id. ;
! C PARM MSGF 10 Message file i
| C PARM MSGDTA 132 Message data |
3 C PARM *INFO’ MSGTYP 7 Message type 3
i * Clear all fields for default mechanism next time. :
| C MOVEL*BLANK MSGID Message Id. i
! C MOVEL*BLANK ~ MSGF Message file. |
3 C MOVEL*BLANK ~ MSGDTA Message data. |

Message Executing Subroutine—This subroutine calls an CA 2E Toolkit
utility subprogram to retrieve a request string stored in a message file, and
executes it.

Chapter 5: Coding Standards for Database Files 5-27

Coding Standards for RPG Il Programs

C CALL 'YYRTMSC Retrieve MSG
C PARM MSGID 7 l:Message id
C PARM MSGF 10 l:Message fl
C PARM MSGDTA132 I:Msg data

C PARM MSG 132 O:Msg Text
C PARM MSGLEN 50 O:Msg Length

* EXECUTE

C CALL ‘QCMDEXC’ 99

C PARM MSG 132

C PARM MSGLEN $SRQLN 155

Format Names in RPG Il

Where a format has to be renamed, for example, because it appears twice in a
program, it should be renamed to a name of the form @MMMMx, where
@MMMM was the original format name, and x is the suffix of the logical file
that is being renamed. Field names can likewise be renamed from yyMMMM to
yXMMMM.

FYMMNDALOIF E K DISK

F @MNDAYJ KRENAME @MNDAYJO
*YJ: Menu file. (OMNCD)

FYMMNDAL1IF E K DISK

F @MNDAYJ KRENAME @MNDAYJ1
*YJ: Menu file. (MNNM)

File access operations, such as READ, CHAIN, and READ, should use the
format name, rather than the file name.

* Update batch record

$$BTCD CHAIN@BTDAZX 91
UPDATEBTDAZX 99
END Fl*91 =0

; c |
: c “IN91 IFEQ ‘0’ !
3 C :
1 c 1

RPG Il Field Names

Program field names should follow the rules laid out in the naming convention.

5-28 Standards Guide

Coding Standards for RPG Il Programs

The names of fields should, wherever possible, be the same as those in the file
from which they are obtained. This helps to standardize the naming of fields,
and also makes clearer the mapping of fields between files. If necessary, a
different prefix can be used to indicate that the field is a work field or a device
field: for example, JJCUCD could give P1CUCD, #1CUCD, and WWCUCD.

Work field: 1l MM MM

FowaFaaaan Mnemonic

¥ i nammammmmm-n Format identifier

Note: Format identifier: ‘I’ is either the format identifier from a database or a
device file or work prefix.

‘Wx’ is reserved for internal RPG IIl work fields.
‘Pn’ is reserved for passed parameters.

Note: Mnemonic: MMMM is a mnemonic constructed according to the rules
given in the chapter on naming conventions.

C MOVE SASKQT L1SKQT Accumulate
CL1 ADD L1SKQT L2SKQT Accumulate
CLR Z-ADDL2SKQT LRSKQT Accumulate

For the names of fields which act as accumulators, use an appropriate prefix +
the mnemonic of the field being accumulated. This helps to make mapping a
field from format to format, clear.

There are some exceptions to the above rules:

m Arrays—The names of arrays should begin with the character ‘@’, and
otherwise consists of one, two or three letters, for example @X, @LN,
@PRC. This leaves space for an index.

m Array indices—The names of array indices should, if possible, relate to
the names of the arrays they index. For example, they should contain the
same letters and be prefixed by a '$’ instead of an ‘@’. They should also be
short, since indexed occurrences of arrays must fit into RPG III calculation
specification fields. For example, $X might be the name of the index for
array @X, giving @X,$X as an occurrence, $LN for array @LN, giving
@LN,$LN.

m Standard fields—Fields that serve the same common role in many
different programs may use a single three-character mnemonic to indicate
that they are standard fields; for instance, xxRTN - the return code. CA 2E
uses this technique.

Chapter 5: Coding Standards for Database Files 5-29

Coding Standards for RPG Il Programs

Parameter fields—Fields that are parameters passed to other types of
programs may, in order to keep the field names the same in both
programs, take the field name as it appears in the other program. For
instance, in the following example, ‘MSGID’ and ‘MSGDTA' is a field name
that does not conform to the normal RPG naming convention. However, it
is the name used in the CL message-sending program that is being called.

RPG Ill Subroutine and Label Names

Given that RPG III source code is edited on-line using a small (24 x 80) panel,

it is important to make an effective use of subroutine and label names. The
subroutine and label naming conventions for RPG III described below are
intended to do two things:

1. Help distinguish between the major and minor sections of the code.

2. Indicate whether you need to scroll forwards or backwards to find a
section of code.

Subroutine names and label names should take the following forms:

Hierarchy prefix—'XX' is a hierarchy level prefix, which is the same for all
labels in a given subroutine, and is:

Start XX MM MM BEGSR
End XX CEXIT ENDSR
*eeemaaaaa Mnemonic
¥ eeccemcaaaaa- Hierarchical prefix

Subroutine mnemonic—MMMM is a mnemonic describing the subroutine:

‘AA’ for the main stem.
‘BA-BZ’ for second level routines.
‘CA-CZ’ for third level routines.

“iA-iZ’ for nth level routines.

**UA-UZ’ for utility routines (not hierarchical).

‘ZA-ZZ’ for standard routines, e.g. ZASNMS
(message).

The following are reserved standard subroutine mnemonics:

5-30

Standards Guide

Coding Standards for RPG Il Programs

DLRC - Delete record.
EXFM - Display format.
INIT - Initialization.
1Z#1 - Initialize subfile #1.
PRKY - Process key fields.
PR - Process panel.
UPRC - Update record.
VLKY -Validate key fields.
VLDA -Validate data fields.
LDSF -Load subfile.
PMCF - Prompt confirm.
CKRL - Check relations.
EXPG - Exit program.

ZA SNMS - Send message.
MVpp - Set up record for format pp.

EXIT - End subroutine label.

Label Naming Convention
m Hierarchy prefix—'XX' is a hierarchy level prefix, as described above.

m Label number—of the form '‘010’, see example below.

TAG label : XX nnn

BEE T Sequence number

S Hierarchical prefix

The following diagram illustrates the use of different subroutine and label
prefixes at different levels.

Example of Use of Labels and Subroutine Names:

Chapter 5: Coding Standards for Database Files 5-31

Coding Standards for RPG Il Programs

i Main stem Level 2 Level 3 !
! AAD10 TAG !
, EXSR BASBRT BEGSR i
‘ BAO10 TAG !
! . EXSR CCSBRT BEGSR :
3 . . cCo10 TAG
: CCEXIT ENDSR |
i BB020 TAG !
! BAEXIT ENDSR ‘
; . BBEXIT !
AA020 TAG 3

| AAEXIT ENDSR

RPG lll Parameter and Key Lists

The names of parameter lists should relate to the program they call. The
names of key lists should generally relate to the file with which they are
associated.

The following naming convention should be used for key lists and parameter
lists:

m List type: ‘P’ for a PLIST, ‘K’ for a KLIST.

m Mnemonic (MMMM):

Parameter List: ‘P’ MM MM Q
Key list 'K MM MM Q
*— - - - - Optional
suffix
M T Mnemonic
Fammmm e mmmm.—. List type

- for a PLIST, the mnemonic of the program being called
- for a KLIST, the mnemonic of the format being read

m Suffix (Q): A suffix used to distinguish between lists for the same
format/program.

In standard programs, it may however, be more appropriate to name key lists
after the role they perform; for example KRST, KPOS.

Note: *ENTRY PLIST statements should be placed at the beginning of the
calculation specifications. Other PLIST, KLIST and DEFN statements should be
placed at a point just before their first use. This facilitates the copying of code
from one program to another.

5-32 Standards Guide

Coding Standards for RPG Il Programs

*IF ACTIVE CUSTOMER

C ##CUSS COMP ‘A’ 94

C 9% Z-ADD1 ##CUCN

C 94 CAS CDACCU ACTIVE
C END SAC 94

The *ENTRY PLIST should be labeled to indicate each field’s contents, and
whether it is an input or output parameter, or both.

RPG Illl Standard Indicators

The RPG III indicators (such as, 01-99) should be used as little as possible, as
they are difficult to reconcile with structured programming. The number of
indicators available is in any case fixed, so it is best to reserve their use for
the places where you are obliged to use them. Ideally, indicators should only
be used to:

m communicate with external files

m handle errors on database files

Note: Avoid using numeric indicators to condition code execution. Where
branching is conditional on a test, it is clearer to repeat the test, rather than
use an intermediate indicator.

Where you need to use a logical indicator, for example, because a test is too
complicated to repeat easily, it is often better to define your own variable and
give it a meaningful name, rather than use one of the RPG III numeric
indicators.

Chapter 5: Coding Standards for Database Files 5-33

Coding Standards for RPG Il Programs

KA-KG : Should not be used for command keys,
as they cannot be set on, nor documented
with the DDS INDTXT keyword.
01-24 : Command keys and/or command
function keys
25-29 : Function keys

26 : Print

27 : Roll up
28 : Roll down
30 : Home

31-79 : Deuvice file fields/field errors
79-31 : Field conditioning indicators

i 80 7 SLFCLR 1) I :
3 81 : SFLDSP (51) !
! 82 : SFLEND (55) ;
! 83 : INVITE |
! 84 : SFLNXTCHG (56) ;
| 86 : PUTOVR ;

90-99 : Volatile work indicators (60-69)
90 : Record does not exist
91 . Record locked
92 : Subfile record not found

95 : Level 1 nested read loop (66)
96 : Level 2 nested read loop (67)
97 : Level 3 nested read loop (68)

98 : Error on subfile line
99 : Global error

Try to give the same meaning to indicator usage throughout a system. This
makes it easier to understand programs. Use specific indicators for functions
that are common to many programs, such as command keys, and use a
different range of indicators for functions that are specific to a particular
program, or part of a program. Indicator usage should follow the following

convention:

| CSR ZBRQMS BEGSR |
. *SCANSTRING FOR @ SYMBOL - SETON 60 IF FOUND |
¢ 1 DO 80 $X 30 |
| c @X$X CABEQ@ UAEXIT 6
0 * i

Note: The usage of certain indicators has been revised since the previous
edition of these standards. The old values are shown in brackets.

Using standard indicators in device files should be documented in the device
files using the DDS INDTXT, SETOF, CAnn or CFnn keywords; it should not
need to be repeated in the RPG III program source.

5-34 Standards Guide

Coding Standards for RPG Il Programs

Document the use of non-volatile indicators (for example, those which have a
global scope rather than a local use). For example, **IN87 = Company is
insolvent’.

* OPEN FILE IF NOT ALREADY OPEN |

C OPFLSS IFNE 'Y’ i
C OPEN YYMNFLP |
C MOVE Y’ OPFLSS 1 i
C END FI OPFLSS :

Where an indicator is returned/required by a subroutine, document its
meaning at the beginning of the subroutine.

Techniques in RPG Ill Programs

Handling Dates in RPG I

IPGMDS sSDS

*PROGRAM DS
| *PROGRAM ##PGVN
| 81 90 ##PGLB
| 244 253 ##JBVN
| 254 263 ##USVN
| 264 2690##JBNO

All dates should always be converted to YYMMDD or CYYMMDD format before
being output to a database file.

Remember that dates obtained from use of the RPG III TIME operation are in
the format specified by the 0S/400 QDATFMT system parameter, while the
format of the RPG III UDATE field depends upon the H specification of each
individual RPG III program.

The program header specification should have a Y in column 39, to ensure that
UDATE is present in YYMMDD format, regardless of system date format.

RPG Il Job Name/Operator ID

The user profile name and job name should appear on panels and reports.

Use the program status data structure, defined with an 'S’ in column 18, to
retrieve information about the operator, for example, user profile name, job
name, and job number. Never ‘hard code’ the user profile name or program
name as a literal.

An externally described file may define the program data structure:

Chapter 5: Coding Standards for Database Files 5-35

Coding Standards for RPG Il Programs

‘ IINFDS# DS |
3 I B 370 3710##CSLC !
| - CURSOR LOC: LN/CL, HX||HX |
| I B 378 3790##SFLN |
| * SUBFILE LINE. !

Uses of the File Information Data Structure

Because it is so easy under 0S/400 to redirect a file, either by use of the
library list, or by an explicit override, confusion can arise as to which file was
actually used for a report or display. Consider including the file and library
name on the report or display—the names can be obtained from the file
information data structure.

777

The file information data structure can also be used to obtain the current line
number, so that subfiles can be re-displayed, while still positioned at the same
place.

An externally described file may also define the file data structure.

FLSSKDAP IF E K DISK KINFDS INFDS !
IINFDS DS |
* FILE USED INF DS i

| 83 92 ##FLNM |
*File name |

| 93 102 ##LBNM |
*File library name !

| 129 138 ##MBNM |
*File member name !

| B 156 1590##FLRC |
*No of records in file !

Calculation Checks
Always test that a divisor is not equal to zero before dividing with it.

Example of Testing Divisor Value:

m If a calculation result field for a report or display overflows, fill it with
*HIVAL, such as 999s.

m Unless specifically told not to, always half-adjust when adding together
two fields of different precision levels.

5-36 Standards Guide

Coding Standards for COBOL Programs

Coding Standards for COBOL Programs

The majority of the guidelines given in this section are concerned with making
the COBOL code easy to follow and understand, and the intent clear. The
section is grouped under the following headings:

m Program layout—Basic conventions for documentation and spacing.

m Coding techniques—Preferred methods for using structured coding
techniques.

m Naming standards—Conventions for naming variables (formats, fields,
arrays, indicators) in a consistent manner.

m Techniques—Date handling, job nhame/operator ID, calculation checks.
All examples presented use COBOL ‘85 syntax, unless otherwise stated.

Note: For more information on the standards for COBOL programs, refer to
the appendix, "Programming and Coding Examples."

Language Standards

Program Layout

Do not use COBOL language features identified as obsolete in the ANSI
standard, as these elements will be deleted in the next edition of the standard.

On the IBM i, use COBOL '85 in preference to COBOL ‘74.

Numeric variables should be declared as signed, odd-length, COMPUTATIONAL
(packed decimal). This gives a more efficient implementation.

All programs should follow the standard layout (see example).

Although not all sections are mandatory, incorporating them into a default
program skeleton together with additional standard sections (such as exit
program and display messages), provides a basis from which to continue
coding.

Chapter 5: Coding Standards for Database Files 5-37

Coding Standards for COBOL Programs

1. Compiler overrides (PROCESS statements)
2. IDENTIFICATION DIVISION
2.1 Title /TITLE statement
2.2 Compile overrides (Z*: source directives), if any
2.3 Standard banner (H*: and M*: source directives)
3. ENVIRONMENT DIVISION
3.1 Configuration section
3.2 Special names section
3.3 1/0 section
3.4 1/O control
4. DATA DIVISION
4.1 File section
4.2 Working storage section
4.3 Linkage section
5. PROCEDURE DIVISION
5.1 Mainline section
5.2 Standard sections
5.2.1 ZASNMS - Send messages
5.2.2 ZYEXPG - Exit program
5.2.3 ZZINIT - Initialization

Use continuous lines of comments to break the program up into its logical
sections. Use the following convention:

kok ok k Kk ok ok ok hk ok k k ok k Kk Kk ok ok ok k k k Majorsectionboundary
a. New division.

b. Mainline section.

=============== Minor section boundary
a. Start of subroutine.

b. End of subroutine.

........................... Subsection boundary

a. Code group within section.

Gk ok ok ok ok k ok k kR R ok k ok R ok k k k kK Kk ok ok ok ok ok ok ok ok ok ok kK Kk koK oKk ok kK kKKK KK

MAINLINE SECTION.

EXIT.

Gk ok ok ok ok k ok ok kR Kk k ok ok ok k Kk kK Kk ok ok ok k ok kK Kk ok koK Kk ok ok okok ok kK Kk kK K K

/EJECT

5-38 Standards Guide

Coding Standards for COBOL Programs

UAEXIT.
EXIT.
/EJECT

Note: Structured programming constructs should not cross-subsection
boundaries. For example, the following should not occur:

f * Retrieve user data

| CALL Y2RTJBR’ USING
| JOB-CONTEXT

| END-CALL

3 * Initialize values

i MOVE A TO B

ZZEXIT. 3
EXIT. !
JEJECT 3

Subroutines (in other words COBOL SECTIONS, must be preceded by one or
two lines of text to indicate their function. This should follow the SECTION
statement.

UAEXIT.
EXIT.

IF (C-10-ERR) THEN
PERFORM

| END-PERFORM !
3 ELSE 3
! IF (C-NO-RECORD) THEN :
| END-IF i
3 END-IF 3

Chapter 5: Coding Standards for Database Files 5-39

Coding Standards for COBOL Programs

Note: Different sections should be separated by the '/ * compiler directive in

the continuation area, which directs the printer to advance to a new page. To
identify this line further, a standard comment should follow this, for example
‘EJECT".

SPECIAL-NAMES. OPEN-FEEDBACK IS OPEN-FEEDBACK-AREA,
1-O-FEEDBACK IS |-O-FEEDBACK-AREA.
/EJECT
INPUT-OUTPUT SECTION.
FILE-CONTROL.

I-O-CONTROL.
/EJECT

DATA DIVISION.

FILE SECTION.

JEJECT
WORKING-STORAGE SECTION.
JEJECT

Gk ok ok ok Kk ok Kk K K K K k ok K Rk k ok ok k k ok ok ok ok Kk Kk Kk Kk KK KK KK KKK KK KKK

LINKAGE SECTION.

Place each phrase of a file declaration on a new line. A comment statement,
giving its full text name, must follow each file declaration statement:

SELECT JQCUREL1 :
ASSIGN TO DATABASE-JQCUREL1 |
ORGANIZATION IS INDEXED 1
ACCESS MODE IS DYNAMIC |
RECORD KEY IS EXTERNALLY-DESCRIBED-KEY ;
FILE STATUS IS FILE-STATUS. !

* RTV: Customer data Retrieval index :

: CALL "Y2CLMSC’ USING |
! ZAPGM :
! ZAPGRL |
3 END-CALL ;

A comment statement to indicate its function, contents, etc should precede
each input record/data structure:

5-40 Standards Guide

Coding Standards for COBOL Programs

Job context.
01 JOB-CONTEXT.
COPY DDS-ALL-FORMATS OF Y2PGDSPK.
Job date/time.
03 IJBDTTM.
05 ZzZJDT PIC 9(6).
05 ZZJDTE REDEFINES ZZJDT.
07 ZZJYY PIC 9(2).
07 ZZJMM PIC 9(2).
07 ZzZJDD PIC 9(2).
05 ZZJTM PIC 9(6).
05 ZZ JTME REDEFINES ZZJTM.
07 ZZJHH PIC 9(2).
07 ZZINN PICT9(2).
07 ZzZJSS PIC 9(2).

Code files in order of frequency of use. Generally, this will correspond to
placing the most important file first. For interactive programs, this will be the
display file. For batch programs, this will be the main file being processed.
Place ancillary files last.

Coding Structures and Program Logic

Use structured programming operations where possible. For example, use
IF/END-IF rather than GO/LABEL.

Make use of the THEN and CONTINUE noise words to emphasize the structure.
For COBOL ‘85, use an inline PERFORM statement if more than one statement

lies within the THEN group, and use explicit scope terminators (such as END-IF
and END-PERFORM) on all multi-statement constructs.

ITERATE PERFORM UNTIL

ki GO *
QUIT
END-PERFORM

Avoid explicit branching (the use of the COBOL GO operation) as much as
possible. Where you do use explicit branching, try to do so in a structured
way, and to build up structured programming constructs, NEXT and
PREVIOUS. In other words, branch only to the beginning or end of the current
loop, never to an arbitrary point. The only legitimate use of the GO statements
should be to achieve an ‘ITERATE' or a ‘QUIT".

Chapter 5: Coding Standards for Database Files 5-41

Coding Standards for COBOL Programs

Use of GO

Only use a GO statement to branch to a point within the same subroutine.
Never use a GO statement to branch from a subroutine to a point in the
mainline code. Although this can be accomplished using COBOL, it should be
regarded as being contrary to the basic tenets of structured programming.

Avoid nesting structured programming operations too deeply. For example,
more than three or four levels of nesting in a given section level. If more are
needed, use another section.

Programs should be as structured as possible. A program is not ‘structured’
just because it only uses structured operation codes. A structured program is
one that is modularized in an efficient way and built up out of the structured
programming constructs—SEQUENCE, CONDITION (CASE) or ITERATION, and
structured combinations thereof. The constructs might even be implemented
logically (for instance, with GO statements used in a structured manner)
rather than with specific HLL structured operation codes.

The COBOL statements used to code the reading of a group of records from a
file should be highly standardized.

A standard loop should be used because:

m [t stresses the ‘device independence’ of the data. The file name, which is
all that differs between different instances of the loop, appears at the
beginning of the code.

m It serves as a standard construct that other programmers can instantly
recognize as signifying the retrieval of a set of records. Although COBOL
only has operation codes that will process one record at a time (such as
READ), there is very often a requirement to process a whole set of records
from a file (for example, all order records for a given customer). The loop
construct emphasizes the ‘set’ nature of your processing, which is
generally easier to understand.

5-42

Standards Guide

Coding Standards for COBOL Programs

READ loop - COBOL '85:

i * Position on file & read first record i
' SET C-INDICATOR-OFF(xx) TO TRUE
: MOVE LOW-VALUES TO fmtname OF filename-R i
i START filename !
i KEY NOT EXTERNALLY-DESCRIBED-KEY |
: FORMAT IS * fmtname * 1
END-START |
H * 10 error processing !
; READ filename NEXT ;
| FORMAT IS * fmtname * !
I END-READ ;
* No records found processing !
1 * For each record found:- ‘
: PERFORM UNTIL(C-EOF) w
i * Record found processing ‘
* Read next record ;
. READ filename NEXT !
i FORMAT IS ‘fmtname’)
: END-READ 1
IF (C-EOF) THEN 1
H * Last record processing !
: END-IF ;
E END-PERFORM !

Standard COBOL Subroutines

System-wide standard subroutines should have names beginning with the
letter ‘Z’. You may use the COBOL COPY statement to include the subroutines
if you wish. Standard subroutines for the following functions are given below:

m Message Sending Subroutine—This subroutine calls a CA 2E Toolkit
program to send a message to the calling program’s message queue.

V2R2 of 0S/400 has a message sending API QMHSNDPM you should use
instead.

Chapter 5: Coding Standards for Database Files 5-43

Coding Standards for COBOL Programs

m Message Executing Subroutine—This subroutine calls a standard
subprogram to retrieve a request string stored in a message file and
execute it. The program used to execute the string is the 0S/400
QCMDEXC program.

* Execute message ‘Display output queue’
MOVE ‘USR0033’ TO ZAMSID
CALL Y2EXMCC USING
WORTN
* Message id
ZAMSID
* Message file
ZAMSGF
* Message data
ZAMSDA
END-CALL
MOVE SPACES TO ZAMSGF
MOVE SPACES TO ZAMSDA

* Error on program call will terminate run unit
IF (WORTN NOT = SPACES) THEN
* Error detected during execution.
SET C-INDICATOR-ON(99) TO TRUE
END-IF

Naming Standards in COBOL

Where a format has to be renamed (such as when it appears twice in a
program), it should be renamed to a name of the form ZMMMMx, where
ZMMMM was the original format name, and x is the suffix of the logical file that
is being renamed. Field nhames can likewise be renamed from yyMMMM to
yXMMMM.

COBOL Field Naming Convention

Wherever possible, the names of fields should be the same as those in the
externally described file from which they are obtained. This helps to
standardize the naming of fields, and also makes the mapping of fields
between files, clearer. If necessary, use a different prefix to indicate that the
field is a work field or a device field. For example, JJCUCD could give P1CUCD,
Z1CUCD, and WWCUCD.

Work field : I MM MM

* * Mnemonic
*. Format identifier

Format identifier—'II' is either the format identifier from a database or a
device file, or else a work prefix.

5-44 Standards Guide

Coding Standards for COBOL Programs

‘Wx’ is reserved for internal COBOL work fields.
‘Pn’ is reserved for passed parameters.

Mnemonic—MMMM is a mnemonic constructed according to the rules given in
the chapter about naming conventions. Note that MMMM is not restricted to
four characters in COBOL, but can be extended up to the limit of the operating
system to give more meaningful names.

For the names of fields which act as accumulators, use an appropriate prefix +
the mnemonic of the field being accumulated. This helps to make the mapping
of a field from format to format, clear. For example:

Special cases:

m Program control variables. Fields which do not appear in any externally
described file should be given meaningful names prefixed by a ‘C-’; for
example, C-CHANGE-MODE. Use a hyphen between words.

m Arrays. Indicate that a variable is an array by a suffix *-A’; for example XF-
A.

m Array indices. The names of array indices should, if possible, relate to the
names of the arrays they index; they should contain the same letters
without the suffix. For example, XF might be the name of the index for
array XF-A, giving XF-A(XF) as an occurrence.

m Standard fields. Fields that serve the same common role in many different
programs may use a single three-character mnemonic to indicate that they
are standard fields; for instance, xxRTN - the return code. The CA 2E
application generator uses this technique.

m Parameter fields. Fields that are parameters passed to other types of
programs may, in order to keep the field names the same in both
programs, take the field name as it appears in the other program.

For instance:

Chapter 5: Coding Standards for Database Files 5-45

Coding Standards for COBOL Programs

COBOL Subroutine and Label Names

Given that COBOL source code is edited online using a small (24 x 80 or 24 x
132) panel, it is important to make an effective use of subroutine and label
names. The subroutine and label haming conventions for COBOL described
below are intended to:

m help distinguish between the major and minor sections of the code

m indicate whether you need to scroll forwards or backwards to find a section
of code

m relate labels to section names

Subroutine names and label names should take the following forms:

Start : XX MM MM SECTION
End : XX ‘EXIT’ EXIT
* Mnemonic
* Hierarchical prefix

Subroutine Naming Convention

m Hierarchy prefix—'XX’ is a hierarchy level prefix, which is the same for
all labels in a given subroutine:

‘AA’ for the main stem.
‘BA-BZ’ for second level routines.
‘CA-CZ’ for third level routines.

‘iA-IZ’ for ith level routines.
‘UA-UZ’ for utility routines (not hierarchical).

‘ZA-ZZ’ for standard routines, e.g. ZASNMS,
message.

m Subroutine mnemonic—MMMM is a mnemonic describing the subroutine.
The following are reserved standard subroutine mnemonics:

5-46

Standards Guide

Coding Standards for COBOL Programs

CRRC Create record.
CHRC Change record.
DLRC Delete record.
EXFM Display format.
INIT Initialization.
1ZSF Initialize subfile.
1ZZ1 Initialize subfile fields
PRKY Process key fields.
PRSF Process subfile record.
UPRC Update record.
VLKY Validate key fields.
VLDA Validate data fields.
VLRC Validate subfile record
LDSF Load subfile.
PMCF Prompt confirm.
CKRL Check relations.
EXPG Exit program.

ZA SNMS Send message.
MVpp Set up record for format pp.
EXIT End subroutine label.

Labels should be named to stress the construct type according to the following

convention.

Note: This section primarily applies to COBOL ‘74, which lacks consistency in

its ability to handle the most commonly used structured constructs. It is

recommended that pseudo-constructs, with structured GOs, be used instead.

Label naming convention:

xxZz-9999-type(-END)

(CASE

(SELECT/SELECT-END

(IF/IF-END

Construct type (UNTIL/UNTIL-END
(WHILE/WHILE-END

- Sequence number
Hierarchical prefix

m Hierarchy prefix—'XX' is a hierarchy level prefix, as described above. (In
CA 2E, a suffix of Y or U is added to indicate whether the construct is part

of the fixed program logic or user-defined; for example BBY-, XXU-).
m Label number—A four-digit integer to make the label unique.

m Construct type—A keyword indicating the structured programming

construct the label represents.

Chapter 5: Coding Standards for Database Files

5-47

Coding Standards for COBOL Programs

COBOL Parameter and Key Lists

The following naming convention should be used for naming data structures
that represent key lists in order to make the association between the data
structure and the file that it reads, clear:

m List type: 'K’ for a KLIST.
= Mnemonic (MMMM): the mnemonic of the format being read.

m Suffix (Q): A suffix used to distinguish between lists for the same
format/program. For example, if the format name was ZABAFQQ, the key
list would be KABAF.

In standard programs, it may be more appropriate to name key lists after the
role they perform; for example, KRST and KPOS when using restrictor and
positioner keys.

COBOL Standard Indicators

Use the FILE-STATUS indicators to communicate with files. For each FILE-
STATUS value, declare a Level 88 item with a meaningful name. For example,
declare level 88 items for use in testing indicators, for example:

m Use the SET statement to turn indicators on or off, for example:

- The DDS indicators (01-99, etc.) should be used as little as possible,
as they are difficult to reconcile with structured programming. The
number of indicators available to program with is in any case fixed, so
it is best to reserve their use for the places where you are obliged to
use them. Ideally, indicators should only be used to:

¢ communicate with external files

¢ handle errors on database files

One method you can use to do this is to declare those most commonly used
indicators individually, with those remaining being manipulated, using the
above method.

Thus, try to give the same meaning to indicator usage throughout a system.
This makes it easier to understand programs. Use specific indicators for
functions that are common to many programs, such as function keys, and use
a different range of indicators for functions that are specific to a particular
program, or part of a program.

Usage of standard indicators in device files should be documented in the
device files using the DDS INDTXT, SETOF, CAnn or CFnn keywords. It should
not need to be repeated in the COBOL program source.

Comment the use of non-volatile indicators—those which have a gl isl scope
rather than a local use; for example 'IND(87) = Company is insolvent’'.

5-48

Standards Guide

Coding Standards for PL/1 Programs

Handling Dates in COBOL

All dates should always be converted to YYMMDD or CYYMMDD format before
being output to a database file.

For more information about data handling, refer to the chapter, "General
Coding Standards."

Note: All Dates should always be converted to YYMMDD or CYYMMDD format
before being output to a database file.

COBOL Job Name/Operator ID

The user profile name and job name should appear on panels and reports. You
should never *hard code’ the user profile name as a literal—always get it from
the data structure.

Since this information is readily available from the PGMDS of an RPG III
program, one technique is to call a standard RPG III subprogram to obtain
information about the operator—user profile name, job name, job number.

You should place the program name in a variable. This facilitates renaming or
copying the program.

The program data structure may be defined using an externally described file.
This helps to standardize its use.

Calculation Checks

When carrying out calculations, always test that a divisor is not zero before
dividing with it.
Example of testing divisor value:

m If a calculation result field for a report or display overflows, fill it with
999s.

m Unless specifically told not to, always half-adjust when adding together
two fields of different precision levels.

Coding Standards for PL/1 Programs

These guidelines are concerned with making programs easy to follow. The
section is grouped under the following headings:

Chapter 5: Coding Standards for Database Files 5-49

Coding Standards for PL/1 Programs

m Program layout—Basic conventions for documentation and spacing.
m Coding structures—Recommended standard procedures.

m Naming standards—Conventions for naming variables, formats, fields,
procedures, and label names in a consistent manner.

m Techniques—Date handling, job information, calculation checks.

Program Layout

All programs should follow the standard layout:

1. PROCEDURE statement
2. Header section
2.1 I*T: Title statement */
2.2 Compile overrides (Z*: source directives), ifany
2.3 DCL statement for PGMID variable
2.4 Standard banner (H*: and M*: source directives)
3. Main body - as required by block structure
3.1 Declarations & Copybook statements
3.1.1 Input parameter declarations
3.1.2 Output parameter declarations
3.1.3 File declarations
3.1.4 External procedure declarations
3.1.5 Built in function declarations
3.2 Main processing
3.3 Standard copybooks
3.3.3 ZZINITIALIZE - Initialization

Place the program name in a variable at the beginning of the program. This
variable should have the same name for every program, for example,
@PGMID. Use this variable wherever the program name is needed (for
example, on message sending). This makes it easy to rename the program, or
to copy code.

Use only one PL/1 statement per line. Use continuous lines to break the
program up into its logical sections.

Yappdtad1i: PROCEDURE ($appcde,$alwsel);

/*T: YEDTMDL Select Application area */

/*Z: CRTPLIPGM GENOPT(*OPTIMIZE) */

DCL @pgmid CHAR(10) STATIC INIT(‘YAPPDTAD1I'); /* THIS PGM */ :

Three characters are assigned standard meanings:

5-50 Standards Guide

Coding Standards for PL/1 Programs

Major section boundary

Gk ko ok kR ok ok ok ok kR Rk ok ok koK K

a. Between blocks of procedures

Minor section boundary

a. Start of procedure

b. Start of main line section

Subsection boundary

a. Section within procedure

Structured programming constructs should not cross-subsection boundaries;
that is, the following should not occur:

: IF (IND(01) = 1) !
! THEN DO;

| /* Exit processing */

! CALL Yappdtad1i (#sflctl1i.appcde,Y’);

The END statement of a procedure should include the procedure name as a
label. For example:

Procedures should be separated by ‘%PAGE’ directives.

Procedures should be prefaced by one or two lines of text to indicate their
function. This should follow the PROCEDURE statement.

: %PAGE; 3
3 YY_Calc_iq: PROCEDURE; i
! [f=======================z=z===z=z==z====== % i
' /* Calculate AS/400’s 1Q using HALs algorithm */ }
! *=======z===z=z==z==z==z===z==z==z=======z===z===== ¥ |
i ww_sysiq = 99999; !
: END YY_Calcig; 3

Use the following convention to emphasize the logic:
m PL/1 Keywords: Uppercase (such as PROCEDURE)
m Variable names (including file names): lowercase (such as ‘fred”)

m Procedure names: Lowercase, beginning with a capital letter (such as
‘Feedfred’)

Chapter 5: Coding Standards for Database Files 5-51

Coding Standards for PL/1 Programs

Indent code to reflect the structured programming constructs. The standard
indentation is three characters per level.

! /* Application area / :
| IF (#sfictl1_i.appcde =") 1
; THEN DO; i
| IF (SUBSTR(#sflctl1_i.appcde,1,1) = *?) |
i THEN DO; i
i CALL Yappdtad1_i (#sflctiti.appcde,’Y’); 1
; END;]
| IF (#sf Ictl1_i.appcde = ‘) |
; THEN DO; i
| @appdta_key.appcde = ;#sflctl1_i.appcde; |
i yappdta00l_rtncde = *Y’; ;
i READ FILE(yappdta00l) INTO(@appdta) KEY(@appdta_key) i
OPTIONS(RECORD(‘@appdta’)); ‘
| IF (yappdta00l_rtncde = ‘N’) |
; THEN DO; i
i CALL ZM_Sndpgmmsg ('Y2V0140',ADDR(#sflctl1_i.appcde)); !
; RETURN; ;
| END; |
i ELSE DO; 3
i #sflcti1_o.appnme = @appdta.appnme;END; /* FI */ 1
i END; /* FI */ 1
| END; /* FI */ |
3 END; /* FI ¥ i

Declaration of Variables
Modularize variable declarations. At the main procedure level, only declare
those variables that are true global variables. Declare other variables within
the appropriate block: do not give variables a wider scope than is necessary.

It is generally preferable not to factorize variable declarations, as it makes it
harder to scan for the existence of a particular variable declaration.

Not:

DCL (abc) CHAR(15);

But rather:

DCL a CHAR(15); /* Apple */
DCL b CHAR(15); /* Banana */
DCL ¢ CHAR(15); /* Clove */

DCL $gross_pay DEC(9 2); /* I, Gross weekly pay */
DCL $income_tax DEC(9 2); /* O; Income tax payable */

For structured variables, use level numbers, such as 1, 5, 10, and 15. This
allows for subsequent insertion of new levels.

5-52 Standards Guide

Coding Standards for PL/1 Programs

3 DCL 1 Person_record, /* Personnel data record */ i
} 05 Name, /* Employee name */ :
! 10 First_name CHAR(15), /* Employee first name */ !
i 10 Last_name CHAR(15), /* Employee surname */ 1

05 Date_of_birth DEC(8), /* Employee dob (CCYYMMDD) */
05 Number DEC(5), /* Employee number */
05 Job_title CHAR(20); /* Job title */

DCL $PARM DEC(7,0); /* Global variable */ w
A_Process: PROCEDURE; !
DCL A_pgm CHAR(10); /* Variable used in A_Process */]

Each file declaration should be preceded by a comment naming the contents of
the file. For logical files, the access path will preferably be indicated. Declare
the file and its related control data structures, such as record, key, and return
code, together. This facilitates the copying of code.

o e e iiiieioaoo . —
*/

/* Application details file - by file */

DCL yappfilool FILE RECORD INPUT SEQUENTIAL KEYED

| ENV(INDEXED DESCRIBED); ;
3 DCL 1 @appfi, ;
: %INCLUDE yappfil00l(@appfil, RECORD); |
3 DCL 1 @appfilKEY, !
| %INCLUDE yappfil00l(@appfil, KEY); 1
; DCL yappfil0OOL_RTNCDE CHAR; ;
: ON ENDFILE(yappfilOOL) yappfil0Oirtncde = ‘N’; i
f ON KEY(yappfilOOL) yappfilOOlrtncde = ‘N’; '

It is essential to have the same file usage throughout all programs that will
form a single run unit. If file usages conflict, an execution time error is almost
inevitable. For example, not as follows:

A:PROC;
DCL yappfil0Ol FILE RECORD INPUT SEQL
ENV(INDEXED DESCRIBED);

B:PROC;
DCL yappfil00l FILE RECORD UPDATE DIRECT
ENV(INDEXED DESCRIBED);

Copy Books

Use standard copy book members to declare standard structures. Standard
structures for which there should be copy books include:

Chapter 5: Coding Standards for Database Files 5-53

Coding Standards for PL/1 Programs

m Indicators
m Open feedback areas
m File information feedback areas

m Sub file control variables
The following examples illustrate copy books for these structures.

Copy Book for Indicators:

; ofyINCLUDE QPLICPY (indicators); /* Screen indicator array. */ 1
LT |
3 i*H: COPYBOOK : Indicator definitions ;
§ QZH: SYSTEM : SPROCKETS & WIDGETS 1
i /1H: PROGRAMMER: PW * j
i ;*H: COPYRIGHT 1989 WIDGETS LTD * i
i : DCL 1 indicators, /* Device file indicators ~ */ 1

05 maxrcdlen BIN(15) UNALIGNED, /* Maximum record length

% %INCLUDE QPLICPY (opnfdb); /* Open feedback area i
e
| ¥/ ;
i /*H*: COPYBOOK : Open feedback area i
i /*H:/SYSTEM : SPROCKETS & WIDGETS 1
% /*{H: PROGRAMMER : PW i
§ /}H: COPYRIGHT 1989 WIDGETS LTD i
% D/CL 1 opnfdb, /* Open feedback area i
§ */ 05 odptyp CHAR(2), /* ODP type j
§ : 05 fil CHAR(10), /* File name 1
i : 05 lib CHAR(10), /* Library name ;
% : 05 fillo1 CHAR(22), /* not used i
! */ !

5-54 Standards Guide

Coding Standards for PL/1 Programs

Copy Book for I/O Feedback Area Variables - Display File

| %INCLUDE QPLICPY (iofdbdbf); /* /0 feedback - DBF o
i) o
3 /*H: COPYBOOK : /O feedback area - Database file * :
3 /*H: SYSTEM : SPROCKETS & WIDGETS * :
: /*H: PROGRAMMER : PW oo
} /*H: COPYRIGHT 1989 WIDGETS LTD WA
' DCL 1 iofdbdbf, /*1/0 feedback - DBF oo
| 05 fillo1 CHAR(20), /* not used A
] 05 fmtvnm CHAR(10), /* Record format name */ |
; 05 fillo2 CHAR(12), /* not used ! :
' 05 rcdlen BIN(31) UNALIGNED, /* Record length A
} 05 fillo3 CHAR(98), /* not used A
] /* Database file feedback area * / !
} 05 fillo4 CHAR(19) /* not used */ 1
| 05 ditind CHAR(1), /* Deleted X'10’ not X'00" */ |
i 05 nbrkeyfld BIN(15) UNALIGNED, /* No. of key fields * :
' 05 fillo5 CHAR(4), /* not used WA
} 05 keylen BIN(15) UNALIGNED /* No. of key fields VAR
' 05 mbrnbr BIN(15) UNALIGNED, /* Data mbr no oo
} 05 rednbr BIN(31) UNALIGNED, /* Rel rcd no in data mbr */ 1
! 05 key CHAR(120); /* Key value(variable) oo
i JH ee e oo
i %INCLUDE QPLICPY (iofdb_dspf); /* 1/O feedback - DSPF */ :
' o e e A
3 /*H: COPYBOOK : /0 feedback area - Display file 1o
' /*H: SYSTEM : SPROCKETS & WIDGETS A
} /*H: PROGRAMMER: PW o
! /*H: COPYRIGHT 1989 WIDGETS LTD * ;
3 DCL 1 iofdb_dspf, /* 11O feedback area WA
! 05 offset BIN(15) UNALIGNED, I* Offset * :
3 05 fillo1 CHAR(142), /* not used o
! 05 devdep_iofdb_dspf, |
} 10 fillo2 CHAR(2), /* not used o
| 10 aid BIT(8) ALIGNED, /* AID byte */ 1
f 10 rowcol BIN(15) UNALIGNED, /* Display rowcol * 1
i 10 fillo3 CHARC(6), /* not used o
i 10 sflrcdtop BIN(15) UNALIGNED; /* SFLRCD after ROLL ke */ 1
i A e i T o

05 devdep_iofdb_prtf,
10 linnbr BIN(15) UNALIGNED, /* Current line number */
10 pagnbr BIN(15) UNALIGNED; /* Current page number */

| %INCLUDE QPLICPY (iofd_bprtf); /* /0 feedback - PRTF VA
! e e e e e e VA
| /*H: COPYBOOK : I/O feedback area - Print file VA
i /*H: SYSTEM : SPROCKETS & WIDGETS A
| /*H: PROGRAMMER: PW VA
; /*H: COPYRIGHT 1989 WIDGETS LTD o
! DCL 1 iofdb_prtf, /*1/0 feedback area */ 1
; 05 offset BIN(15) UNALIGNED, /* Offset o
! 05 fillo1 CHAR(142), /* not used o

Chapter 5: Coding Standards for Database Files 5-55

PL/1 Coding Structures and Program Logic

Copy Book for Subfile Control Variables

} %INCLUDE QPLICPY (sflctl); /* Subfile control variables * :
! A e e P o
i /*H: COPYBOOK : Subfile control variables o
: /*H: SYSTEM : SPROCKETS & WIDGETS o
} /*H: PROGRAMMER : PW VA
| /*H: COPYRIGHT 1989 WIDGETS LTD o
} DCL /* Screen control fields A
! sflrcdchar CHAR(4), /* SFLRCD from read modified o
i sflpag DEC (4), /* SFL page * 1
! sflrcd DEC (4), /* SFL record no o
3 sflredmax DEC (4); /* Max SFL record no * ;
! A e o

PL/1 Coding Structures and Program Logic

Keep programs small and manageable—500-1000 lines is the maximum length
recommended.

Structured programming operations should be used where possible. For
example, use IF rather than GOTO. The corresponding END and ELSE
statements should indicate the matching operations by means of comments.

DO WHILE (z);
IF (x)
THEN DO;
SELECT;
WHEN (a)
DO;

! END; !
; WHEN (b) 3
| DO; }
3 END; |
; OTHERWISE :
: DO; i
i END; 3
; END; /* SAC */ 3
; END; /* FI ¥/ |
; END; /* WOD */ i

5-56 Standards Guide

PL/1 Coding Structures and Program Logic

Use SELECT structures in preference to nested IF/ELSE statements— they are
easier to follow:

Do this Not this
SELECT; IF (a)
WHEN (a) . . . THEN
WHEN (b) . .. ELSE DO;
WHEN (c) . . . IF (b)
END; THEN
ELSE DO;
IF (c)
THEN
END,;
END;

Note: Avoid nesting structured programming operations too deeply, such as
more than four or five levels of nesting in a given procedure level. If more are
needed, use another procedure.

Programs should be as structured as possible. A program is not ‘structured’
just because it only uses structured operation codes. A structured program is
one that is modularized in an efficient way, and built up out of the structured
programming constructs - SEQUENCE, SELECTION (CASE) or ITERATION, and
structured combinations thereof. The constructs might even be implemented
logically (for instance with GOTOs and labels used in a structured manner)
rather than with specific HLL structured operation codes.

Avoid testing compound negative conditions when possible—they are harder to
understand, for example, not:

IF (A&B)| (A&B) | (A&B))

The PL/1 statements used to code the reading of a group of records from a file
should be highly standardized. A standard loop:

m stresses the ‘device independence’ of the data. The file name, which is all
that differs between different instances of the loop, appears at the
beginning of the code.

m serves as a standard construct that other programmers can instantly
recognize as signifying the retrieval of a set of records. Although PL/1 only
has operation codes that will process one record at a time, there is very
often a requirement to process a whole set of records from a file, such as
all order records for a given customer. The loop construct emphasizes the
‘set’ nature of your processing, which is generally easier to understand.

Chapter 5: Coding Standards for Database Files 5-57

PL/1 Coding Structures and Program Logic

/* Read all records from file */

/* Position on file & read first record */

@fmt_keykeyfld =. . .

file_rtncde = Y’;

READ FILE(file) INTO(@fmt) KEY(@fmt_key)
OPTIONS(RECORD(‘@fmt’));

IF (file_rtncde = ‘N’)

THEN DO;

3 No records found processing i
| END; |
i DO WHILE (file_rtncde = Y’); 1
| /* For each record found . .. */ |
3 Record found processing i
| /* Read next record */ i
; READ FILE(file) INTO(@fmt) !
| OPTIONS(RECORD(@fmt)); |
| END; |

End of file processing

Standard Procedures

Use standard copy book members to declare standard procedures. Standard
procedures for which there should be copy books include:
m message sending

m string handling

System-wide procedures should have nhames beginning with the letter ‘Z".

5-58 Standards Guide

PL/1 Coding Structures and Program Logic

Message Sending Procedure

This procedure calls a subprogram to send a message to the calling program’s
message queue.

/*H: COPYBOOK : Send program message
éH: SYSTEM : SPROCKETS & WIDGETS
i’/*H: PROGRAMMER : PW
/’/*H: COPYRIGHT 1989 WIDGETS LTD
Z/MSndpgmmsg: PROCEDURE(zm_msgid,zm_msgdta,zm_msgtype,
zm_topgmq,zm_relq);

[f======z=z==z==z=z=z=z=z==z=z==z=z==z==z=z==z=z==z======
*
/* Send message to specified program message queue.
[f=======z==z=z=z=z===z==z===z=z==z==z======z=====-=
*
DCL zm_msgid CHAR(7), / * Message id
*
zm_msgdta CHAR(132), /* Message data
*
zm_msgtype CHAR(7), /* Message type (*DIAG, *ESCAPE etfc)
*
zm_topgmq CHAR(10), /* Named program
*
zm_relq CHAR(5); /* Relative program queue
*

* i

DCL Ysndmsgric ENTRY (CHAR(10),CHAR(5),CHAR(7),CHAR(132),CHAR(7))

Chapter 5: Coding Standards for Database Files 5-59

PL/1 Coding Structures and Program Logic

Return string length:

/*H: COPYBOOK : Return string length
/*H: SYSTEM : SPROCKETS & WIDGETS
/*H: PROGRAMMER: PW

/*H: COPYRIGHT 1989 WIDGETS LTD

ZL_Chrlen: PROCEDURE (zl_chr) RETURNS(DEC(5));

*
DCL zI_chr CHAR(*);
DCL zl_ptr PTR,
zl_x (2048) CHAR BASED(zl_ptr),
zl_len DEC(5);

z|_ptr = ADDR(zl_chr);

DO zl_len = LENGTH(zl_chr) TO 1 BY -1;
IF (zI_x(zI_len) =" ")
THEN DO;
RETURN (zl_len);
END;

*/ i

{*H: COPYBOOK : Convert Char to char varying
éH: SYSTEM : SPROCKETS & WIDGETS
;‘H: PROGRAMMER : PW
{*H:/COPYRIGHT 1989 WIDGETS LTD
ZiVChrvry: PROCEDURE (zv_chr) RETURNS(CHAR (256) VARYING);
/* Convert CHAR to CHAR VARYING dropping trailing blanks.

¥ §

*
DCL zv_chr CHAR(*);
DCL zv_ptr PTR,
zv_X (256) CHAR BASED(zv_ptr),
zv_len DEC(3,0);

IF (zv_chr =)
THEN RETURN ();

zv_ptr = ADDR(zv_chr);
DO zv_len = LENGTH(zvchr) TO 1 BY -1;
IF (zv_x(zv_len) =" ")

5-60 Standards Guide

PL/1 Coding Structures and Program Logic

Naming Standards

For display file formats, use ‘I’ as a suffix to indicate an input format, and ‘O’
as a suffix to indicate an output format, because the contents of the two
formats may be different.

E DCL 1 #sflctl_1i, /* SFL control input fields */
1 %INCLUDE yreldtae1#(#sflctl1,INPUT);
DCL 1 #sflctl1_o, /* SFL control output fields */

i %INCLUDE yreldtae1#(#sflctl1, OUTPUT);

PL/1 Field Names
Program field names should follow the rules laid out in the naming convention.

The names of fields should, wherever possible, be the same as those in the file
from which they are obtained. This helps to standardize the field naming, and
also makes the mapping of fields between files clearer. Any reference to a field
should normally be qualified by the name of the structure to which it belongs,
wherever possible (for example, if not subject to the restrictions of other
HLLs).

Otherwise, build up externally defined names from three-character 0S/400-
style mnemonics:

ALWDLT
FIL
CUSCDE

Use suffixes to indicate the data type as appropriate:

VNM
CHR
PTR

Name control variables based on files and data structures by the based-on
structure name and a suffix:

DCL yreldtaO1l FILE RECORD INPUT SEQL KEYED :
ENV(INDEXED DESCRIBED); |

DCL 1 @reldta, ;
%INCLUDE vyreldta01l(@reldta, RECORD); |

DCL yreldtaO1l_rtncde CHAR; ;
DCL jobdtaptr PTR EXTERNAL; !
DCL 1 jobdta BASED(jobdta_ptr), /* Job details */ |
%INCLUDE yjobdtaptp(@jobdta, RECORD); !

Chapter 5: Coding Standards for Database Files 5-61

PL/1 Coding Structures and Program Logic

For the names of fields that act as accumulators, use an appropriate prefix or
suffix appended to the name of the field being accumulated. This helps to
make the mapping of a field from format to format, clear. For example:

stkqty_tot1 = stkqty_tot1+ stkqty /* *Accumulate */ :
stkqty_tot2 = stkqtytot2 + stkqty_tot /* *Accumulate */ i
----- stkqty_tot3 = stkqty_tot3 + stkqty_tot2 /* *Accumulate */

m Arrays—It may be useful to give the names of arrays a suffix *_ARR’, such
as ‘stkqty_arr’.

m Array indices—The names of array indices should, if possible, relate to
the names of the arrays they index. They should contain the same letters,
such as ‘stkqty_idx'".

m Parameter fields—Fields which are parameters passed to the current
program should be prefixed by a ‘'$’, for example:

PL/1 Procedure and Label Names

Given that PL/1 source code is edited online using a small (24 x 80 or 24 x
132) panel, it is important to make an effective use of procedure and label
names. The procedure and label naming conventions for PL/1 described below
are intended to:

m help distinguish between the major and minor sections of the code

m indicate whether you need to scroll forward or backward to find a section
of code

Procedure Naming Convention

Procedure names and label names should consist of meaningful mnemonics,
connected by an underscore, and prefixed by a label group to indicate the
relative hierarchy:

5-62 Standards Guide

PL/1 Coding Structures and Program Logic

High-level procedures should have a single-letter prefix, such as‘A_’, '‘B_".

m 2nd level procedures should have a two-letter prefix, such as ‘AB_’, ‘AC_/,
‘BA_".

m 3rd level subroutines should have a three letter prefix, such as ‘ABA_’,
‘BBC_".

m General-purpose procedures should have a two-letter prefix: ‘Z’ label, such
as ‘ZH_'.

PL/1 Standard Indicators

The indicators, such as 01-99, should be used as little as possible, as they are
difficult to reconcile with structured programming. The number of indicators
available is fixed, so it is best to reserve their use for the places where you
have to use them. Ideally, indicators should only be used to communicate with
external files.

Try to give the same meaning to indicator usage throughout a system and
across all HLLs. This makes it easier to understand programs. Use specific
indicators for functions that are common to many programs, such as command
keys, and use a different range of indicators for functions, which are specific to
a particular program, or part of a program. Indicator usage should adhere to
the following convention:

KA-KG Should not be used for command keys,
as they cannot be set on, nor documented
with the DDS INDTXT keyword.
01-24 Command keys and/or command function keys
25-29 Function keys

25 Help

26 Print

27 Rollup
28 Roll down
30 Home

31-79 Device file fields/field errors
79-31 Field conditioning indicators

80-84 Device and/or subfile control

80 SLFCLR

81 SFLDSP

82 SFLEND

83 INVITE

84 SFLNXTCHG
86 PUTOVR

88 Print file opeen

90-99 Volatile work indicators
90 Record does not exist
91 Record locked
92 Subfile record not found
95 Level 1 nested read loop

Chapter 5: Coding Standards for Database Files 5-63

Command Coding Conventions

Usage of standard indicators in device files should be documented in the
device files using the DDS INDTXT, SETOF, CAnn or CFnn keywords—it should
not need to be repeated in the PL/1 program source.

Command Coding Conventions

This section discusses standards for coding user-defined commands, defining
commands, and details standards for command processing, validity checking,
and prompt override programs.

For more information, refer to the appendix, "Programming and Coding
Examples."

Layout of Command Definition Source

Order of Parameters

All command definition source should follow the standard layout.

1. CMD statement.
2. Header block.
2.1 Title *T: source directive.
2.2 Compile overrides (Z*: source directives), if
any.
2.3 Standard banner (H*: and M*: source
directives).
3. Main body.
3.1 Required parameters.
3.2 Other parameters.
3.2.1 PMTCTL statements.
4. Dependency checks (DEP statements).

When ordering parameters within commands, place the parameters that
identify the object being operated on, first. For example, on a ‘Create Library
List Object’ command, place the identifier of the library list first. Often, this
will be a key parameter (KEYPARM(*YES)).

Always place required parameters before the other parameters. Do not use
numeric reordering of prompting if the parameter has a value other than
MIN(0), as allowed for the PROMPT keyword on command definition
statements. Doing so gives undesirable results when using the command
prompter with positionally specified parameters.

5-64

Standards Guide

Command Coding Conventions

Compiler Overrides

Place the parameters, whose values are most likely to be changed by the user,
before the other parameters.

Use the MAXPOS keyword on the 0OS/400 Create Command (CRTCMD)
command if you know or suspect that it will be necessary to add additional
parameters at a later date, and that the new parameters will need to be
inserted in a position before one of the existing parameters. In any case,
specify MAXPOS for all commands with a lot of parameters.

Place any ‘Element definition’ (ELEM) and ‘Qualifier definition” (QUAL)
statements to define command parameters that are lists, immediately after
the first PARM statement they describe. This facilitates the copying of code
from one member to another. For IBM i commands, PMTCTL statements should
also be placed adjacent to the PARM statement they control.

/*H: 1. Help file name and library */
PARM KWD(FILE) TYPE(FL) PROMPT(YYF1001) FILE(*IN) +
PMTCTL(FLPMT)
FL: QUAL TYPE(*NAME) DFT(QTXTSRC) SPCVAL((*DTAARA)) /* File */
QUAL TYPE(*NAME) PROMPT(YYLO0001) /* Library */ +
DFT(*LIBL) SPCVAL((*LIBL))
FLPMT: PMTCTL CTL(OBJTYPE) COND(*EQ *FILE)

Use the CA 2E Toolkit Compile preprocessor to include any compile time
overrides for the 0OS/400 Create Command (CRTCMD) command in the source.

For more information, refer to the Toolkit Concepts Guide.

The compile time overrides should include:

m the name of the command processing program (CPP) (keyword PGM)
m the name of any validity checking program (keyword VLDCKR)

m any mode or environment restrictions (keywords MODE and ALLOW)

m the names of any prompt or execution message files (keywords MSGF and
PMTFILE)

m the name of any prompt override program (keyword PMTOVRPGM)
m the name of any help panel group. (keywords HLPPNLGRP and HLPID)
If there is a requirement to translate the application into other national

languages, then prompt text should be obtained from predefined messages in
a message file:

/*Z: CRTCMD PGM(YDCROBC@) ALLOW(*INTERACT *IPGM *EXEC) *
I*Z: VLDCKR(YDCROBC@) PMTFILE(YCMDPMT) MAXPOS(5) *

N

Chapter 5: Coding Standards for Database Files 5-65

Command Coding Conventions

Cross-reference Data

If the parameter specifies an object whose usage should be cross-referenced,
such as a file, program or data area, specify the object usage on the command
definition statements PARM and ELEM, using the FILE, PGM or DTAARA
keywords. This will ensure that the output of the 0S/400 Display Program
References (DSPPGMREF) command is correct. For example:

/*H: 1. Data area name. *

PARM KWD(DTAARA) TYPE(*NAME) DTAARA(*YES) PROMPT(YYDO0001)
/*H: 2. Program name. *

PARM KWD(PGM) TYPE(*GENERIC) PGM(*YES) PROMPT(YYP0001)

[*H: 3. Qualified file hame. */
PARM KWD(FILE) TYPE(FL) PROMPT(YYF1001) FILE(*IN)
FL: QUAL TYPE(*NAME) DFT(QTXTSRC) /* File */

QUAL TYPE(*NAME) PROMPT(YYLO0001) /* Library */ +
DFT(*LIBL) SPCVAL((*LIBL))

Command processing programs (CPP)

A command-processing program is the program to which a command hands
control once it has validated the entry parameters. Command processing
programs are normal CL or other HLL programs to which some extra
considerations should be applied.

You should ensure that your CPPs handle processing and messages in a
manner that is consistent with standard CL command usage. In particular:

m Processing to check for the presence of all required objects and the
authorization to use those objects should be carried out before any
processing which changes any data or objects starts. This helps to ensure
that the command runs cleanly: either it functions completely, or not at
all. The CL Check Object (CHKOBJ) command is a relatively fast operation.

m If errors occur in a command-processing program, the errors should be
retransmitted to the invoking program. An escape message should be
sent, preceded by diagnostic messages if appropriate. This will help the
user to diagnose the cause of the fault. Refer to the chapter on CL
programming for an example.

m Command-processing programs should send a completion message,
containing substitution data if relevant; for example, “"Object FRED
deleted”. The substitution data should be as specific as possible.

m Command processing programs should remove irrelevant messages from
the log, in other words from the program message queue of the receiving
program. This can be achieved using the 0S/400 Receive message
(RCVMSG) command.

5-66 Standards Guide

Command Coding Conventions

For example:

CHKOBJ OBJ(QTEMP/WORK) OBJTYPE(*FILE)
MONMSG MSGID(CPF9801) EXEC(DO) /* Create if not found */
RCVMSG MSGTYPE(*EXCP) RMVMSG(*YES) /* Suppress msg

CRTPF FILE(QTEMP/WORK) RCDLEN(80)
ENDDO

Command processing programs that process generic lists of items should be
structured so that:

m A diagnostic or a completion message is sent to the CPP for each item
processed; for example “"Object &1 already exists - ignored”.

m An overall completion message is sent to the program that invokes the
command; for example “&1 objects successfully processed, &2 errors”.

Note: It is particularly important to do this so that the user can determine
which items the command has actually processed.

Command Validity Checking Programs

A validity-checking program is a user-defined subprogram, which can be
associated with a user-defined command. The validity checker will be called by
the final stage of execution of the 0S/400 command prompter, before it hands
over control to the CPP—it can be used to carry out any user-defined
validation of the command parameters.

If used at all, validity checking programs should only carry out limited
validation; for instance, any cross-checking of parameters that cannot be
achieved with the CL ‘Dependency definition’ (DEP) command definition
statement. This should only be necessary when checking the components of
lists and qualified names.

Validity checkers should not check for the existence of objects or other
entities, nor should they be used to invoke selection functions. This is because
the validity checker is invoked whenever the 0S/400 command prompter or
syntax checker is invoked for the command, even if the command is not
executed.

Validity checking programs should resend diagnostics, using the standard
0S/400 message - CPD0006 in QCPFMSG.

If validity checking fails, the errors should be retransmitted to the invoking
program (which is always the command prompter) as diagnostics; and an

escape message (CPF0002) should be sent to return control.

Example of code to resend a diagnostic to the prompter:

Chapter 5: Coding Standards for Database Files 5-67

Command Coding Conventions

/*H: 99. ERROR HANDLING */
ERROR: RCVMSG MSGTYPE(EXCP) MSG(&MSG)
SNDMSG: SNDPGM MSG MSGID(CPD0006) MSGF(QCPFMSG)
MSGDTA('0000'+

&MSG) MSGTYPE(*DIAG)

SNDPGM MSG MSGID(CPF0002) MSGF(QCPFMSG)
MSGTYPE(*ESCAPE)

Prompt Override Programs

Prompt override programs (POP) should be provided for those commands that
allow the changing of the attributes of existing objects, in particular for ‘CHG’
commands. The object to be changed should be used as the keyword object. If
a ‘retrieve’ (RTV) command exists for the object type, it should be used to
obtain the object details.

The example shows a fragment of prompt override program for a command,
YCHGLIBLST. The prompt override program retrieves the details for any
existing library list and uses them to override the existing values.

Example of a prompt override program - CMD source:

CMD PROMPT(YLL0001)

/*T: Change library list object. */

/*Z: CRTCMD PGM(YYCHLLC@) PMTFILE(Y1MSG) MSGF(Y1MSG) */
I*Z: HLPPNLGRP(Y1CMDHLP) HLPID(*CMD) */

I*Z: MAXPOS(2) PMTOVRPGM(Y1CHLLC) */

JEOR KK KRk K Kk Kk kK Kk K K K K K R K K K Kk K R K Kk Kk K K K K K R K K K K K kR

JERKK KKK KK KK Kk KKK KK KK KK KKK KK KK KK KKK K K KK KK K KK KK KK K K/

/*H: P. Library list. */
PARM KWD(LIBLST) TYPE(LL) KEYPARM(*YES) +
PROMPT(KLL0001) MIN(1)
LL: QUAL TYPE(*NAME)
QUAL TYPE(*NAME) DFT(*CURLIB) SPCVAL(+
(*CURLIB)) PROMPT(KLB0001)

/*H: P. Current library. */
PARM KWD(CURLIB) TYPE(*NAME) DFT(*SAME) +
SPCVAL((*SAME) (*CURRENT) (*CRTDFT) (*USRPRF)) +
PROMPT(KLB0005)

5-68

Standards Guide

Coding Standards for Messages

Example of a prompt override program - CL source:

PGM (&CL &LL &CMDSTR)
/*T: YCHGLIBLST Change library list POP. */
/*Z: CRTCLPGM LOG(*NO) ALWRTVSRC(*NO) */

K KR KK Kk K kK Kk Kk kK Kk kK K K kR R K K K Rk K K K K R K K K K R kK K K Kk X/

K KR R K Kk Kk K Kk Kk kK Kk kK K K K Rk Kk kR K K K K K R K K K K R R K K K kX

/* Entry parameters */

DCL &CL *CHAR 20 /* command || library */
DCL &CMD *CHAR 10 /* command name */
DCL &CMDLIB *CHAR 10 /* command library */

DCL &LL *CHAR 20 /* library list/library */
DCL &LIBLST *CHAR 10 /* list name */

DCL &LIBLSTLIB *CHAR 10 /* list library */

DCL &CMDSTR *CHAR 512 /* Command string */
DCL &CMDLEN *CHAR 2 /* str length B */

DCL &X *DEC 5 (511) /* work index */
DCL &CMDRQS *CHAR 510 /* string */

/* Work variables */
DCL &CURLIB *CHAR 10 /* library list current library */
@PROGRAM CODE = /*H: 0. Global monitor for errors */
MONMSG (CPF0000 YYY0000) EXEC(GOTO ERROR)

/*H: 1. Process parameters */
CHGVAR &LIBLST (%SST(&LL 1 10))
CHGVAR &LIBLSTLIB (%SST(&LL 11 10))

/*H: 2. Get existing values */
YRTVLIBLST LIBLST(&LIBLSTLIB/&LIBLST)
CURLIB(&CURLIB)

/*H: 3. Add LIBLST parms to string */
/*H: 3.1 CURLIB*/
CHGVAR &CMDRQS (‘CURLIB(‘&CURLIB’)")

/*H: 4. Add LIBLST parms to string */

LOOP: CHGVAR &X (&X - 1) /* COUNT LENGTH OF STRING */
IF (%SST(&CMDRQS &X 1) =") GOTO LOOP
YCVTDECBN2 DEC(&X) BIN(&CMDLEN)
CHGVAR &CMDSTR (&CMDLEN&CMDRQS)

ENDPGM: RETURN

standard error handling

Note: If a command string contains text parameters, the POP must double up
any apostrophes in the text or else they will cause errors.

Note: Help groups should be provided for all commands.

Coding Standards for Messages

This section describes design and coding standards for messages. It explains
how messages are used and provides standards for defining and sending
messages.

The midrange architecture has fast, sophisticated message handling facilities
you can use to send and receive messages in your own HLL programs.
Messages can be used both as an invocation/return control mechanism and to
handle text. This section mainly considers the latter.

Chapter 5: Coding Standards for Database Files 5-69

Coding Standards for Messages

Prompt Messages

Prompt Types

0S/400 message descriptions provide a program - independent mechanism for
storing natural language text fragments, thus making it possible to translate a
system without changing the non-text objects in a system. When you build an
application, you can use 0OS/400 messages in two different ways:

m As prompt messages: The text prompts used on commands, menus,
panels, and reports, can all be isolated from the device file and command
source and stored as external message definitions. Prompt messages
normally only require first level text. (You may use the second level text
for notes for translators).

m As execution messages: Execution messages are sent and received at
execution. They both provide a control mechanism to determine the
subsequent processing and can be used to provide the user with a natural
language explanation of what has taken place or has gone wrong. They
may have substitution variables and second level text.

Prompt messages are used to enable translation of the text into other National
Languages and also to ensure consistency in the use of a given term. In
particular you will want to ensure that the prompt used in panels and in help
text corresponds exactly.

There are a number of different types of text element that make up UIS
conformant panels. You should ensure that each type follows the correct UIS
standards for its type. See the sections on design and coding for each object
type for further information on the rules.

The following is a summary of the different types of prompt commonly found
in an application:
s Commands
- Command titles. Capitalized.
- Command parameter prompts. First letter capitalized.
m Panel elements
- Panel titles. Capitalized, centered.

- Panel top instructions. There are a number of standard formulations,
for example, ‘Type choices, press Enter’. Set up standard definitions
and reuse them where possible.

- Panel options. This should follow UIS layout standards (for example
4=Delete). Do not attempt to reuse messages but instead, provide a
separate message for each display. Use a single message for the whole
line—this makes it easier for translators to abbreviate.

5-70

Standards Guide

Coding Standards for Messages

Panel column headings. Again, do not attempt to reuse messages but
instead provide a separate message for each display. Use a single
message for the whole line—this makes it easier for translators to
abbreviate.

Field labels. Use an initial capital and pad any trailing blanks with
periods. Do not use a ':’ Hard code it in the DDS.

Field right hand side text. Capitalized, punctuated by commas.

There are a number of frequently occurring items (for example “Name, F4 for
list”), which should be set up centrally and reused when possible.

Function key instructions. This should follow UIS layout standards (for
example, F3=Exit). Do not attempt to reuse messages but instead,
provide a separate message for each display. Use a single message for
the whole line.

m Help text

Execution Messages

Panel titles. Use the panel title with “- Help” appended. (Use the UIM
&msg facility to define (“"Help”) as a reusable message.

Extended headings. Use the field labels prompts for the headings that
appear in extended help display (UIM “:XH3’ tag).

Panel options. Use standard messages for each function key label
("Delete”, “Change”, "Rename”, etc.).

Field value names. Use lower case with hyphens, for example, library-
name. Use apostrophes to indicate a quoted string for example ‘text-
description’.

Function keys. Use standard messages for each function key label
(“"Home"”, “Print”, “Exit”, etc.).

The midrange architecture has fast, sophisticated message handling facilities
you may use to send and receive messages in your own HLL programs. You
should take care to use messages in a manner consistent with the way 0S/400
uses messages.

Messages should be used by programs to provide a constant dialogue, so that
for each step that a user takes an error, a diagnostic or a completion message
is given.

All program messages should be externally defined, and retrieved at run time
from the system application message file. Using external messages gives you:

m easy translation into other national languages

m substitution variables within messages

Chapter 5: Coding Standards for Database Files 5-71

Coding Standards for Messages

m second level Help text
m standardization of messages

m easy correction of messages
Note: The 0S/400 message severity conventions should be followed.
For more information, refer to the AS/400 CL Programmers Guide.

As far as possible, make use of existing 0S/400 messages—doing so reduces
the amount of work you have to do, both in specification and to translate
message text into other national languages. Programs should trap and resend
the messages they receive.

/*H: 1. Check for existence and authorisation */
CHKOBJ OBJ(FORTKNOX) OBJTYPE(*FILE) AUT(*READ)
MONMSG CPF0000 EXEC(DO)
RCVMSG MSGTYPE(*EXCP) MSGDTA(&MSGDTA) MSGID(&MSGID)

MSGF(&MSGF) MSGFLIB(&MSGFLIB)
SNDPGMMSG MSGID(&MSGID) MSGF(&MSGFLIB/&MSGF) +
MSGTYPE(*ESCAPE) MSGDTA(&MSGDTA)

If you need the diagnostic messages to appear as well on the calling programs
gueue, you can use the V2R2 QMHMOVPM API.

DCL &ERRCDE *CHAR 4 X’00000000°
DCL &PGMSTK *CHAR 4 X’00000001

CALL QMHMOVPM (* * *ESCAPE *DIAG *INFO *COMP * +
&NBRTYP * &PGMSTK &ERRCDE)

Message substitution variables should be used where helpful—they can be
particularly useful in conjunction with input capable subfiles, as the variables
can be used to distinguish which line in the subfile is in error. For example, on
a subfile panel that shows many products, ‘Product code &1 not found’ (where
&1 is the missing product) will be more useful than just ‘Product code not
found’.

Add message:

ADDMSGD MSGID(USR0004) MSGF(QUSRMSG) +
MSG(Product &1 not found’) FMT((*CHAR 6)) SEV(10)

Use in program:

| SNDPGMMSG MSGID(USR0004) MSGF(QUSRMSG) MSGDTA(&PRODUCT) + |
| MSGTYPE(‘DIAG)\ |

5-72 Standards Guide

Coding Standards for Messages

Destination for Messages

The following general points should be observed about the destination of
execution messages:

Escape messages should be resent to the invoking program. This will
cause them to ‘cascade’ back, unless a particular program in the
invocation stack monitors for them explicitly. OS/400 V2R2 provides
message handling APIs that make this easy to do from HLL's other than
CL. Using the APIs, you may wish to pass an invocation number as a
parameter to indicate where the message should be sent.

A final completion message should be sent to the invoking program. It will
then appear in the job log.

Status messages are, by definition, sent to the external message queue.

Other message types—diagnostic or informational—should normally be left
on the program queue to which they were sent. They will then be available
if the second level messages are displayed (for instance, by pressing F10
from the 0S/400 ‘Command entry’ display (QCMD) on the IBM i).

For example, suppose a command calls a command-processing program,
which in turn calls several subprograms.

Diagram of Destinations for Messages:

ESCAPE ESCAPE ESCAPE ESCAPE ESCAPE
Command PGMA PGMB PGMC PGMD
COMP INFO INFO INFO INFO
DIAG DIAG DIAG DIAG
COMP COMP COMP COMP
STATUS STATUS STATUS STATUS

If the program is a request-processing program, you should ensure that a
copy of the request is placed in the log so that the retrieve (F9) facility of
other programs can be used to retrieve it.

Functions which process a number of items should return a count of the
number of objects successfully processed as their completion message. For
example:

&1 Objects moved: &2 added, &3 replaced. &4 not moved.

Chapter 5: Coding Standards for Database Files 5-73

Standards for Defining Messages

Retrieving Messages

Long running jobs should send status messages to report the job’s progress.
For instance, ‘Records being copied to file QTXTSRC’, *‘Work space is being
loaded’, ‘Entire system is being backed up’. This can be done as follows:

| SNDPGMMSG MSGID(USR0001) MSGF(QUSRMSG) MSGDTA(&FILESFLIB) + |
3 TOPGMQ(*EXT) MSGTYPE(*STATUS) |

,,,

Messages can also be used to store information required by HLL programs,
such as file overrides, and program call request strings. Message substitution
variables can be used to substitute program variables into the request
messages before execution.

This technique provides great flexibility in implementation since the content of
the retrieved message may be changed at any time using the 0S/400 Change
Message Description (CHGMSGD) command. The drawback, apart from a slight
performance overhead, is that the system is less transparent to understand,
and the called function cannot be cross-referenced automatically.

777

/*H: 1. Execute DSPOBJAUT for supplied value *
RTVMSG MSGID(USR0034) MSGDTA(&MSGDTA) MSG(&MSG) +
MSGLEN(&MSGLEN)
CALL QCMDEXC (&MSG &MSGLEN)

The V2R1 API QMHRTVM can be used to retrieve message text directly into an
HLL.

Standards for Defining Messages

Use separate message files for:

m Execution messages: All messages which are sent by an application at run
time as *INFO, *COMP, *ESCAPE *STATUS or *NOTIFY. Message text that
is retrieved for use in programs should also be placed in this file.

m Prompt messages: Messages needed for panel, menu and command
prompts.

If the default user message file ‘QUSRMSG’ is not used, then the execution
and prompt message files should be called xmmmMSG, and xyyyPMT
respectively, where x is the system prefix, and ‘mmm’ the application
mnemonic.

5-74

Standards Guide

Standards for Defining Messages

Message identifiers should follow this convention:

m Message prefix (MMm) is the same for all messages in the application

system. The following are reserved values:

Message identifier :

MMm nnnn

Message number

Message prefix

QSYS |QCPFMSG CPx,CAE,KBD,MCH,QWM,QW
X
QSYS |QCBLMSGE |CBE, CBX
QSYS |QFTOMSGE |FTE, FTX
QSYS |QCUBMSG CUB, CUX
QSYS |QRMMSGE RME, RMX
QSYS |QPLIMSGE PLI, PEX
QSYS |QRPGMSGE |RPG
QSYS |QSQLMSG SQL
QSYS |QXXEMSG PSE
Y1SY |YYYMSG YYY, Yix
Y28Y |Y2MSG Y2x

The following additional convention may be used for the third letter of the
message prefix, to indicate the message type. This makes it easier to identify
messages for which you may monitor.

m is ‘E’ for escape or notify or status messages
‘C’ for completion messages

‘D’ for diagnostic messages

I' for information messages

‘R’ for request messages

‘X' for retrieved messages

Message number (nnnn) is a number issued sequentially. IBM i messages
numbers may include the letters A-F.

CA 2E provides a facility for the automatic issuing of message identifiers—a
prefix may be set using the YMSGPFX model value.

Monitoring for Generic Message Groups

To facilitate monitoring for user-defined exception messages, you should:

m Use only one prefix for all the escape and notify messages in a system. For
example, if all escape messages begin with the letters ‘USE’, then it is
possible to monitor for messages globally.

Chapter 5: Coding Standards for Database Files 5-75

Standards for Defining Messages

m Avoid using message identifiers that end in zeroes for escape, notify, and
status messages.

m Use prefixes to allow for generic monitoring, for example, prefixes, which
have similar numeric groups. For example:

A systematic use of message prefixes also facilitates documentation. For
instance, if all escape messages begin with ‘USE’, then it is possible to list just
escape messages, using the MSGID(*RANGE) facility of the 0OS/400 *Display
message description’ command (DSPMSGD). For example:

DSPMSGD MSGID(*RANGE) MSGF(QUSRMSG) RANGE(USE0000 USE9999)

You may use dummy messages to provide section headings within the
message file.

Message Severity

Follow the OS/400 conventions for message severities.

Message severity Message type
30+ Escape
10-20 Diagnostic
00 Info/completion

Wording of Message Text

;""”""’"i ””””””””” MSGtb---- ‘SE‘\/‘T‘EX’T’"""”"’”"”""’ir ”””” !
“C:ause ... The peﬂ‘k%qoécp&z & TﬁaPWQJ NEFSAGER

not exisIROH sy S&roduct &1 not found.
Recovery . Check 89%3\%%@9&{%@‘ halreayeysts:
Either (i Retry with %%Q,& ekt Qfgoduct &1 out of stock.
or, (||) Ask your perlém ki cOr ot & Lisiprpaded.
person onto tHSOAAM 8573 QMERMESRAGES
! X/REDTAPE/lrb%*?QJ%G QdetisiPP s arebiainda)
1 or, (iii) Kill the persHPBR%hro? Givsimer &4 3lgay eX'StS ‘
b body using-the-'Edit corpse’-option on your menu." -~

First Level
The first level text of a message should give a concise statement of what is
wrong or what has happened. A substitution variable can be used to relate the

message to a particular entered value. For example:

“Invalid person code &1 entered”

5-76

Standards Guide

Standards for Defining Messages

On IBM i, messages should be given in the form “A in B”; for example, “"Object
&1 not found in library &2".

Second Level

The second level text of error messages (escape, diagnostic, or notify) should
give a more detailed explanation of the cause of the error, suggest possible
methods of recovery, and if appropriate, any additional sources of information.
The key words ‘Cause’, and ‘Recovery’ should be used to indicate the start of
the respective sections. Messages should be formatted using the &N and &B
facilities to indent or start text on a new line.

Editing Existing Messages

0S/400 includes a command that enables you to edit the text and other
attributes of an existing message. See the IBM i Change Message Description
(CHGMSGD). The 0S/400 Merge Message File (MRGMSGF) command can be
used to carry out a limited copying of messages. There is also a CA 2E Toolkit
command to copy a message description, Copy Message Description
(YCPYMSGD).

Message Handling by Interactive Programs

HLL interactive programs should use messages to provide notification of an
error; completion or a warning in response to each user request.

Messages should normally be placed on a program message queue sub file—CL
programs may send messages directly, other HLL languages should use a
standard CL message sending program or the V2R2 QMHSNDPM API.

The standard message handling technique can be illustrated as follows:

Message
file
MSGID RTVMSG
. HLL MSGDTA
Display Program oL
Program
Y2SNMSC
Program
message
queue SNDPGMMSG

Chapter 5: Coding Standards for Database Files 5-77

Standards for Defining Messages

Thus, when an interactive HLL program needs to display a message at
execution, it calls a message sender program, passing a message identifier
and any necessary message data. The message sender sends the message
back to the calling program’s message queue. Since the calling program has a
message subfile based upon the message queue, the message will
automatically be displayed.

Since HLL programs cannot send messages to their own message queues, the
above technique requires the use of standard CL subprograms to:

m send the messages. The program will need to be called once for each
message that is to be sent.

m clear old messages. Before validating the input, any old messages will
need to be cleared from the queue—the message-clearing program will
need to be called once every time the display file is read.

The standard CA 2E message-sending program is as follows:

Source for the CA 2E Message Sender Program:

PGM (&TOPGMQ &PGMQREL)

/*T: Clear specified program message queue. */

/*Z: CRTCLPGM LOG(*NO) */

[*H: SYSTEM ! 2E - SHIPPED PROGRAM.

*/

/*H: PROGRAMMER : PWILSON

*/

/*H: DATE 1 01/01/84

*/

/*H: COPYRIGHT (C) 1984 Your Company Ltd..
*

/*H: SYNOPSIS: Clears a specified program message queue.
*

/*H: INTERFACE DETAILS
*

L *
/*H: * SEND A MESSAGE TO PGM QUEUE

*/
/*H: C XALL 'Y2CLMSC’ CLR MSG:
/*H: C PARM ##PGNM 10 I:PGM Q:
/*H: C PARM ##PGRL 5 I:*
[*H: * *SAME *EXT *PRV default is *SAME

Note: For V2R2 onwards, you should use the QMHSNDPM API.
The standard CA 2E message-clearing program is as follows:

Source for the CA 2E Message Clearing Program:

A SETOF(31 ##CUCD Error) }
i A Customer code:’ 1
! A ##CUCD R B +2REFFLD($$CUCD) i
1 A N31 DSPATR(UL HI) i
| A 31 DSPATR(RI PC) !

5-78 Standards Guide

Standards for Defining Messages

From V2R2 onwards, you should use the QMHRMVPM API instead.

If multiple validation errors are detected, only the error message for the first
field in error on the panel should be output, but all fields in error should be
highlighted in reverse image. This is because sending an error message incurs
a certain overhead; and in any case, an initial error often has a knock on
effect on subsequent fields.

PGM (&TOPGMQ &PGMQREL)

/*T: Clear specified program message queue. */
/*Z: CRTCLPGM LOG(*NO) */

/*H: SYSTEM : 2E - SHIPPED PROGRAM.

/*H: PROGRAMMER : PWILSON
/*H: DATE 1 01/01/84

/*H: COPYRIGHT (C) 1984 Your Company Ltd..
*/

/*H: SYNOPSIS: Clears a specified program message queue.
*

/*H: INTERFACE DETAILS
*

S H */
/*H: * SEND A MESSAGE TO PGM QUEUE

*f
/*H: C XALL 'Y2CLMSC CLR MSG:
/*H: C PARM ##PGNM 10 I:PGM Q:
/*H: C PARM ##PGRL 5 I:*
H: > *SAME *EXT *PRV default is *SAME

3 /*H: 2.4 Send message to specified queue /

! IF (&TOPGMQ = *EXT) +

i SNDPGMMSG MSGID(&MSGID) MSGF(&MSGFLIB/&AMSGF) +

! MSGDTA(&MSGDTA) MSGTYPE(&MSGTYPE) +
i TOPGMQ(*EXT) MSGTYPE(&MSGTYPE)

! ELSE +

SNDPGMMSG MSGID(&MSGID) MSGF(&MSGFLIB/&MSGF) +

! MSGDTA(&MSGDTA) MSGTYPE(&MSGTYPE) +
TOPGMQ(&PGMREL &TOPGMQ)

! ENDPGM

Associate an error indicator with each input capable field on the display. If an
error is detected, this indicator should be set on and an error message sent.

Message Handling by Batch Programs

Batch jobs should use messages both to record errors and to log processing
stages.

Batch jobs in which a termination level error occurs should send an escape
message—this causes 0S/400 to give an indication of abnormal job
termination.

Chapter 5: Coding Standards for Database Files 5-79

Coding Standards for Help Text

Remove non-consequential messages from the logs of batch jobs. For
instance, if you need to check that an object exists, but can create the object
if it does not, you can remove the Object not found message. The exception
message will be the most recent message on the program’s message queue.

Using the Message Handling API

CHKOBJ OBJ(QTEMO/YTEMP) OBJTYPE(*FILE)
MONMSG MSGID(CPF9801) EXEC(DO)

RCVMSG MSGTYPE(*ESCAPE) :

‘ CRTDUPOBJ OBJ(YTEMP) FROMLIB(*CURLIB) OBJTYPE(*FILE) + !

i TOLIB(QTEMP) :

V2R2 of 0S/400 includes new message handling APIs for sending, receiving,
and retrieving messages directly from HLL programs (previously, CL had to be
used for most operations). You should use the APIs in preference to CL
subprograms not only for performance reasons, but because the APIs allow
you to identify the destination program message queues by a relative
invocation number. This makes it possible to send messages without
knowledge of the program name of the destination message queue. (CL only
allows you to identify the program previous to the current or a named
program, so cannot it cope with recursion). Such a facility is important when
writing reusable code routines.

For example, consider the following case of a standard subprogram D, called
at the bottom of a program invocation stack A, B, A (the second call is
recursive). If program D needs to send a message back to the program that
calls the topmost invocation of program A, it can do so by using a relative
invocation stack number. With CL this cannot be done.

Sending programs by relative invocation:

1 +1 1+ 1
PGM A PGM B PGM A PGM D QMHSNDPM

3 2 1 0

QMHSNDPM call

Coding Standards for Help Text

This section describes coding standards for Help text. Discussion includes
general considerations and coding help for the commands, menus, panels, and
search index.

5-80 Standards Guide

Coding Standards for Help Text

General Considerations

When writing help text, keeping the following points in mind:

Comply with UIS design standards for emphasis and layout.

Achieve reusability. Structure your help groups and panel groups carefully,
and make use of standard text fragments.

Minimize the work required to translate help text. Modularize your help
groups and use message descriptions.

For more information, refer to the 0OS/400 Guide to Programming Application
and Help Displays.

Help Text Modularization

You will want to structure your help text modules both to achieve maximum
reuse of existing help groups and to minimize the effect of any possible
changes. However, avoid over-complex interdependencies that make it difficult
to build or debug a system. For database field dictionaries, a controlled ‘one-
way’ system of reference is recommended. The following are some
recommendations for structuring your help text:

Place common text definitions in one or two standard modules and all
other modules reference them. Place standard text fragments in one
module, including any references to 0S/400 help groups.

Place standard definitions of application entities and concepts in a single
dictionary panel group. This makes it easy to reference definitions by
hypertext links and from the search index.

Place help text for related panels in a separate panel group.

Place help text for related commands in a separate panel group. For
example, help text for the commands to create, change, delete, and edit a
given object might all be placed in the same panel group.

Restrict the use of UIM index (:ISCH) tags to a few source members so as
to simplify the building and rebuilding of search indexes.

Chapter 5: Coding Standards for Database Files 5-81

Coding Standards for Help Text

Help Dependencies - Panel Group Cross-References:

. . Standard
IMHEL CMD panels IMHEL CMD txt 6’03’4
XymmCMH xySYCMH h tex
LINK
LINK hypertext
XSCHI definitions
ADDSCHIDX xymmENH
‘LINK
Standard 0Os/4
DSP panels
‘IMHEL DSP txt O0tex
xymmPNH XYSYPNH |t
IMHEL

Under the above scheme, a search index can be built simply as follows:
s CRTPNLGRP PNLGRP(xSCHIDX)
m CRTPNLGRP PNLGRP(xxmmENH)
m CRTSCHIDX SCHIDX(xSCHIDX)
m ADDSCHIDXE SCHIDX(xSCHIDX) PNLGRP(xSCHIDX)
s ADDSCHIDXE SCHIDX(xSCHIDX) PNLGRP(xxmmENH)

Layout of Command Definition Source
All UIM panel source should follow the standard layout. Place help groups in

the order in which they appear in panels and commands. Place reusable text
fragments at the end.

5-82 Standards Guide

Coding Standards for Help Text

1. PNLGRP statement.
2. Header block.
2.1 Title *T: source directive.
2.2 Compile overrides (Z*: source directives), if
any.
2.3 Standard banner (H*: and M*: source
directives).
3. Import declarations
3.1 Default declaration.
3.2 Specific declarations.
4. Command help groups
4.1 CMD/ALL Help group
4.2 CMD Overview help group
4.3 CMD/parm Parameter help groups
5. Menu help groups
5.1 MNU Overview help group
5.2 MNU/opt Option help groups
5.3 MNU/CMDKEY Command key help groups
6. Panel help groups
6.1 PNL/INTRO Overview help groups
6.2 PNL/TOPINS Top instruction help groups
6.3 PNL/field panel header field help groups
6.4 PNL/COLHDG Top instruction help groups
6.5 PNL/field panel header field help groups
6.6 PNL/BOTINS Bottom instruction help groups
6.7 PNL/CMDKEY Command key help groups
7. Standard help groups

Use comment lines to make the start of each help group clear.

,,

' ‘HELP name= ‘WCHGLIBLST".

General Coding Techniques

Use the following general rules for coding UIM help:

:HELP NAME="wchgliblst/text’.
&MSG(WTX0001). (TEXT) &MSG(uis1005).
:XH3(WTX0001). (TEXT)

Use uppercase for UIM tags so that they stand out. Use lower case for
labels, but use uppercase for the labels of standard text fragments.

Provide :XH3 entries so that there are headings in the extended help
listing—that is, when F2 is pressed.

Chapter 5: Coding Standards for Database Files

5-83

Coding Standards for Help Text

m Use external message descriptions to ensure consistency between panel
and command prompts and the headings and labels shown in the help
text. For example, the following command and command parameter
definitions use a number of message definitions.

Example of Use of &MSG/MSGID - Messages:

MSGID Msg text

uiS0021 = Command
UIS1005 = Help

WLLO0101 = Change library list
WLL0301 = library list
WTX0001 = Text

WTX0201 = text-description

The message definitions are used for the command prompts.

Example of Use of &MSG/MSGID - Command Source:

CMD PROMPT(WLLO0101)
/*T: Change library list command */

/*H: 1. Help file name and library */
PARM KWD(TEXT) TYPE(*CHAR) PROMPT(WTX0001) LEN(50) :

,,

The command prompt message definition is used for the command overview
help text definition.

Example of Use of &MSG - Command Summary, UIM Source:

‘HELP NAME="wchgliblst.
&MSG(WII10101). &MSG(uis1005).

:P.The &MSG(WI10101). (wchgliblst) &MSG(uis0021). changes the
contents of

:LINK PERFORM ='DSPHELP liblst wsyhppnh'.
&MSG(WI10301):ELINK.

:EHELP.

Note: The command parameter prompt message definition is used for the
parameter help text definition.

Example of Use of &MSG - Parameter Definition:

5-84 Standards Guide

Coding Standards for Help Text

:HELP NAME="wchgliblst/text’.
&MSG(WTX0001). (TEXT) &MSG(uis1005).
:XH3(WTX0001). (TEXT)

:P.Specifies a text description of the new
&MSG(WI110301) .

:PARML.

:PT. :PK DEF. *DFTTXT:EPK.

:PD.Default text is to be provided.

PT. :PK’&MSG(Wtx0201)." :EPK.

:PD.Up to fifty characters of free format text, enclosed in apostrophes.
:EPARML.

:EHELP.

Extended headings should have the form:

* For commands

description (CMDNME) - Help

For example:

@)
1
~
o
o
=)
w
=3
QO
<
5
(o
o
o
3
3
Q
2
o
©
=
|}
=
=
m
T
@
©

* For command parameters

‘Keyword description (KEYWORD) - Help’

For example:

__

Make use of 0S/400 system help group modules where possible. References to
system modules should be placed in the standard definition panel group
member so they can be changed, if necessary.

Example of Use of Import - Parameter Definition:

'+ IMPORT PNLGRP=ghclmst1 NAME="dspobjd/output’.
3 (IMPORT PNLGRP=ghcimst1 NAME="dspobjd/oultfile’. :
{IMPORT PNLGRP=qghclmst1 NAME="dspobjd/outmbr’.

Chapter 5: Coding Standards for Database Files 5-85

Coding Standards for Help Text

Keep your own standard definitions in a ‘dictionary’ and reuse them wherever
possible. This ensures consistency and reduces the work required to translate
a system. The dictionary should be the default import declaration. Avoid
excessive use of hypertext tags at it makes the help text hard to read. A list of
‘related topics’ after the introductory text is the most concise.

:PNLGRP SUBMSGF="WPMTMSG'.
. *T: Library list Object - command help

ok ok ok ok k ok ok ok k ok ok ok ok Kk Kok ok Kk Kk ok ok ok ok ok koK ok ok ok kK

; * Dictionary

! !IMPORT PNLGRP=wssycmh NAME=""",
‘HELP NAME="wchgliblst/liblst’".

i :IMHELP NAME="llo/liblst".

! :P.Specifies the name and

i &MSG(wIb0301). of the

! &MSG(wll0301). that is to be changed

. * Required parameter
(IMHELP name="wssycmh/STDTXT/REQVAL.

. * Qualified library name, *LIBL, *CURLIB
!IMHELP name="wdsycmh/STDPARMVALI/LIB’.
‘EHELP.

Coding Help Text for Commands

For each command, provide a help group, which gathers together all the
parameters of the command. This help group can be referenced by a search
index and hypertext links.

i :HELP name="wchgliblst/ALL.
! (IMHELP name=wchdliblst.

} (IMHELP name="wchgliblst/liblst’.
! (IMHELP name="wchgliblst/libl’.
} (IMHELP name="wchgliblst/aut’.
! (IMHELP name="wchgliblst/text’.
i :EHELP.

Provide an introductory section for each command, beginning with the
command’s name; for example, “The Change Library List (WCHGLIBLST)
command"

:HELP NAME="‘wchgliblst’. |
&MSG(WII0101). &MSG(uis1005). :
:P.The &MSG(W110101). (wchgliblst) |
&MSG(uis0021). changes the contents of an existing 1
&MSG(WII0301). |
:EHELP. ;

5-86 Standards Guide

Coding Standards for Help Text

For each parameter, state the keyword and prompt, and list the allowed
values. The default value should be shown first, (for example, *NONE), then
other special values, (for example, *ALL), then the domain name (for example
library-name, member-name, ‘text’).

‘HELP NAME=‘wchgliblst/text’.

&MSG(WTX0001). (TEXT) &MSG(uis1005). <== Title
:XH3(WTX0001). (TEXT) <== Extended heading
P. <== Description

Specifies a text description of the new
&MSG(WI10301). &PERIOD

:PARML.

:PT.:PK DEF. *DFTTXT:EPK. <== Default value :
:PD.Default text is to be provided.

PT..PK/&MSG(Wtx0201)..EPK. <== Domain value :
:PD.Up to fifty characters of free format text, enclosed in apostrophes.
:EPARML.

Coding Help Text for Panels

Provide an introductory section for each panel, beginning with the panel’s
name, for example, ‘The Display Library List (wchgliblst) panel’. This will be
used as the default text for the panel. The name of this help group should
have the form ‘Format name/PNL/INTRO’.

‘HELP NAME="#sflctl1/PNL/INTRO’. <== Overview for

| &MSG(WII2101). &MSG(uis1005). whole panel :
:xh3 The &MSG(WII2101). (DSPLIBLST) &MSG(uis0023). <== Extended
! heading ;
! ‘P.The &MSG(WII2101). (DSPLIBLST) &MSG(uis0023). |
} shows the contents of a specified library list. !
; . * Press enter instructions 1
! (IMHELP NAME="wssypnh/STDTXT/ENTERRTN'. <== Standard |
! :EHELP. fragment !

For each input capable field, state the prompt and list the allowed values. The

default value should be shown first, (for example, *NONE), then other special

values, (for example, *ALL). The name of the help group should have the form
‘Format/field name’.

‘HELP NAME="#sflctI1/##litx’.

&MSG(WTX0001). &MSG(uis1005). <== Title
:XH3(WTX0001). <== Extended heading
P.

Specifies a text description of the new
&MSG(WII0301).
:EHELP.

<== Description 1

Chapter 5: Coding Standards for Database Files 5-87

Coding Standards for Help Text

If there is a selection column with options, provide a list of all allowed values.
This should have a name of the form ‘format/PNL/TOPINS'.

. * Online Help Information for selection options

*

| :HELP NAME="#sflctl1/PNL/TOPINS’. :
3 &MSG(uis1002). &MSG(uis1005). !
: :xh3(uis1002). <== Options i
! . * 2=Change |
1 :PARML. |
} :PT.2=&MSG(Uis3034). |
1 :PD.Change the object s !
} . * 4=Delete 1
: ‘EPARML. i
3 (IMHELP NAME="wssucmh/STD/OPT/DELETE". i
| :EHELP. !

Provide explanations of the function keys. This should have the form
‘format/PNL/CMDINS’. In most cases, you will be able to reuse standard
definitions.

! ‘HELP NAME="#sflctl1/PNL/CMDINS’. |
i &MSG(uis1001). &MSG(uis1005). i
! :Xh3(uis1001). <== Function keys |
i IMHELP NAME="wssypnh/STD/F/F1HELP’. :
! IMHELP NAME="wssypnh/STD/F/F3EXIT/END’. |
3 IMHELP NAME="wssypnh/STD/F/F12PREV". i
! IMHELP NAME="wssypnh/STD/F/ENTER'. |
3 IMHELP NAME="wssypnh/STD/F/HELP’. }
! IMHELP NAME="wssypnh/STD/F/HOME'. |
; IMHELP NAME="wssypnh/STD/F/PRINT". ;

Coding Help Text for Menus
Provide an introductory section for each menu, beginning with the menu’s
name; for example “The Library List command menu’. This will be used as the
default text for the menu. The name of this help group should be the same as
the menu name.

Reference standard Help group explaining how to use the menu.

Reference standard Help group for the menu function keys.

5-88 Standards Guide

Coding Standards for Help Text

Designing Search Indexes

Help panels assist users who already know how and why to start a command
or program. Search indexes provide users with a way of finding out how to do
something in the first place. You should provide a help index for your
application.

Provide search index entries for the keywords that a user may use. Provide
m entries for each command and each menu

m “how” entries for commonly required operations

m “what” entries for fundamental concepts

m 0S/400 standard root keywords, for example How, What, Novice

‘HELP NAME="WHENHPH/WENT/LIBLST".

&MSG(wIl0001). &MSG(uis1005).

:ISCH roots="LIBLST novice what'. <== |ndex entry
&MSG(wII0001).

:xh3(wl10001).

‘HELP NAME-="changelibrarylistobject’.
:!ISCH roots="change LIBLST liblst how command wchglibist’. :
&MSG(WII5002). (WCHGLIBLST) &MSG(uis1002). (&MSG(uis1003).) :
IMHELP NAME="wchgliblst/ALL.

:EHELP.

Do not distribute UIM :ISCH tags throughout the source of your panel groups.
Restrict them to the source of the search index itself, and to the member or
members containing standard entity definitions and hypertext tags. This
means that you can recreate the search index without having to remove or
add back all the other panel groups as entries.

The search index itself will need to contain help groups with outward
references to any commands it needs to reference. Use dummy names with
underscores for these help groups.

:HELP NAME="about_index_search_opr'.
:ISCH ROOTS="about index search help’.
About index search

JIMHELP NAME="about_index_search’.

Chapter 5: Coding Standards for Database Files 5-89

Chapter é: Work Management
Standards

This chapter describes work management standards.

Infroduction

0S/400 Work Management allows you to control submitting, queuing and
executing jobs, and spooling their output. Most of the aspects of jobs that you
want to control, such as job priority, job queue, and output queue, are
parameterized, and may be changed interactively. The CA 2E Toolkit utilities
extend the flexibility of Work Management by allowing stored library lists,
menus, and additional user profile parameters.

General Principles

As general principles:
m Make use of shipped objects. They provide a good starting point.
m Record modifications to the shipped system in programs.

m Avoid coding Work Management parameters in programs. Doing so
removes flexibility.

Chapter 6: Work Management Standards — 6-1

Shipped Work Management Objects

Shipped Work Management Objects

0S/400 is shipped with a default set of Work Management objects (for
example, QBATCH, QPRINT, QINTER). If you are a new user, use these to start
and then modify them over time. The commands to make the modifications
should be stored in a CL program or a spool reader so that they can be
reapplied at any time. This is necessary in particular for the changes that are
‘undone’ by reinstalling new releases of the operating system; for instance,
overrides to print files in QSYS.

Such a program should includes changes to 0OS/400 system values made with
the 0S/400 Change System value (CHGSYSVAL) command, although such
changes are preserved when a new release of the operating system is
installed. These include:

m system date format (QDATFMT, QDATSEP), decimal symbol (QDECFMT),
and currency symbol (QCURSYM)

m system part of library list (QSYSLIBL), which should normally include
QSYS, QUSRSYS, QHLPSYS

m system user library list (QUSRLIBL), which should normally include QTEMP,
QGPL, and the CA 2E Toolkit utility library

m tuning parameters like Base pool size (QBASPOOL) and activity level
(QBASACTLVL)

m job accounting level (QACGLVL), if job accounting is being used
m default print identification text (QPRTTXT).

m changes to print file attributes

All files in the system library QSYS and other utility libraries should be given
the default forms size for your installation. For example:

CHGPRTF FILE(QSYS/*ALL) PAGESIZE(88 132) LPI(8) +

CPI(15) OVRFLW(80) RPLUNPRT(*YES)
The files used for compilation listings should be held (set to HOLD(*YES)), so
that listings can be examined online, using the browse scan facility of the
0S/400 Start SEU (STRSEU) command. They should not normally need
printing:

CHGPRTF FILE(QPDDSSRC) SCHEDULE(*FILEEND) HOLD(*YES)

CHGPRTF FILE(QSYSPRT) SCHEDULE(*FILEEND) HOLD(*YES)

62

Standards Guide

Shipped Work Management Objects

Job logs and program dumps should be directed to a separate queue. They can
then be found easily, but will nhot normally be printed.

For example:
CRTOUTQ OUTQ(QGPL/YQIJOBLOG) DSPDTA(*YES) +

TEXT(*Job logs & dump output’)
CHGPRTF FILE(QSYS/QPJOBLOG) OUTQ(YQJOBLOG) HOLD(*YES)
CHGPRTF FILE(QSYS/QPPGMDMP) OUTQ(YQJOBLOG) HOLD(*YES)
CHGPRTF FILE(QSYS/QPSRVDMP) OUTQ(YQIOBLOG) HOLD(*YES)

CHGPRTF FILE(QSYS/QPDSPJOB) OUTQ(YQIOBLOG) HOLD(*YES)

Work Management Objects in QGPL

You might also wish to include in your program changes to subsystems which
you have made—for instance to have auto-start entries, routing entries, and
additional job queues, and changes to job descriptions, job queues, output
queues and classes.

0$/400 Shipped Authorities

In particular, you might wish to revoke public rights to use certain commands,
or to add objects to any of the libraries in the system library list.

Note: If you have specified that certain messages are to be logged in the
system log, you should record this fact.

Chapter 6: Work Management Standards 6-3

Shipped Work Management Objects

Naming Work Management Objects

Work management objects should generally be given meaningful names.
Associated objects of different types can have the same name; for instance
QBATCH for a related job description, job queue, class and subsystem, or you
might create a user subsystem UBATCH, with associated job queue UBATCH,
class UBATCH, and job description UBATCH.

Preserving Work Management Flexibility

As a matter of principle, avoid hard coding the work management parameters
in your own programs, as this makes it hard to alter them without
reprogramming.

For instance, if you needed to produce two copies of a report in a program you
could either:

m code an Override print file (OVRPRTF) statement with COPIES(2)

m change the print file attributes with the 0S/400 Change Print file
(CHGPRTF) command

Note: The latter solution is preferable, as it does not require a programming
change to revise the number of copies produced. (It does require that there be
a separate print file for the report.) Alternatively, you could make the number
of copies a run time parameter when executing the report. For example, use
the 0OS/400 Override print file (OVRPRTF) command with COPIES(&COPIES)
specified.

Likewise, if you have a program that submits a job, do not hard code the job
attributes (such as the job priority) on the ‘submit job’ statement. Instead,
create a job description that has the desired attributes, and submit the job
using the job description. The job attributes for new jobs may then be changed
at any time, simply by altering the job description.

Another technique that can be used is to store a command that may need to
be changed as a message on a message file, and to retrieve it at execution
time for execution with the 0S/400 execution program QCMDEXC. The
message description can then be modified at any time using the 0S/400
Change message description (CHGMSGD) command. This technique is used to
implement the CA 2E EXCMSG function.

64

Standards Guide

Job Descriptions

Job Descriptions

Queves

Job descriptions provide a convenient mechanism for controlling the execution
attributes of a submitted job, including the job queue to be used, and the
execution priority.

Job descriptions for starting batch jobs should normally be created:

m with a logging level of LOG(4 00 *NOLIST). This is the default on IBM i.
This ensures a maximum logging level if an error occurs, but suppresses
the log if the job completes normally.

m to use an automatic reply list, for example, with INQMSGRPY(*YES). This
ensures that if the job crashes, subsequent jobs in the queue are not held
up. If subsequent jobs depend upon the successful completion of the first
job, then the application design should take this into account, either by a
check for successful completion of the preceding step, or by use of an
exception message program to cancel the subsequent jobs.

Note: For job description names, the names QBATCH and QPGMR should be
used where possible, and object identification controlled by library list.

Job and Print Queue Names—The default Work Management names
QPRINT, QBATCH and QPGMR should be used where possible, and object
identification controlled by library list. Consider introducing a different output
queue for each forms type used.

Message Queues—Display device message queues (created automatically by
0S/400) will be given the same name as the associated device. 0S/400 will
also automatically create a message queue for each user profile. Other
message queue names should describe their role. For example,
‘NGHTERRMSG' - error messages from the overnight batch run.

Message queues can be particularly useful for providing log functions. For each
application system, consider introducing three message queues (xxxSYSOPR,
xxXHSTLOG, and xxxCHGLOG), each with a particular role:

m An exception message queue to contain information about errors and
exceptions. This is analogous to the 0S/400 QSYSOPR message queue.

m A log message queue to contain audit information recording important
processing stages; for example, end of period processing.

m An object change log message queue. The CA 2E Toolkit Move object
(YMOVOBJ) and Move object & source (YMOVOBISRC) commands may be
used to send messages automatically to this log to record object changes
when objects are moved into the live system.

Chapter 6: Work Management Standards 6-5

Print File Direction

Print File Direction

There are several levels at which the location of printed spooled output may be
controlled under 0S/400. For convenience, the levels are summarized below.
Note that OS/400 has a number of additional capabilities, in particular the
PRTDEV parameter.

Printing is affected by starting a writer to print from an output queue. Since a
given printer can only be attached to one output queue at a time, the location
at which a spool file is printed is therefore effectively controlled by the output
queue to which the spool file is attached. This is determined by the following:

The print file attribute—Print files have an attribute (OUTQ) that specifies a
default output queue to be used when the file is used, and which can be
changed using the 0S/400 Change print file (CHGPRTF) command. The
attribute either explicitly names a particular queue, or has a value of *JOB,
which causes the output queue to be defaulted at the time of printing to the
output queue for the job that has created the spooled output. On AS/40,0 a
value of *DEV may be used—it specifies that the printer device associated with
the job should be used. The output queue used for a particular spool file may
be temporarily overridden for part or the entire job, using the 0S/400
Override print file (OVRPRTF) command.

The output queue for the job—The output queue for a job is set by the job
description used to start the job. It may be overridden by the Submit job
(SBMJOB) command used to start the job, or from within the job using the
Change job (CHGJOB) command.

The output queue for the user profile—A default output queue can be
specified for each user profile. The output queue for a job is set by the job
description used to start the job. It may be overridden by the 0S/400 ‘Submit
job’ (SBMJOB) command used to start the job, or from within the job using the
0S/400 Change job (CHGJOB) command. This is summarized in the following
diagram.

Levels of Print File Redirection - IBM i:

Level ouTQ PRTDEV How set/changed

Print file *JOB *JOB CRTPRTF, CHGPRTF, OVRPRTF
Job *USRPRF *USRPRF SBMJOB, CHGJOB, OVRPRTF
User profile *DEV SYSVAL CRTUSRPRF, CHGUSRPRF
System value - *SYSVAL -CRTUSRPRF, CHGUSRPRF

6-6

Standards Guide

User Profile and Security Standards

Different levels of control are appropriate for different operational
requirements. The four most common requirements for printing spooled output
are:

m to print it at a printer associated with a workstation, for example, the
nearest location (for instance, print key output, or on-demand reports)

m to print it at a printer associated with a user, regardless of where the user
is (for instance, confidential, or on-demand reports)

m to print it always at the system printer (as in the case of large reports), or
at a particular printer (as in the case of reports on special forms, or with
special font requirements)

m to not print it at all (for example job logs, compilation listings)

The recommended standard is to use the defaulting mechanisms whenever
possible so that print output can be redirected generically. In particular, you
should set the print file output queue of print files to OUTQ(*JOB), so that all
print output for a workstation can then be redirected simply by using the
CHGJOB command. OUTQ(*JOB) is particularly suitable for meeting the first
and second requirements above. The third and fourth requirements above can
best be achieved using the 0S/400 Change print file (CHGPRTF) command.

Scheduling Print Output

If a batch job produces several different reports and you wish them all to be
printed together, you should use the SCHEDULE(*JOBEND) parameter to
ensure this happens.

User Profile and Security Standards

User Profiles

The following section discusses information relevant to user profiles and
security.

0S/400 user profiles allow you to achieve a precise modulation of who can do
what on the machine. The standards described below apply to the use of user
profiles.

A user profile should be set up for each user—even if the user will have the
same initial menu as other users. It is important that 0S/400 user profiles are
used because:

Chapter 6: Work Management Standards 6-7

User Profile and Security Standards

Classes of User Profiles

Group Profiles

m The authorization checking for user profiles has a microcode level
implementation that is very secure. User profiles are therefore the most
secure way of controlling what a user is allowed to do.

m Individual OS/400 user profiles are a necessity for the correct use of many
0S/400 functions, including authorization, audit trails, and accounting. It
is important that use can be resolved down to as fine of a level as
possible, for example, the individual user. In other words, a user profile
not only controls what a user may do, but it is also used to trace what the
user has done.

m The use of individual user profiles permits personal addressing by
electronic mail and message sending software. This is likely to be of
increasing significance as your systems grow and you start to network
them. For this reason, you should take care to name profiles in a
systematic way.

The above approach requires at least one profile per user. Additional profiles
can be used to aggregate users into groups, and therefore to simplify the
granting of authorizations: we may classify profiles into two main classes:

Personal profiles—Each personal profile represents an individual user, either
an end user or a developer. These profiles are the profiles to which individual
users sign on.

Some special personal profiles representing standard roles are shipped in the
system—for instance ‘QSYSOPR’ (System operator), ‘QSECOFR’ (Security
officer). If the duties of a shipped profile are the responsibility of a single user,
then they can be used as shipped. If more than one person carries out the
duties sub-profiles should be introduced to maintain accountability.

Impersonal profiles—impersonal profiles represent groupings. Users never
actually sign on to them. Group profiles are normally impersonal profiles.

Some impersonal profiles represent products rather than operational groups;
for example QSYS, YSYS. These profiles are granted the necessary rights for
programs to adopt to carry out the functions of the product.

There are many reasons to use group profiles:

m [t is easy to give new group members the necessary authorizations. Rights
required by all members of the group can be given just once to the group.
New members automatically have the required rights.

6-8

Standards Guide

User Profile and Security Standards

It is easy to add or change authorizations for all the members. Alterations
to the rights required by all members of the group can be made just once
for the group. All members then automatically have the new rights.

Common resources can be shared. For example, a project team working
on the same objects can all manage the objects.

It makes the operational associations and responsibilities clear. The
0S/400 cross-referencing tools can be used to document departmental
associations.

Naming Convention for User Profiles

The user profile name will appear on reports, dumps, and logs. For this
reason, it is helpful for both operations and problem shooting if, as well as
uniquely identifying the individual user, it can indicate what the user’s role is,
i.e. some operational grouping. For end users the most significant grouping
tends to be by department, or for developers by the project on which they are
working. A two-part convention is therefore recommended for user profile
names:

PPPP MMMM

*——— User initials or
identifier
* Department/Project prefix

Prefix—Prefix one to four characters long indicating a department or project
(see the section, End-user Profiles and Development profiles in this chapter).

Each prefix will generally correspond to a group profile.

The prefix ‘Q’ should be reserved for IBM shipped files, for example, QSYS,
QPGMR.

A three-character mnemonic created according to the normal CL
conventions is preferable; for example, ‘ACC - Accounts’, ‘SLS -Sales’.
However, this is not always practical if there are a large number of profiles
or if it is useful to encode additional information in the prefix.

Identifier—One to six character unique identifiers of users.

Ideally, such an identifier should be short, simple, extendable, and unique.
Initials are more likely to succeed than names or surnames.

A null identifier is used on group profiles (for example, blank).

Identifiers representing roles, for instance the group security officer, can
be named using standard three character CL mnemonics.

Chapter 6: Work Management Standards 6-9

User Profile and Security Standards

Examples:

m ACC—Accounts department

m ACC_ES—Accounts - Ernest Saunders

m ACC_RC—Accounts - R.Calvi

m ACC_IB—Accounts - Ivan Boesky

m ACCUSRPRF—Accounts - Profile to copy for new users
m ACCSECOFR—Accounts - Security officer/administrator
m YBOTHER—Panacea product

User Profile Names for Networks

End User Profiles

If you run multi-machine networks, it is helpful if you can give the same
profile the same name across all machines (IBM midrange). To this end, the
following considerations should be kept in mind:

m User profile names that are to be used in networks should not be more
than eight characters long.

m Certain characters (for instance underscore *_") may not be used in user
profile names on some other architectures machines with which you wish
to communicate.

There should be a separate profile for each end user. It is good practice to set
up a group profile for each department and make each end user profile belong
to a group profile. General authorizations can then be granted to the group
profile. The group profile may also own the application objects.

The group profile should be created with PASSWORD(*NONE) so that no one
can actually sign on to it. A common prefix should be assigned to the group
profile.

Individual profiles within the department should be indicated by initials or
some other unique identifier.

On occasion, an end user may need to have access to another department’s
applications through a separate profile. This profile should be created with a
different prefix for the department, but the same identifier. For example:

m ACC_IB Accounts - Ivan Boesky
m STK_IB Stock control - Ivan Boesky

For each group profile, it is worth considering having two special individual
profiles:

6-10

Standards Guide

User Profile and Security Standards

m A ‘template’ profile that can be copied to create a new user profile. This
profile should have a password of *NONE.

m An administrator/security officer profile with rights to enroll new users
within the department.

Development Profiles

Development and live objects should be owned by different profiles:

m A group profile should be set up for each project. All objects for a system
should belong to this profile while under development.

m Each developer working on a project should have his own sub-profile.

Objects created by developer sub-profiles will be owned by the group profile.
To do this, specify OWNER(*GRPPRF) on the 0S/400 Create User Profile
(CRTUSRPRF) command. This makes it possible for all developers on a given
project to change any object belonging to the project.

Developers should not have update rights to live objects. This is so as to
prevent inadvertent updates of a live object or source member. There may
also be confidentiality reasons as well. To achieve this, you will need to have a
separate profile to own the ‘live’ objects, described below. It will normally be
appropriate for developers to have read rights to live objects and source so
that they may provide support.

A CL source member, which can be run through a spool reader or program
reader, should be kept, that contains the object authorizations necessary to
make a system work; for instance, the file existence rights required for work
files so that members can be created. Use should also be made of the CA 2E
Toolkit compile preprocessor utility, to code compile time overrides in the
source; for instance AUT(*ALL) where appropriate.

This practice allows:

m transfer between machines

m recreation of the system from source

Shipment or Owning Profiles

Live objects should not generally belong to either an end user profile or the
development profiles, but rather, should be owned by a separate shipment
profile. The profile may only be used by an administrator who is responsible
for taking tested objects from the developers and implementing them into a
live system. The shipment profile is not used either for development, or to run
the application.

Chapter 6: Work Management Standards 6-11

User Profile and Security Standards

Security Officer Profile

If security is a particular concern—for instance in a financial environment—
then objects should be recompiled by the administrator as part of the
implementation process. The CA 2E Toolkit Create Object (YCRTOBJ)
command may be of use when recompiling many objects. The CA 2E Toolkit
Change Object Ownership (YCHGOBJOWN) command may be of use when
changing the authorizations of many objects.

It should not be necessary to be signed on as QSECOFR to install or to
administer an application. If you are preparing a product for general shipment,
you should ensure that the installation procedure does not require QSECOFR
rights to run— many sites will not allow programs to be run under QSECOFR.
You should, therefore, design an installation procedure with detailed steps.

Before installing, ensure that prior to saving and shipping, all objects are
owned by the shipment profile. For example, you would enter the following
command for the profile UDFTOWN.

YCHGOBJOWN OBJ(USHP/*ALL) OBITYPE(*ALL) NEWOWN(UDFTOWN)

To install:
1. Sign on as QSECOFR.
2. Create the administrative, for example, owning profile.

CRTUSRPRF USRPRF(UDFTOWN) PASSWORD(*NONE) + TEXT(*Widget
System Owner profile”)

3. Manually grant it any essential rights, for example:
GRTOBJAUT OBJ(QSYS/CHGDTAARA) OBJTYPE(*CMD) SRPRF(UDFTOWN)

4. Sign on to a profile with restore rights and restore the objects. The objects
will, therefore, be given to the shipment profile UDFTOWN.

You should try to use QSECOFR as little as possible. It should only be
necessary to use it to administer profiles and to resolve authorization
problems.

The security officer should regularly change the QSECOFR password. In order
to ensure that it is always possible to obtain access to the machine as a
security officer, you can use the following technique:

1. Create a special subprofile of QSECOFR, for example USECOFR.

CRTUSRPRF USRPRF(USECOFR) PASSWORD(NEVERMORE) INLPGM(QCL)
+ GRPPRF(QSECOFR)

2. Record the password to this profile in a secure place, for instance, in a
safe at the bank. Do not use the profile except in emergencies.

6-12

Standards Guide

Implementation of Security

3. In the event of an emergency, (for example, loss or unavailability of
QSECOFR), the profile can be used to determine the QSECOFR profile, or
to reset the password.

Implementation of Security

In a live system you will need to decide:

m who owns the data objects, such as database files, data areas, and data
gueues

m who owns the execution objects, such as programs, device files, and
message files

m who may use which objects

m who has rights to control jobs and to examine spooled print output

Operational Rights

The process of specifying authorizations can be extremely time consuming
because of all of the many distinctions that can be made. In practice, the
default rights that 0S/400 gives to new objects give sensible results in most
cases. It is usually sufficient to consider changing the default 0S/400
operational authorization rights for only two sets of objects:

m Commands and entry-level programs—Granting or revoking operation
rights to the entry point to a function (usually a command) prevents
unauthorized users from invoking a function.

m Database files—By granting or revoking data operational rights, you can
protect data, even if the entry-level protection is circumvented.

The operational rights to all other objects can be left in the public domain (the
default).

A significant percentage of IBM i authority problems are caused by users not
having the authorization to use certain OS/400 Create commands. The
commands commonly required to create temporary work objects are:

Add Physical File Member (ADDPFM)

Create Data Area (CRTDTAARA)

Create Physical File (CRTPF)

Create Duplicate Object (CRTDUPOBJ)

Note: In the shipped system, the commands do not have public operational
authorization. Consider granting public rights to the commands.

Chapter 6: Work Management Standards 6-13

Implementation of Security

On IBM i, you can create an authorization list and attach it to each command.
By adding a user profile name to the authorization list, that user profile is
immediately authorized to all the commands. Alternatively, the programs that
invoke the commands can borrow the rights of the program owner, rather than
the user. This is achieved by specifying USRPRF(*OWNER) when creating the
program.

Generic Implementation of Security

As a general principle, you should implement security at a generic level, that
is, by choosing appropriate groupings of profiles and controlling rights at a
library/profile level. Avoid implementing security at too detailed of a level.

Do not attempt to authorize every user explicitly to every object. Either
authorize the group profile to the library containing the object, or add the
group profile to an authorization list attached to the object (IBM i only).

Management and Existence Rights

Object ownership should be retained by the project group profile. The project
development sub-profiles should have management and existence rights. This
can be achieved automatically if the profiles are created with the correct
attributes (OWNER(*GRPPRF)).

Users do not normally require existence or management rights. Two
exceptions are:

m Text files: Users will need management rights in order to add or remove
members.

m Work files: Users will need management rights in order to add or remove
work members.

Checking Authorization

Avoid explicit references to particular profile names in code, because it is then
not possible to add new users without a code change.

For example, the following would be bad practice:

! RTVJOBA USER(&USER)
| IF (&USER *NE ‘FRED’) + .
! SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGTYPE(*ESCAPE) !
MSGDTA('Only FRED is allowed to run this command’)

Standards Guide

Implementation of Security

Security Exposure

Instead, you should introduce an ‘authority holding’ object, such a data area,
to which you may grant rights to one or many users at any time without
modifying the code. You may then test the user’s authorization to the object:

CHKOBJ OBJ(URUNAUT) OBJTYPE(*DTAARA) AUT(*OBJOPR)
MONMSG CPF9800 EXEC(+
SNDPGMMSG MSGID(USR9001) MSGF(QUSRMSG) MSGTYPE(*ESCAPE))+ |
/* Not authorized to application */ |

Most of the likely points of security exposure are covered in the chapter on
security in the IBM i (AS/400) CL Programmer’s Guide.

Standards can be adopted to protect from potential exposure on the following
points:

m Old passwords. Passwords should be changed regularly. The password
change date can be used to monitor this. Use the 0S/400 QPWDEXPITV
command to enforce regular changing of passwords.

m Password validation. Validate new passwords:

- to be long enough to prevent systematic code breaking, that is, at
least eight characters

- to have non-obvious values, that is, neither user profile names or
other common values; for example FRED, IBM, ME are all obvious
values

m Allowed Signons. Set the 0S/400 system value that controls the number
of allowed signhon attempts, QMAXSIGN to a low value, for example, three.

m Sign on levels. You should use two-level password security. On IBM i,
QSECURITY should be set to 30 or 40 rather than single-level password
security. This makes it impossible for users to inadvertently discover each
other's passwords.

m Workstations left signed on. Use the 0S/400 QINACTITV system value to
force a time out after a specified number of seconds.

m Programs that adopt rights. A particular potential exposure is presented by
programs which, although they themselves are secure, adopt owner rights
created with USRPRF(*OWNER)) and call other programs. Infiltrators may
attempt to replace the called objects with their own “Trojan horses” that
will have the adopted rights of the calling program. Programming
knowledge is needed to do this. If security is a paramount consideration,
you should do the following:

- Make sure that debug capability is removed from programs that call
the 0OS/400 QCMDEXC program.

Chapter 6: Work Management Standards 6-15

Implementation of Security

- Create adopting programs with LOG(*NO) and ALWRTVSRC(*NO). This
makes it harder to determine the exit points for inserting “Trojan
horses”. On IBM i, you can delete the observability of such programs
using the 0S/400 Change Program (CHGPGM) command. This makes
dump analysis impossible.

- Secure the library containing the called program by revoking object
management rights to it. Also, either qualify the program call
statements by including a library name for the called program, or
place programs called by the adopted program in the system part of
the library list and revoke object rights to the 0S/400 Change System
Library List (CHGSYSLIBL) command. You should probably do this in
any case.

- Restrict the adoption of rights to the minimum duration. That is, place
the statements for which rights must be adopted in a small, separate
subprogram.

- Override any files that are used with SECURE(*YES).

Note: Avoid creating programs that adopt the rights of profiles with QSECOFR
rights.

m Input and media. Make sure that you apply adequate security measures to
your offline backup media (tapes and diskettes) and to printout.

m Use of PRTTXT. Use the PRTTXT keyword to ensure that all printouts have
originating text on it, for example ‘IBM RESTRICTED'.

Audit Trails

When security is particularly important, it is a good idea to design applications
with an audit trail, so that all potentially sensitive actions are recorded
automatically. There are some particular techniques useful for creating audit
trails:

m Use QHST. Specify that a particular message is to be copied to the log by
specifying LOG(*YES) on the 0S/400 Create Message Description
(CRTMSGD) command. This causes a copy of the message to be placed on
the QHST message queue.

m Use a journal. Use a journal for an audit trail. Copies of sensitive requests
can be written to the journal as user-defined entries. Individual journal
entries cannot be deleted. You should secure the journal and its receiver:

CRTIRNRCV JRNRCV(TRAIL) PUBAUT(*NONE)

6-16 Standards Guide

Using Libraries

Initial Programs and Menus

The following principles should be applied when setting up user environments:

m User systems should be menu driven, with Help text available for each
interactive option.

m Wherever possible, the CA 2E Toolkit Go to Menu (YGO) command should
be used to provide menus. In this way, menus can be easily changed or
updated. In addition, advanced functions can be provided in all menus,
such as Help text, direct menu calling, and command request entry.

m The CA 2E Toolkit User Access system should be used where possible to
gain entry to the menu program. This requires that user profiles are
created or changed with the CA 2E Toolkit Create User Profile
(YCRTUSRPRF) command.

m The CA 2E Toolkit Initial Program (YINLPGM) command should be used as
the initial program for user profiles to:

- set the library list using an CA 2E Toolkit stored list
- set the message queue to break
- display an initial menu

For more information on the YINLPGM command, refer to the Toolkit Concepts
Guide.

Using Libraries

The following principles should be applied for the use of libraries under 0S/400
and the organization of a development environment on IBM i:

m For a given application, separate the live data files, the application objects,
and the source files into different libraries. The national language
dependent objects, such as commands and panel groups, may also need
to be separated from the other application objects.

m For each application, use a separate set of libraries; very large libraries are
inefficient to use.

m Avoid having cross-library dependencies; for instance logical files based on
physical files in different libraries, or journal receivers attached to journals
in another library.

m Keep development separate from the live systems. Separate user profiles,
using object ownership and authorization to enforce this.

Note: For more information on security standards, refer to the section,
User Profile and Security Standards, in this guide.

m Make the live and the test environments as similar as possible.

Chapter 6: Work Management Standards 617

Using Libraries

Establish libraries to be able to determine an object’s type, and its
development status (new, under test, live), by which library it is in.

Use software tools for the routine housekeeping tasks involved in
implementing new objects.

Avoid explicit references to library names in code.

Avoid qualified references to libraries. Do not hard code references to
library names as it means that the library list cannot be used to find
objects.

Organizing a Development Environment

It is very important that you organize your development environment and your
working methods systematically. Doing so can:

significantly improve your productivity because:
- less time needs spent coordinating and cross-checking
- conflicting changes are avoided

- additional personnel can assist with object management and librarian
functions

improve your product quality because:
- version and level errors can be reduced.
- component fixes can be handled efficiently.

make it possible for more developers to work on the same project because
the dependencies are clearer.

Development Phases

Generally, you can distinguish between two different phases of development,
each with different requirements:

Initial development, such as feasibility studies, prototyping, early
development. This tends to be both rapid and tentative. It is usually not
appropriate to apply a strict version control at this stage, as it may not yet
be possible to make relevant decisions such as the exact number and
names of objects, and the dependencies are not apparent. Such
development should be contained within development libraries. Version
control and component tracking need only be introduced once the system
is stable.

Maintenance development. Once a version of an application is in use, it is
of critical importance that all modifications are carefully regulated. Full
version control needs to be applied.

6-18

Standards Guide

Using Libraries

Operational Flow for Objects and Source

The following diagram shows a system for using libraries for development:

Check out

*

Import
>>>

NEW - CHECK

Exc *
objs

Live

System SYS

Check out

Development library(ies)
for objects and source

DEV

Promote to test

Test library
TST
Promote to live
b * Data
Src objs DTA2
DTA1

Test

SRC DTA DTAnnN data
libraries

* *

Archive library
* OLD

Note: The contents of each of the libraries shown in the diagram are explained

below.

Strict rules should be applied to how source and objects may be moved

between libraries:

m Objects, together with their source, should only be moved along the routes

shown by arrows.

m If an existing object needs to be changed, its source should be copied up
to the development library, after checking that there is no outstanding
version already undergoing amendment, and recompiled there.

m It may be appropriate to have more than one development library. You
must coordinate the libraries to ensure that no component is undergoing
modification in more than one library at a time.

Chapter 6: Work Management Standards 6-19

Using Libraries

Configuration Management

You should adopt working procedures, if necessary supported by a software
tool, to follow a protocol such as the one above. Use rigorous methods to
perform the following tasks:

m Identify component dependencies. That is, decide which components must
be changed along with other components.

m Monitor component usage. That is, identify whether a component is
already undergoing modification.

m Check out components into the development environment and record that
they are in use.

m Progress components through testing.
m Move modified components back into the live production environment.

m Keep an audit trail of all such modifications.
CA 2E Toolkit Generic Move Utilities

The CA 2E Toolkit Move Object and Source (YMOVOBIJISRC) command can be
used to move objects and source from the development to the live libraries. It
will also carry out functions, such as preserving authorities, archiving previous
versions, separating source and objects, and creating a log of movements
made.

Naming Convention for Libraries

Adopt a naming convention that distinguishes between the different library
roles described above. For example:

XXXSYS Contains application objects that run the system;
for example, programs, display files, print files,
message files, Help text, and output queues.

xxxSYSII| Contains versions for language Il of objects
needed to run the system; for example, message
files, panel groups, printer files, commands,
menus.

xxxDTA Contains objects containing data for a system; for
example, physical files and data areas, journals,
receivers and logical files. Job descriptions, with
the appropriate initial library list, should also be in
this library.

XxXXDTANN Test pack copies of DATA library: TYPE(*TEST).

620 Standards Guide

Using Libraries

Library Types

XxXXSRC Contains source for xxxEXC, xxxDTA, and objects
that are needed only to create the system, not to
run it.

xxXOLD Contains previous versions and source.

XxxDEV Contains source and objects under development.

Library TYPE(*TEST). If you use a multi-library
method, then you will need a more elaborate
system (the CA 2E application generator uses two
libraries—xxxMDL and xxxGEN, instead of a single
xxxDEV library).

XXXNEW Exchange library for receiving shipments.

System identifier— xxx - Identifies the application system normally will be
either two or three characters long, but may be longer.

Test pack suffix—nn - Suffix used to distinguish different sets of test data.

Live production libraries should be of type *PROD. Development libraries
should be of type *TEST: they may then be safely used in conjunction with
live data under debug if UPDPROD(*NOQ) is specified when using the 0S/400
Start Debug (STRDBG) command.

The above convention gives the following benefits:

m complete segregation of the live and test data

m a test environment that is as close to the live environment as possible

m separate backup regimes for data, application objects, and source

m control of implementation of changes, retention of the penultimate
version, preservation of existing authorities

m control of conflicts due to changes made off-site or on a parallel machine
m different data test packs
m eventual archiving of source

m use of software tools to implement new versions

Chapter 6: Work Management Standards 621

Using Libraries

The following are examples of the library lists required to use the system
described above.

Library List for a Programmer:

! QTEMP - Session scratch library. 5
! xxDEV - Development library: source + objects. E
: xxTST - Test library ;
: xxSYSIII - NL versions of application execution objects :
i xxSYS - Application execution objects :
i xxDTAyy - Test versions of application data objects ;
i QGPL - General purpose library. :
; Y1SY - 400 Toolkit utilities. :
' Y2SY - 2E utilities. ;

QTEMP - Session scratch library. i
; XXTST - System test library. i
3 xxDTAyy - Test data files & data areas. 3
3 xxSYSIII - NL versions of application objects ;
| xxSY$S - Application execution objects '
1 QGPL - General purpose library. |
Y1SY - 400 Toolkit utilities. 3

i QTEMP - Session scratch library. ;
i xxDTA - Application data: files, data areas & queues. ;
: xxSYSIII - NL versions of application objects i
| QGPL - General purpose library. i
5 Y1sY - 400 Toolkit utilities. |

6-22 Standards Guide

Using Libraries

Use of Libraries

Whenever objects, especially programs or files, are referred to by name in
programs, the names should never be qualified names.

For instance:

use CALL PGM(X) not: CALL PGM(QGPL/X)
use OVRDBF FILE(A) TOFILE(B) not: OVRDBF FILE(A) TOFILE(QGPL/B)

use CRTCMD CMD(X) PGM(A) not: CRTCMD CMD(X) PGM(QGPL/A)

If this rule is not obeyed, the library list cannot be used to find objects. It will
require a programming change to use a different set of data, or a different
version of a program. Apart from losing one of the most powerful capabilities
of 0S/400, it will be very difficult to establish a test environment that is as
close as possible to the live environment.

Where you need to specify a library, for example on a create command, use
the current library *CURLIB as a default.

The CA 2E Toolkit utilities include library list manipulation facilities that can
help avoid the explicit coding of library names.

For more information on user access aids, refer to the Toolkit Concepts Guide.
For the CA 2E Toolkit IBM i Change Library List (YCHGLIBL) and Change Job
Description Library List (YCHGIJOBD) commands, refer to the Toolkit Reference
Guide.

Using Explicit References to Libraries

Avoid having explicit references to library names in programs and elsewhere,
as this means that libraries cannot be renamed without a programming
change.

Use the PRDLIB facility on menus and commands to set the library list to
include any necessary application execution objects, such as programs and
device files. Only set the PRDLIB on the live version of objects.

Use the CURLIB facility to set the library needed to find application data
objects, such as database files and data areas.

Chapter 6: Work Management Standards 6-23

Using Libraries

Using QTEMP

If it is necessary to refer to a library name explicitly, you should retrieve the
library name. The best technique is to retrieve the library containing a named
object, for example using the 0S/400 Retrieve Object Description (RTVOBID)
command:

If a job needs to create temporary work objects in order to execute, for
example, message queues, data areas, or files, the objects should be created
in the job’s scratch library, QTEMP. This will ensure that:

m the work objects will automatically be cleared up when the job terminates,
even if the job crashes

m the work objects will not conflict with the work objects of other similar jobs

Work objects should be duplicated into QTEMP by use of the 0S/400 Create
Duplicate Object (CRTDUPOBJ) command, working on a model object kept in
the system execution object library. Note that the CRTDUPOBJ command
requires that the name of the library containing the model object be
specified—the name of the originating library should not be *hard coded’ as a
literal, but retrieved, as above.

It may not be desirable to give the user rights to use the CRTDUPOBJ
command, in which case a special ‘duplication program’ may be created with
USER(*OWNER), which will adopt the rights of a user profile that has the
necessary authorities.

You should allow for the possibility of the work object already existing in
QTEMP. You do not need to delete the work object explicitly when you finish.

6-24

Standards Guide

Using Libraries

The following code would create a work file UUWKFLP in QTEMP from a model
library, by calling a program UUCRDPC, which in turn, calls a program
UULBNMR.

/*H: 2. Create workfile if it does not already exist */
CHKOBJ OBJ(QTEMP/UUWKFLP) OBJTYPE(*FILE) /* already exists?*/
MONMSG MSGID(CPF9801) EXEC(+
CALL PGM(UUCRDPC) PARM(UUWKEFLP *FILE QTEMP))
CLRPFM FILE(QTEMP/UUWKFLP)
OVRDBF FILE(UUWKFLP) TOFILE(QTEMP/UUWKFLP)

RTVOBJD OBJ(WFIL) OBJTYPE(*FILE) RTNLIB(&PRDLIB)
CRTDUPOBJ OBJ(&0BJ) FROMLIB(&PRDLIB) OBJTYPE(&OBJTYPE) +
TOLIB(&TOLIB)
RMVMSG CLEAR(*ALL)
ENDPGM

i PGM PARM(&OBJ &OBJTYPE &TOLIB) |
| /*T: UUCRDPC Create work file in QTEMP from PPEXC model file. o
} /*Z: CRTCLPGM LOG(*NO) USRPRF(*OWNER) oo
| /*H: SYSTEM : Risk and Sanity monitoring system */ i
} /*H: PROGRAMMER : G. Byron oo
| /*H: DATE 1 19/08/84 * :
i /*H: (C) COPYRIGHT 1987 Universal Sprocket Corporation A
1 /* Entry variables */ 1
} DCL &0BJ *CHAR 10 /* MODEL OBJECT NAME */ |
| DCL &OBJTYPE *CHAR 8 /* MODEL OBJECT TYPE */ ;
} DCL &TOLIB *CHAR 10 /* TARGET LIBRARY * |
| DCL &PRDLIB *CHAR 10 /* FROM LIBRARY * :
| o oo

Using QGPL

The general-purpose library QGPL should be used for user-defined or modified
work management objects, such as output queues, job queues, subsystems,
and for other objects that may be common to all user applications on the
machine. It should not contain application objects.

Chapter 6: Work Management Standards 6-25

Version Control

Version Control

Objects and source should only be moved between libraries in a strictly
controlled manner, so that if there are successive changes outstanding, they
are implemented serially.

Every source line has a change date on it. When copying source to the
development library in order to make changes, take care not to reset the
source change dates; that is, do not copy a member by adding a new member
and using the SEU browse/copy function to include the old version.

A problem occurs if the programming for an application takes place on two
different machines at the same time. If different changes are made to the
same program on both machines concurrently, transferring either version of
the program to the other machine may wipe out the other set of changes.

The problem can only be avoided completely by having a one-way flow of
material, or by abstaining from changing programs on both machines at the
same time. Using development libraries can help control the problem of
concurrent updates as only a small number of objects need examining for
potentially conflicting versions.

1. Frequent exchange of development libraries should be made to ensure that
everyone is using the latest version of the source.

2. A formal ‘import’ process should be used. The development libraries should
be compared before merging to ensure that concurrent changes have not
been attempted. If they have, any discrepancies will need to be resolved
manually. The CA 2E Toolkit lists utilities that can be of use when
comparing objects and source members.

6-26

Standards Guide

Version Control

Object Versions

If you need to distribute new versions of the software developed on one
machine around a number of ancillary sites, you should use a formal method
of version control.

The main goals of a formal change control system are to:

m provide full upward compatibility

m avoid errors arising from version conflicts after an upgrade

m preserve existing user data in the distributed sites

m inform the users of any changes

The level checking mechanism of OS/400 provides some version control
facilities. This will ensure that file and program levels are compatible. Level
checking should always be used to provide a basic protection mechanism. For

example, LVLCHK(*NO) should not be specified on 0S/400 create file
commands.

Upward Compatibility

A prime objective of version control is ‘upward compatibility’. New versions of
applications must always support existing versions or provide a simple
conversion route to the new version. Apart from the routine format level
considerations, particular considerations apply to different object types:

m Command parameters: Existing command parameter keywords and their
default values should not be changed. New keywords may be added (after
all existing parameters, or past the limit for positional specification as
indicated by the MAXPOS keyword). New values for existing parameters
may also be added.

m Program parameters: Existing program parameter interfaces should only
be changed if:

- all references to the called program have also been changed.

- the change is to add new parameters to the end of the parameter list
and the parameter use is optional. For example:

¢ Escape messages. The escape messages sent by a program or
command in a given set of circumstances should not be changed,
nor should the message identifiers of such message be changed
(unless all existing programs that call the sending program are
also modified).

¢ Database files. If new versions of database files are provided,
conversion routines for restoring existing data to the new files
should be supplied.

Chapter 6: Work Management Standards 6-27

Version Control

Version Numbers

Version control should be based on a version humbers included in a data area
or database file in the shipped software library. This number should be
incremented for each functional change—note that a single change may affect
a number of different objects. Therefore, documentation of any changes can
be related to the fix level.

A check for prerequisite versions can be made, either manually or
automatically, in order to prevent installing successive releases in the wrong
order. Operating system version levels can be checked by retrieving the
relevant data area for:

m the IBMiV1R1, Q5728SS1 in library QSYS
m the IBMiV2R1, Q5738SS1 in library QSYS

Version Installation Procedures

The installation process should be as simple and as automatic as possible.
Often, it will be sufficient merely to use the 0S/400 Restore Object (RSTOBJ)
and Restore library (RSTLIB) commands—whether this is the case will depend
upon the nature of the objects being shipped.

Execution objects, for example, items that do not contain data, such as
programs, device files and message files, may generally be restored on top of
the existing versions. (N.B. device files cannot be in use while this is done.)

Data objects, for example, items that contain data, such as database files and
data areas, cannot generally be restored directly without losing the user’s
existing data. They must, therefore, either be installed under a different name
and be renamed after data conversion, or be installed to a different library and
moved after data conversion.

It may also be necessary to rebuild any logical views that are based upon
physical files that have been changed. In either case, a conversion program
will need to be run to copy and or convert data from the existing files. It
should be possible to run any data conversion procedures in one of two ways:

m on alternative data sets in different libraries
m on old data sets restored from diskette or tape. Conversion procedures

should, if possible, be cumulative.

Note: To ensure upward compatibility, new software versions should include
any necessary conversion programs.

6-28

Standards Guide

Backup and Recovery

0S/400 Installation Procedures

The following is the change mechanism used for IBM’s own products such as
RPG III (QRPG):

1.

All changed objects are given a name based on a serial humber for
shipment.

The numbered objects are restored on site with the 0S/400 Load PTF
(LODPTF) command, which checks that no fixes have been omitted. The
LODPTF command also restores a log of changes, which includes
information about dependencies.

The restored objects are installed by a separate command—the 0S/400
Apply PTF (APYPTF) command, which renames or deletes the existing
version and replaces it with the serially humbered object. This allows any
required data conversion to be run at the same time.

Complete new releases of programs are installed by a special command—
the OS/400 Load Licensed Program (LODLICPGM) command, which can
run conversion programs after restoring the new objects if necessary.

Backup and Recovery

Note: For more information on the available facilities, refer to the IBM i
(AS/400) CL Programmers Guide.

All approaches to securing data represent a compromise. The perfectly secure
system would spend all of its time backing up, and no time doing anything.
The final decision as to how much data a system can afford to lose is a
question of judgment and cost effectiveness.

In discussing backup and recovery, it is useful to distinguish between two
different types of computer failure:

Catastrophic failure (for example fire or a disk head crash), where the
online storage medium is likely to be physically damaged. Catastrophic
failure is likely to be rare, and to involve a considerable delay while new
hardware is obtained. The main concern for recovery is avoiding excessive
loss of data. Recovery from catastrophic failure will invariably involve
restoring from offline copies. It is essential to keep off site copies of
software to guard against catastrophic failure.

Non-catastrophic failure (for example a power cut or a program crash),
where the hardware is undamaged, but data may be lost or
unsynchronized. Partial failure may be fairly frequent. Recovery is
concerned with minimizing data loss and with providing a means of rapidly
resuming processing at a safe point with the minimum of expert
intervention. Recovery will not usually require restoring from offline
copies.

Chapter 6: Work Management Standards 6-29

Backup and Recovery

Data Security

Different recovery strategies are appropriate to each type of failure:

Type Cause Frequency Protection
Measure
OBJECT LOSS Human error or Often On-line backup
program error journaling
SYSTEM LOSS Hardware failure, Seldom Off-line backup
power cut
SITE LOSS Act of God,: flood, Rare Off-site backup
fire, earthquake,
etc.

In planning for the above, you should take into account both the relative
probabilities and the cost of failure (“*Risk = Probability x Cost of failure”), and
choose a cost-effective plan. This means understanding what is the largest
acceptable unit of loss: is it one day, one hour, or one transaction?

The speed of recovery required will also be relevant—for a really speedy
recovery you should journal access paths as well as data.

It is not just data loss that you need to be concerned about, but rather, the
wider concept of data security. The two goals of data security are:

m Lose as little data as possible.
m Keep the database synchronized. Transactions requiring the update of
multiple database files should function on an “all or nothing” basis.

0S/400 includes an integral system of transaction logging journaling that can
help you to attain both of these targets.

6-30

Standards Guide

Backup and Recovery

Recovering from Non-Catastrophic Failure

If an interactive program crashes due to a non-catastrophic failure, it should
always rollback to a safe point. The overall aim should be for an operator to be
able to simply restart whichever procedure was being used at the time of
failure. No explicit recovery procedures should need to be undertaken. This
goal is essential to avoid having to provide continued low-level support for a
system.

Automatic recovery is relatively easy to arrange for transactions that involve
the update of a single database file record, as the update will have either
succeeded or failed. A more difficult problem is presented when a single logical
transaction requires the update of several database file records on one or
more files. Briefly, there are several possible approaches:

1. Design the database update processes so that whether or not the update
is deemed to occur depends on a single transaction. For example, add a
status flag to a control or header record and update this last. Transactions
that have an incorrect status flag are ignored.

2. For batch procedures only, the entire database could be saved before
running the procedure, so that the start position can be restored in the
event of a failure. Backup could be online; either to a save file or using the
0S/400 Copy File (CPYF) command.

3. Use the journaling and commit control facilities of 0S/400 to synchronize
the transactions automatically.

Recovering from Catastrophic Failure

Complete recovery can be made from a catastrophic failure by restoring the
last full save, plus—if journaling is being used—all journal receivers saved
since the last full save. The updates contained in the journal receivers must
then be reapplied using the 0S/400 Apply Journal Change (APYJRNCHG)
command.

If some of your applications are more essential for the continued operation of
your organization than others, consider separating critical and non-critical
systems into separate libraries so that the critical systems can be restored
ahead of the others.

Chapter 6: Work Management Standards 6-31

Backing-Up

Backing-Up

How often something needs backing up depends upon how often it changes.
Broadly speaking, IBM i objects can be grouped into four levels of volatility:

m Very low volatility. QSYS (the OS/400 system library), and other shipped
program product libraries such as QIDU, QRPG, QTXT, QOFC.

Most of the IBM-supplied program product libraries do not change once
installed except for new releases or PTFs, and therefore, can be backed up
once and for all. They should be resaved when PTFS are installed. Library
QSYS does however, contain some data that may change fairly frequently,
such as authority and user profile information. This should be saved at
regular intervals using the 0S/400 Save System (SAVSYS) command.
Device configurations and modifications to system values may also change
quite frequently. Since saving QSYS is a tedious process (especially when
saved to diskette) and requires a dedicated machine, it is generally easier
to save a record of the changes made to QSYS rather than QSYS itself.
Such changes should be kept in a CL program or spool reader. Recovery
then consists of restoring the last save of QSYS and rerunning the
programs to modify it.

m Low volatility. QGPL (user work management objects) and live application
execution objects.

Live application execution objects (programs, device files, message files,
etc.) do not change unless a modification is made to the system.
Therefore, they only need backing up when a new version of the software
is implemented.

m High volatility. Live application data objects and development application
execution objects.

Live application data objects (database files, data areas, data queues)
probably change every day, as do the objects in development libraries.
Therefore, they should be backed up regularly.

m Very high volatility. Journal receivers.

If journaling is used, then the data in the journal receivers of live applications
will probably change the whole time—from moment to moment, as data is
entered and processed. In high volume or data critical applications, journals
should be saved throughout the day or even be transferred continuously to a
backup machine or machines.

6-32

Standards Guide

Backing-Up

Organizing Objects for Backup

To implement an efficient backup regime, organize your objects so that they
are easy to manage from the point of view of saving and restoring. To do this:

Organize objects into libraries according to their volatility and functional
relatedness. For example, place all volatile data objects (files and data
areas) for an application together in the same library.

Place dependent objects in the same library. This simplifies the restore
process. Place logical files in the same library as the based-on physical
files. Place journal receivers in the same library as the journal to which
they attach.

Use a naming convention for objects so that they can be identified and
manipulated by type, if necessary.

Backing Up Live Application Systems

One of the goals of the library usage standards discussed is to separate
objects into libraries by role. This helps to minimize the amount of backing up
that has to be done.

Execution objects and source for live application systems should be kept in
separate libraries that need be backed up only when a change is made to
them.

The strategy adopted for backing up live application data objects, in particular,
the choice of whether journaling, Save Change Objects (SAVCHGOBJ) or Save
Objects/Libraries (SAVOBJ) is used, will depend on the following
considerations:

Volume and volatility. Journaling incurs a performance overhead that may
become critical on large volumes.

Transaction complexity. Simple transactions may not need journaling.

Batch/Interactive job mix. Journaling is less suitable for high volume batch
applications.

Chapter 6: Work Management Standards 6-33

Backing-Up

Backing Up Development Systems

Because an application under development is subject to widespread change,
the entire application should be saved regularly. If a catastrophic failure
occurs, not more than one day’s development work should be lost. Backing
development objects prevents loss of work through hardware failure and
provides a measure of security against human error; for instance, the
inadvertent deletion of source, objects or data.

Backing up programming changes should be done daily. This will normally
involve saving the development library or libraries.

Ancillary libraries, for example, test data or development tools, may only
require an occasional backup.

Backup Methods

It is worth developing a simple system to manage and support your backups.

For each backup unit (library or generic library name, object or generic object
name), it should be possible to specify a save frequency (such as hourly, daily,
weekly, monthly), a save method (SAVOBJ, SAVCHGOBJ, or SAVLIB), and
whether the save is offline or online (save to save file).

The system should guide the operator in loading the appropriate media and
should record which libraries have actually been saved on which days, and to
which media.

New libraries should be added to the system automatically or semi-
automatically. Renaming or deleting libraries should be ensured.

Using Media

Rotate the media versions. This both provides better protection, but also
spreads the mechanical wear of the media more evenly.

A cycle of at least two week’s versions should be used for offline media copies:

- Day 1 save to Set A
- Day 2 save to Set B
- Day 3 save to Set C
- Day 15 save to Set A
- Day 16 save to Set B

6-34 Standards Guide

Backing-Up

When making saves, set the expiry date on the media (EXPDATE parameter on
CL Save commands (SAVLIB, SAVOBJ, SAVCHGOBJ, SAVSAVFDTA)) to be the
expected date of reuse. This will cause an exception message to be sent to the
operator if he tries to use the media earlier than the scheduled date.

Media (diskettes or tape) should always be clearly labeled. The label should
include:

m the library or objects saved

a description of the library

m the date and time

m the method of saving (SAVOBJ, SAVLIB)

m the machine (IBM i) and 0S/400 level

m the media sequence number; for instance “1 of 3", "2 of 3"

A catalog (obtained by using the 0S/400 Display Tape (DSPTAP) command
with OUTPUT(*LIST)) may usefully be stored with the media.

Illustration of Media Label Contents:
i Owner:WIDGET Volid WW1 AS/400 V2R1 :

Contents: SAVLIB FRED
! Fred’s test programs
i 26/07/84 361 Objs.

Chapter 6: Work Management Standards 6-35

Chapter 7: Standards for Testing

This chapter describes practical guidelines for informal testing techniques. It is
important to make use of software tools to organize and assist with the testing
process. Some indication of possible tools is given in this chapter.

Types of Testing

Implementation testing can be divided into two stages:
m program testing
m system testing

In addition, there is the requirement to report and correct bugs on systems
that have been implemented.

Program Testing

Program testing is done by the programmer or developer. The developer is
responsible for ensuring that the tested program satisfies the following
criteria:

m performs all the functions described in the program specification
m handles all nhon-pathological error conditions without crashing

m meets the coding and user interface standards

m s fully documented, including operating instructions

The usual unit for program testing is a single menu option—this will often
correspond to a command.

Black Box and White Box Testing

Most testing methodologies distinguish between black box and white box
approaches to testing.

Black box testing assumes no knowledge of the internal mechanism of a
program but merely considers the inputs and outputs.

Chapter 7: Standards for Testing 7-1

Chapter 7: Standards for Testing

System Testing

Test Sheets

Test Techniques

White box testing uses knowledge of a component’s internal working to focus
upon critical paths. White box testing can be used to simplify the test
procedures and to also ensure testing covers conditions arising from any
limitations of the implementation, for example, array maxima.

Generally speaking, white box testing is most effective at a program stage;
black box testing is more appropriate at a system stage.

System testing is done by a second party, usually either the analyst or a
tester. The objectives of system testing are as follows:

m to check that programs have been properly tested
m to check that links between different parts of the system work

m to check that the system design works, that is, to execute all of the
programs in the system, with realistic data, in a realistic order

m to check that each program has the correct effect upon the data it
handles, that is, that the database is updated correctly and that all
calculations are correct

m to test for arising conditions due to interaction between different
programs, or different invocations of the same program, including record
locking and deadly embraces

m to test for arising conditions due to large volumes of data, including level
breaks, page overflow, and exceeded commit maxima

Progress should be monitored by means of test sheets. A test sheet is a
standard form, one per program (or rather function), which will circulate
between developer and tester until the program has been accepted. It includes
a checklist of standard points to test, plus space for comments and errors.
Preferably, this will be online.

To test a whole system successfully, you will need to “divide and conquer”;
that is, split the system into modules that can be tested independently. Do not
try to test the whole until the parts are working.

Overall, it is important to recognize:

m a given test will nearly always need to be repeated many times

7-2 Standards Guide

Chapter 7: Standards for Testing

m a given test will be needed not only for initial development, but also later
on to retest components after maintenance changes

It is therefore worthwhile, prior to testing, to spend time both formally
designing test plans and preparing any tools that will assist with the process.
For example:

m programs to set up or generate test data

m test harnesses and ‘scaffold’ programs to run individual programs that are
normally run as part of a larger process

m programs to reset initial test conditions
m programs to document test data, for example, Queries

m programs to evaluate test results

PC Tools Useful for Testing

Using Test Plans

There are several PC-based testing tools. They allow you to carry out
regression testing. This is the rerunning of a test case or battery of test cases
after a change has been made, in order to verify that no inadvertent side
effects have been introduced.

The CA 2E Toolkit utilities include a number of tools that may be useful. When
testing to display or change data in database files or data areas, use the
following CA 2E Toolkit commands:

m Work with Files (YWRKF) command

Edit LDA (YEDTLDA) command

Edit GDA (YEDTGDA) command

Edit Data Area (YEDTDTAARA) command

To enter debug for predefined sessions, or at any point, use the following CA
2E Toolkit commands:

m Start Debug (YSTRDBG) command

m Set Break Program (YSETBRKPGM) command

To reset initial test conditions, use the CA 2E Toolkit Copy Files (YCPYF)
command.

For programs that change the database or carry out calculations in a nontrivial
way, test plans of predicted results should be prepared. Test plans should
combine as many test conditions as possible in as small of a volume of data as
possible.

Chapter 7: Standards for Testing 7-3

Chapter 7: Standards for Testing

Using Test Data Packs

Test packs of data (for example, files and data areas) each corresponding to a
set of test conditions, should be kept so that tests can be rerun.

Prepare a test pack of the data representing the initial state prior to running
the test. Ideally, a test pack is a self-contained library of files and data areas,
or a set of physical files.

Take a ‘snapshot’ of the test pack as it is prior to running the test. This may be
done in two ways:

Devise test plan
Set initial conditions
Execute test
(Recompile if necessary)
Evaluate results
No
OK? Correct errors
Yes
Stop

m using the 0S/400 save commands (SAVLIB, SAVOBJ, SAVCHGOB]J). The
saves may be made on-line to a save file.

m using the CA 2E Toolkit Copy Files (YCPYF) utility. The Copy file utility
saves a list of database files.

Run the test and examine the output data. If an error is found, correct it,
restore from the ‘snapshot’, and rerun the test. You may restore the snapshot
either by using the 0S/400 restore commands (RSTLIB, RSTOBJ) to restore
from your save file, or using the CA 2E Toolkit YCPYF command to restore
from your set of physical files.

Manipulating Test Data
m You should have tools for examining and altering test data.

m You should have a means of looking at any database file that you are likely
to change. The CA 2E Toolkit Work with Files (YWRKF) command can be
useful in this respect.

m The 0S/400 interactive debug facility can be used to check calculation
values during program execution.

7-4 Standards Guide

Chapter 7: Standards for Testing

m You should have a means of listing the data from the main database files
before and after each test is run.

The Test Cycle—When testing, you will be going through an iterative cycle of
testing and error correction.

For each iteration, there will be an overhead involved in recompiling objects
from corrected source and in resetting the test data to the initial conditions. It
is, therefore, important to adopt a working method that corrects as many
errors as possible during a given iteration. In other words, you should not
necessarily stop at the first error you detect and attempt to correct and
reiterate it, but rather, continue in order to detect and correct as many other
errors as possible.

There are several techniques you can use to resume a test run, despite the
occurrence of errors:

m Use the 0S/400 interactive debug facilities to correct any program
variables that are preventing the completion of a test.

m Use the CA 2E Toolkit Work with Files (YWRKF) command to correct any
database fields that are preventing the completion of a test.

m Use the CA 2E Toolkit edit data area commands (YEDTDTAARA, YEDTLDA,
YEDTGDA, and YCHGDTAARA) to correct any data areas that are
preventing the completion of a test.

Error Reporting—In a live system, locating the cause of a bug is often more
difficult than actually fixing the bug. This is partly because the sort of bugs
that elude system testing tend to be obscure, and may only occur under
certain combinations of conditions, but also because they are often reported
by the end user, who quite naturally may not be adept at providing the
information that helps to characterize a bug. It is important, therefore, to have
an error reporting procedure that helps to capture as much information about
bugs as possible. The user should be trained in basic recording techniques.
Automatic techniques may also be used.

For any reasonably sized system, it is desirable to have a computer-based
error reporting and problem determination system:

m to record the occurrence of an error in a standard format

m to monitor the progress of fixes for the error

m to allow the cross-referencing of related errors

m as a database for a system support personnel (a ‘Helpline’ or ‘*Hotline’

function)

iSeries has a number of facilities that can be used to assist with problem
resolution. For example, the Question and Answer database may be used as a
basis for a computerized problem reporting system.

Chapter 7: Standards for Testing 7-5

Chapter 7: Standards for Testing

Problem Reporting Data—Careful consideration should be given to the
standard information recorded for each problem, and the classifications under
which they are filed.

Some items that are generally important are:

m application or product name

m product version humber and fix level

m operating system version number and PTF level
m program or object nhame

m command or menu option name

m user name, date, and time

Include circumstantial information, such as what the user was doing at the
time.

Problem Reporting Procedure—Standard practice should include the
following:

m Take a program dump if an escape message appears.

m Preserve the job log until the problem is resolved. A print of the log may
be obtained either by pressing the PRINT key while displaying the second
level messages, or by taking the 0S/400 Sign Off command (SIGNOFF)
with LOGOFF(*LIST).

m Print any associated displays using the PRINT key.

If you are operating on more than one machine, the Operating System version
levels, including Program Temporary Fix (PTF) levels, should be recorded. The
0S/400 Display Program Temporary Fix (DSPPTF) command can be used to
examine the applied fixes.

Trapping Error Information Automatically—Apart from its normal job of
logging facilities, 0S/400 has three particular features that may be used to
trap error information automatically:

m System reply lists. A default reply to exception messages can be specified
for a job using the INQMSGRPY parameter on the 0S/400 Submit job
(SBMJOB) or Change job (CHGJOB) commands.

m Break message programs. An exception-handling program can be specified
for particular messages using the DFTPGM parameter on the 0S/400 Add
Message Description (ADDMSGD) and Change Message Description
(CHGMSGD) commands. Apart from dumping, the default program could
carry out additional processing, such as notifying an operator. This facility
can be used in conjunction with a system reply list so that the message-
handling program is only invoked for certain jobs.

m RPG III *PSSR Subroutines. Exception handling subroutines can be coded
in RPG III source to achieve a similar effect to break message programs.

7-6 Standards Guide

Chapter 7: Standards for Testing

Sample Test Sheet

TEST SHEET - COMMAND:

Command Diagram: Developer:

Documentation: Checked by:
Check date:

Help Text:

Parameters:

Errors:

Notes:

Chapter 7: Standards for Testing 7-7

Chapter 7: Standards for Testing

7-8 Standards Guide

Chapter 8: Documentation Standards

This chapter describes the CA 2E standards for documenting application
systems.

For more information on general design standards and documenting a system
specification, refer to the section, General, in the chapter, "iSeries General
Design Standards."

The chapter details documentation principles. It provides information on
documentation that is computer generated, manually generated, and function
oriented. It discusses Help text and provides standards for preparing text.

Considerations

m Prescriptive and Descriptive Documentation—It is useful to
distinguish between prescriptive and descriptive documentation.

Prescriptive documentation is needed before a system exists, in order to
specify what it will be like. It may include computer-based definitions such as
prototypes or data models. Prescriptive documentation includes high-level
system definition documentation, such as a requirements specification or a
component architecture overview.

Descriptive documentation is needed after a system exists to record what it
does. There is considerable scope for producing most descriptive
documentation automatically from the objects and source that comprise an
application. The CA 2E Toolkit application documentation utilities mostly
produce descriptive documentation, which is detailed here.

m Documentation Principles—The following principles should be followed
in preparing documentation:

- Use design and implementation tools that provide integrated
documentation facilities.

- Use computer-based word processing and/or DTP facilities to prepare
additional text documentation.

- As far as possible, make use of the computer in collating and ordering
documentation.

- Ensure all objects and documentation have descriptive titles so as to
facilitate the automatic preparation of indices and cross-references.

— Use standards to reduce the amount of documentation. Too much
documentation can be as bad as too little documentation.

Chapter 8: Documentation Standards 8-1

Chapter 8: Documentation Standards

- Use computer-based tools that can create documentation from existing
systems.

- Each program should have a functional synopsis that can be extracted
to provide a summary of its function. “*Meaning” will still have to be
provided by human intervention.

- Provide diagrams wherever possible.

Once a system is implemented, the majority of documentation will probably
only be required to cope with change, either to the system or of personnel.
Take a facultative approach to the actual production of your documentation—
that is to say it should only actually be created when required, but the
capability to produce it on demand should be built into the system. Software
tools to produce facultative documentation should include scanning, cross-
referencing, and list handling facilities. Ideally, it should be possible to produce
different views of the documentation to meet different types of users’ needs,
for instance, analyst, tester, and programmer. The computer should
regenerate all but the highest level of documentation automatically. This
means that it will automatically stay up-to-date if changes are made.

The following diagram shows the organization of system documentation as a
pyramid of levels: the commands used to print the documentation at each
level are shown in bold type in brackets. It should be possible to produce all of
the documentation up to the dotted line automatically.

8-2 Standards Guide

Chapter 8: Documentation Standards

Overview Flowcharts YDOCRPT
Overviews, PRTDOC
Human
generated
Entry points Command diagrams PRTDOC
Cross-references and indices
Cross- Computer
reference File/program YDOCPGMREF generated
and search Program/program YDOCEXCREF
Menus YDOCMNU YDOCMNUREF
Commands LSTCMDUSG
Authorization/users YDOCAUT
File/field YDOCFLDREF
File/file DSPDBR
Indices DSPLIB DSPFD
Scan YSCNSRC
YDOCMDLREL/YDOCMDLFUN/YDOCMDLF
File Program
Summary description description
YDOCF YDOCPGM
YDOCMDLACP/YDOCMDLF YDOCNMDLFUN
Help Source Output from Output from
Detail text listings DSPOBJD DSPLIB YDOCLIBLST
DSPFD DSPFFD YDOCUSRPRF
SPDBR DSPLIBL YDOCPNL
YDSPHLP YDOCSRC DSPPGMREF YDOCRPT
PRTDOC DSPUSRPRF YDOCOBJLST
YDSPMNU EDTSRC DSPCMD DSPPGM YDOCMBRLST
YGO DSPMSGF
YDOCMDLMSG

Computer-Generated Documentation—The following documentation
can be generated for all application systems, using the CA 2E Toolkit
documentation utilities:

File layouts: The CA 2E Toolkit Document File (YDOCF) command will
generate file documentation from compiled files, and will include
information about fields, access paths, and dependent files.

Menus: The CA 2E Toolkit Document Menu (YDOCMNU) command will
generate documentation for CA 2E Toolkit menus.

Program summaries: The CA 2E Toolkit Document Program
(YDOCPGM) utility will generate program documentation, including
information about parameters, required objects, and subprograms
called. In order for the utility to generate full documentation, ‘H*’
source directive lines must be used in the source as comments.

Source listings: The CA 2E Toolkit Document Source (YDOCSRC)
utility will provide compact source listings.

Search listings: The CA 2E Toolkit Scan Source (YSCNSRC) utility will
provide listings of occurrences of given search strings in source.

Cross-references: A variety of cross-references can be created using
CA 2E Toolkit commands; for example, program/file, menu/program.

Chapter 8: Documentation Standards 8-3

Chapter 8: Documentation Standards

Manually Generated Documentation—The following documentation
should be prepared for all application systems:

- Program Synopses: The comment section at the beginning of the
source of every program should contain a statement of the purpose of
the program and a summary of the functions carried out by the
program.

- Command diagrams: A standard command diagram should be
provided for each command. Use a word processor to enter and to
print command diagrams.

- Message text: Message text, including second level text, should be
prepared using the 0S/400 Add Message Description (ADDMSGD) and
Change Message Description (CHGMSGD) commands.

- Help text: Operator instructions should be prepared for each
interactive program. Use UIM help to provide help text. CA 2E will
generate Help text automatically.

- Summary flowcharts: Flowcharts and other diagram types indicating
the main flow of information through the system should be prepared.
The CA 2E Toolkit Work with Report (YWRKRPT) can be used to create
simple diagrams up to 198 characters wide.

- Technical overviews: Overviews should be written to describe the
techniques used in the system, and to explain any special subjects; for
example, backup, recovery, and end-of-period procedures.

Command Based Documentation—A number of reasons were given
earlier in this manual for arranging system design around user-defined CL
commands, each command being the entry point to an application
function. Not least among the reasons given was that CL commands
provide a natural framework for arranging the operational documentation
for the application, as well as a notation for doing so. The framework has a
flat structure that enables the user to look up the operational details for
invoking any task directly without having to locate it through a menu
hierarchy.

Documenting Commands

If commands are used to document a system, they should be documented in
two separate ways:

With command diagrams for all commands, arranged in alphabetical order
of command name. Each diagram should contain the following sections:

- Function: A synopsis of the purpose of the command.

- Diagram: A command diagram prepared according to the 0S/400
conventions.

- Parameters: A description of each parameter specifying the allowed
values, including any defaults and special values.

8-4 Standards Guide

Chapter 8: Documentation Standards

Messages

- Notes: Notes about any special considerations for using the command,
and information about any prerequisite or subsequent processing
steps.

- Example: An instance of using the command.

2. With a Concepts Guide that discusses each area of the application system
and names the individual commands that are relevant to that area. The
concepts section provides an alternative access path for understanding the
purpose of individual commands in terms of the whole application system.

For more information on an example of documenting commands, refer to the
appendix, "Programming and Coding Examples," in this guide.

For good models, refer to the 0S/400 CL Reference Guide (command
diagrams) and the 0OS/400 Programmer’s Guide (concepts).

0S/400 messages provide a highly flexible way of providing context-sensitive
documentation. Messages should be regarded as an integral part of the
application system documentation.

The first level text of diagnostic messages should state what the problem is.
The second level text should contain an explanation of the cause of the
problem and possible solutions.

For more information on message layout conventions, refer to the section
Coding Standards for Messages in the chapter “Coding Standards for Database
Files” chapter in this guide.

The CA 2E Document Model Messages (YDOCMDLMSG) command provides a
means of producing a message manual for your application.

Standards For Preparing Text Documentation

Preparing Text

Use word processing and/or desktop publishing tools to write the additional
text needed to support an application. Ideally, you should have capabilities to
do the following:

m Integrate manually written text with computer generated documentation in
composite documents.

m Capture screen prints and report listings as text illustrations.

m Integrate documentation version control with program version control.

Chapter 8: Documentation Standards 8-5

Chapter 8: Documentation Standards

Structuring Documentation

When preparing documentation:

m Provide prefaces to give an indication of what is to come: at each level,
structure your documentation into an introduction followed by more
sections of more detailed information.

m Provide indexes and a table of contents. At the beginning of each section,
indicate the sections that follow. For online help text, provide a search
index.

m Be consistent in the use of titles, names, and indentation. As in the case of
any other interface, it is consistency that gives a professional appearance.

m Leave “white space”.

m Provide diagrams where appropriate. The CA 2E Toolkit Convert Print Key
(YCVTPRT) command can be used to convert print key output to text
source.

m Provide examples to illustrate what you are describing.

m Provide summaries to reinforce the most important points.

*T . Master document
HO The order entry system
sk 5
HELP TEXT MANUAL
for the
ORDER ENTRY SYSTEM

Universal Sprocket
and Widget Co

LONDINIUM MCMLXXXVII
fc i
H1 Introduction :
im (HLP_INTRO QTXTSRC CUSDOC) |
H1 The programs :
H2 How to edit a customer i
im (EDTCUSDIAG QTXTSRC CUSDOC) :
im (XXCUEFR QTXTSRC CUSEXC) i
H2 How to edit a product i
im (EDTPRDDIAG QTXTSRC CUSDOC) |
im (XXPREFR QTXTSRC CUSEXC)
H2 How to enter an order i
im (EDTORDDIAG QTXTSRC CUSDOC)
im (XXORETR QTXTSRC CUSEXC) i
H1 Appendix C !
im (TRNTYP ~ QTXTSRC CUSDOQC) .

8-6 Standards Guide

Chapter 8: Documentation Standards

Using Sub-documents

Break large documents into a number of smaller documents and create a
master document to control their printing. This gives you greater flexibility as
follows:

It is quicker to load, edit, and replace a small document.

The same sub-documents may be assembled in a number of different ways
for different purposes.

It is easier to find text within a small document.

The following points should be observed when writing specifications, program
descriptions, and operator instructions.

Split a complicated series of instructions into a series of numbered
‘cookbook’ steps. For example:

Not: "Adding a new client and his address is a multi-step process in which
first the client is added using the new client display (unless the client was
already a supplier, in which case you use the conversion display); and
then add the address using the address display, although in the latter case
the final step is not necessary."

But rather: "To add a new client:
1. Decide if the client is already a supplier.
2. 1If the client is not already a supplier:
- Add the client using the new client display.
- Add the client’s address using the address display.
3. If the client is already a supplier:
- Add the client using the conversion display."
Use an active voice. For example:
Not: “To display messages, the user should press F6.”
But rather: “Press F6 to display your messages.”
Write in terms of what the user is trying to achieve. For example:

Not: “"This program performs a database add via a validator subprogram
to the customer header and detail files.”

But rather: “"This program lets you add new customers to the system”.

Work forwards in time. A simple narrative is usually more straightforward.
For example:

Not: “"Before you can do this, you must first add a record, before you add
a record you must yourself be enrolled as a user, before which you must
decide who has enrollment rights.”

Chapter 8: Documentation Standards 8-7

Chapter 8: Documentation Standards

But rather: “To be able to do this you must first decide who has
enrollment rights, secondly get him to enroll you, and thirdly, add a
record.”

Avoid jargon. It is legitimate to use a small vocabulary of specialist terms
that a computer user may reasonably be expected to know, such as
workstation, cursor, and command key, but any other terms should be
explained.

Not: "The workstation terminal Help command function key provides
WYSIWYG context-sensitive Help text by making a call command request
to invoke the interactive on-line Help facility, which has self-extending
scroll-through sub file and vectored entry. The Help display program is
invoked as an interrupt using a put-override technique so that existing
modified input field values are not overlaid by a subsequent put/get.”

But rather: “When you press the HELP key the instructions for the
current panel will be displayed. If there is more than one page of
instructions, they may be displayed by pressing the ROLL key. Any data
that you have already entered will still be there when you return from the
Help Text display.

Place new terms in italics when they are introduced so as to emphasize
that they are jargon words: The sub file, a special type of repeating data
structure that can be used on displays, is a jolly clever idea."

Where specialist terms are introduced, use the same term consistently.
Elegant variation is not required in computer manuals.

Be as specific as possible; use concrete terms rather than abstract ones.
For example:

Not: "“Various utilities may be used to manipulate text”.

But rather: “Both the Edit source and the Edit text command may be
used to create or change Help text”.

Avoid compound phrases; they tend to be very ambiguous. For example:
Not: “"RECORD ERROR”

But rather: Either, “A error has occurred on processing a record”, or
“Please log the occurrence of an error in the appropriate place”.

Do not repeat what is already apparent from the context, nor that which
could be more efficiently described centrally (such as instructions on how
to use a workstation, how to display second level message text).

Provide examples and instances to illustrate the points you make.
Counter-instances may also be useful. For example:

Not:

”

But rather: For example: - ** Not:

Provide frequent sub-headings and captions to break up the text. Captions
enable readers to “hone in” on the information that they are looking for —
and to skip that which they are not.

8-8 Standards Guide

Chapter 8: Documentation Standards

Terminology

m Ask yourself, ‘What are the questions which would be crossing the mind of
someone reading this?’

It is important that a consistent terminology be used throughout a system. For
instance, decide whether you have screens, panels, displays, or videos,
workstations, VDUs, or terminals. The terminology laid down in IBM’s SAA
should be used whenever possible.

Presentation Conventions

The appearance of documentation is greatly improved if consistent standards
are used for punctuation, emphasis, and examples. The CA 2E internal
standards are to use the following presentation conventions.

Control Language Commands in Text

Give references to commands, both 0S/400 and user-defined, in the following
format:

YDSPMNU MENU(FRED) FILE(FREDMENU) +
ALWCMDENT(*NO)

For example:

SYSTEM Command descriptive text (MNEMONIC).

When quoting examples of CL code in text, always specify the parameter
keywords in full, indicate a continuation with a *+’ sign, and use bold type for
the entire command, For example, LVCHK(*NO), MAXMBRS(*NOMAX),
SFLEND, MSGID.

“the 0S/400 Go to Menu (GO) command”
“the CL Change Data Area (CHGDTAARA) command’

References to parameter keywords should be in upper case and bold type; for
example, LVLCHK(*NO), MAXMBRS(*NOMAX), SFLEND, and MSGID.

Chapter 8: Documentation Standards 8-9

Chapter 8: Documentation Standards

“the 400 Toolkit AS/400 Go to Menu (YGO) command”
“the 400 Toolkit Display Report (YDSPRPT) command”

Use uppercase when referring to the name of an 0S/400 object, whether
shipped or user-defined; for instance QGPL, QTXT, QPRINT, QBATCH,
YINLPGM, YDSPHLP.

System Entities in Text

Refer to iSeries and 0S/400 in upper case with a slash.
Give references to CA 2E relations in initial capital letters in bold type.

Give references to CA 2E object attributes in uppercase, for example DTE,
STS, and RTV.

Give references to entities in initial capital letters, for example, Horse.

Displays and command keys in text

On iSeries, give references to displays in lower case and quotes, to be
consistent with the display title on the panel.

References to command keys should be in upper case and bold type, for
example, HELP, ROLLUP, ENTER, F3.

In text, spell out humbers under ten; for instance, nine turtle doves not 9
turtledoves; 13 characters not thirteen characters.

Note that special conventions apply to the following diagram types:

command diagrams
chapter facing pages
CA 2E relation syntax diagrams

CA 2E relation examples

Headings should not have a period as punctuation.

Punctuation

The abbreviations e.g. and i.e. should be avoided. If you do use them for
parenthetical information, use periods between the letters. Do not write
them as ie and eg. Terms such as for example and that is are preferred.

When the word not is being used as a contrast, use boldface type. For
instance:

Not: not like this.
But rather: not like this.

Use a colon to indicate the start of a list of items.

8-10 Standards Guide

Chapter 8: Documentation Standards

When a list consists of partial sentences or points, each on a different line,
do not begin with a capital letter or end with a full stop, for instance:

— command diagrams
— chapter facing pages
— CA 2E relation syntax diagrams

Where points are numbered, enter numbering as 1. and 2. with the
numbers followed by a period. This applies to sub-points as well, which
should be designated by letters a., b., and c. Avoid roman numerals, as
they do not align properly.

Chapter 8: Documentation Standards 8-11

Appendix A: Naming Convention
Examples

Examples

This appendix contains examples intended to illustrate the standard naming

convention.

System letter:

0O: Omega workshops stock control system

Y: CA 2E

Functional letter:

M: Menu

O: Order entry subsystem

Mnemonic:

MB: member
DS: display
MN: menu
SF: subfile
CD: code

Objects:

YMMNDAP: Physical file

YMMNDALZ1: Logical file view 1 on YMMNDAP
<%-2>YMMNDAL2: Logical file view 2 on YMMNDAP

YYCONMA: Data area

YMDSMNC: Main CL program for function M
YMDSMNC#: Display file used by YMDSMNC
YMDSMNC1: Subsidiary CL program called by YMDSMNC
YMDSMNC2: Subsidiary CL program called by YMDSMNC

YMDSMNR: RPG program

Appendix A: Naming Convention Examples

A-1

Examples

YMDSMNR#: Display file used by YMDSMNR
YDSPMNU: Command

YMDSMNC@: Command processing program for YDSPMNU
YMDSMNC#: Validity checker for YDSPMNU command
YMMNCMH: Panel group used by menu commands
YMMNPNH: Panel group used by menu panels
YMMNENP: Menu hypertext help groups

YYSYCMP: Standard command help groups

YYSYPNP: Standard panel help groups

YSCHIDX: Search index

YMSGF: User message file

YMENU: Menu task menu

YCMDMNU: Menu of menu commands

YDSPCMD: Menu of display commands

YYFDRFP: Field reference file

Formats:

@@MNDAYQ: DBF format for YMMNDAP
#MNCD# #: Panel format for an RPG program
#MNDA# #: Panel format for an RPG program
#SFRC#1: Subfile record identifier

#SFRC#2: Subfile record identifier

#SFCT#1: Subfile Control record for #SFRC#1
#SFCT#2: Subfile Control record for #SFRC#2
$HDNG: Print file Heading record

$MNDA: Print file Detail line

Fields:

&SRCFILE: CLP Variable name used in a command
&##MNCD: CLP Variable name from a display File
YQMNCD: Field from dbf format @MNDAYQ
##MNCD: Field from dspf format #MNCD# #
WWMNCD: RPG work field based on YQMNCD
$$MNCD: RPG Entry Parameter Field

@@NM: RPG ARRAY name

A-2

Standards Guide

Examples

NM: RPG Array index
W1: RPG alphabetic Work field 1 chars
KMNDA1: KLIST KEY for format YMNDAL1

Help panel groups:

YDSPMNU/ALL: YDSPMNU Command group
YDSPMNU: YDSPMNU Command overview
YDSPMNU/MENU: YDSPMNU Command parameter
ZSFCTZ1/PNL/INTRO: #SFCT#1 overview
ZSFCTZ1/PNL/TOPINS: #SFCT#1 top instruction
ZSFCTZ1/ZZMNCD: #SFCT#1/##MNCD field text
ZSFCTZ1/PNL/CMDINS: #SFCT#1 command keys

Appendix A: Naming Convention Examples A-3

Appendix B: EJB Option Runtime

Example

This appendix contains mnemonics and naming convention for certain words.

Nouns, Adjectives, and Verbs

Strictly reserved: Nouns and Adjectives

Noun/Adjective Mnemonic Naming Convention
Library LIB LB
File F FL
Member MBR MB
Program PGM PG
System SYS SY
Data DTA DA
Valid system name i.e. 10 VN
character

Valid message i.e. VM
7,Xxx9999

Day, daily DAT DD
Month, monthly MM
Year, yearly YY
Date DTE DT
Code CDE CD
Number NBR NO
Time TME ™

Appendix B: EJB Option Runtime Example B-1

Nouns, Adjectives, and Verbs

Recommended Verbs

Verb (M-2) Mnemonic Naming Convention
Add ADD AD
Allocate ALC AL
Analyse ANZ AZ
Answer ANS AW
Apply APP AP
Ask ASK AK
Build BLD BL
Call CALL CA
Cancel CN CN
Change CHG CH
Check CHK CK
Close/clear CLO/CLR CL
Compare CMP CM
Convert CVT cv
Copy CPY CP
Create/credit CRT CR
Deallocate DLC DA
Delay DLY\ DY
Delete DLT DL
Display DSP DS
Do DO DO
Document/declare DOC/DCL DC
Dump DMP DM
Duplicate DUP DP
Edit EDT ED
Eject EJC EJ
Encipher ENC

End END EN
Execute EXC EX

B-2

Standards Guide

Nouns, Adjectives, and Verbs

Recommended Verbs

Verb (M-2) Mnemonic Naming Convention
Flag FLG FG
Format FMT FM
Generate GEN GN
Go GO GO
Grant GRT GR
Hold HLD HD
Initialize INZ 1z
Load LOD LD
Merge MRG MG
Monitor MON MN
Move MOV MV
Open OPN OoP
Override OVR ov
Print PRT PR
Position POS Ps
Reclaim/receive RCL/RCV RC
Release, RLS RLS RL
Remove RMV RM
Rename RNM RN
Reorganize RGZ RZ
Replace RPL RP
Reroute RRT RR
Restore/resume RST/RSM RS
Retrieve/return RTV/RTN RT
Revoke RVK RV
Run RUN RU
Save SAV SV
Select SEL SL
Send SND SN

Appendix B: EJB Option Runtime Example B-3

Nouns, Adjectives, and Verbs

Recommended Verbs

Verb (M-2) Mnemonic Naming Convention
Start/set STR/SET ST

Submit SBM SB

Trace TRC ST

Transfer TFR TF

Update UPD UpP

Vary VRY VR

Verify VFY VF

Wait WAI WT

Work WRK WK

Recommended Nouns and Adjectives

Noun/adjective Mnemonic Naming Convention
Authorization AUT AU
Batch BT
Database file list DL
History HS
Job JOB JB
Job description JOBD D
Journal JRN JR
Library list LIBL LL
Member list ML
Object oL
Program PGM PG
Panel PNL PN
Password PWD PW
Shop SH
Source SRC SR

B-4 Standards Guide

Nouns, Adjectives, and Verbs

Recommended Nouns and Adjectives

Noun/adjective Mnemonic Naming Convention
Space SPCC SP
Stock SK
Transaction TRN TR

Appendix B: EJB Option Runtime Example B-5

Appendix C: Programming and Coding
Examples

This appendix describes some helpful programming and coding examples for
CA 2E.

Field Reference File Example

T*
Z*

*
H*
H*
H*
H*

*
M*

I*

*

J>J>J>I—|J>J>><*J>J>J>J>J>

*

> >

$$: Field reference file.
CRTPF MBR(*NONE) SIZE(1 0 0) LVLCHK(*NO)
SYSTEM : Widget processing system
PROGRAMMER: D.P. Thought
DATE 1 24/04/84
(C) COPYRIGHT 1987 Universal Sprocket Co
*NONE
R @FDRF$$ TEXT(‘Data Dictionary’)

$$ 1 COLHDG (‘Mnemonic’)
CD - Code
$$CD R REFFLD ($$)COLHDG(‘Code’)
@aCD 1 COLHDG(‘Code")
©@CDMN 10 COLHDG(‘Menu name’ ‘(VN) ")
CHECK(VN)
@aCDbVM 7 COLHDG(‘Message id'‘ (VM) ")
fXXX9999'
©@CDVN 10 COLHDG(‘System name’ VN)')
CHECK(VN)
DT - Dates
$$DT R REFFLD($$) COLHDG(‘Date’)
@aDTDS 6 0 COLHDG(‘Date’ ‘DD/MM/YY')
EDTWRD(‘ / / 0")
@aDTDD 2 0 COLHDG(‘Day"’)

EDTCDE(Z)

Appendix C: Programming and Coding Examples C-1

Field Reference File Example

A ©@DTFL 6 0 COLHDG(‘Date’ ‘YY/MM/DD')
A EDTWRD(* / / 07)
A ©@DTMM 2 0 COLHDG(‘Month’ ‘MM’)
A EDTCDE(Z)
A ©@DTYY 2 0 COLHDG(‘Year’ ‘YY')
A EDTCDE(Z)
%
X* SS - Status indicators/flags
A $$SS R REFFLD($$) COLHDG(‘Status'
+ 'flag')
A (©@@SSDA 1 COLHDG(‘Data’ ‘+‘ sensitivity')
A RANGE(‘0’ ‘9")
*
I* TX - Text
A $$TX R REFFLD ($$) COLHDG(‘Text’)
A @@TXSY 50 COLHDG(‘System text’)
A REFSHIFT (W)

I* AU - Authority

A $$AU R REFFLD ($$) COLHDG(+
A ‘Authority’)
A $$AUVN R REFFLD (@@CDVN)
A COLHDG(‘Authority’ ‘type’ +
A ‘pgm (VN) ")
%
I* CO - Company.
A $$CO R REFFLD($$) COLHDG(‘Company’)
A $$COTX 40 COLHDG(‘Company text')
*
I* DA - Data sensitivity flag
A $$DA R REFFLD ($$) COLHDG(‘Data’)
A $$DASS R REFFLD (@@SSDA)
A COLHDG(‘Data sensitivity' +
A ‘flag’ +
A l(l’l_glI'II1II=high)l)
X* 1 = high, 9 = low
*
I* DT - Date
A $$DT R REFFLD ($$) COLHDG(‘Date’)
A $$DTDS R REFFLD (@@DTDS)
A COLHDG(‘Display ‘ ‘date’ +

C-2 Standards Guide

Field Reference File Example

A ‘ (DDMMYY) ")

A $$DTFL R REFFLD (@@DTFL)

A COLHDG(‘File ‘ ‘date’ +

A “(YYMMDD) ")

A $$DTYYR REFFLD (@@DTYY)

A COLHDG(‘Year' ‘(YY)')

I*
* FD - Field

A $$FD R REFFLD($$) COLHDG(‘Field’)

A $$FDDP 2 0 COLHDG(‘Decimal’ ‘places’)

A $$FDLN 5 0 COLHDG(‘Field’ ‘length’)

A $$FDRF 10 COLHDG(‘Referenced’ ‘field’)

A $$FDTP 1 COLHDG(‘Field’ ‘type’)

A $$FDVN 10 COLHDG(‘Field’ ‘name’)
*

I* FL - File

A $$FL R REFFLD($$) COLHDG(‘File’)

A $$FLVNR REFFLD (@@CDVN)

A COLHDG(‘File’ ‘name’ ‘(VN)')
*

I* JB - Job

A $$JB R REFFLD($$) COLHDG(‘Job’)

A $$IBVNR REFFLD (@@CDVN)

A COLHDG(‘Job’ ‘code’ ‘(VN)')

A $$JBDT R S REFFLD (@@DTDS)

A COLHDG(‘Job’ ‘date’)

A EDTWRD(‘ / /)

A $$JBNO 6S 0 COLHDG(‘Job’ ‘number’ ‘(#)')

A $$IJBTMR S REFFLD (@Q@TMHS)

A COLHDG(‘Job time’ +

A ‘(HHMMSS) ')

A EDTWRD(‘ : :)

A $$JBUSR REFFLD (@CDVN)

A COLHDG(‘Job’ ‘user’ ‘(VN)')

*
I* JD - Job description

A $$JD R REFFLD($$) COLHDG(‘Job +
A description’)
A $$JDVNR REFFLD (@@CDVN)
A COLHDG(‘Job’ ‘description’ +
A ‘(VN)")
A $$JDLBR REFFLD (@@CDVN)
A COLHDG(‘Job’ ‘description’ +
A ‘library (VN)')
%
I * JR - Journal
A $$JR R REFFLD($$) COLHDG(‘Journal’)
A $$JRCD 1 COLHDG(‘Journal’ ‘entry’ +
A ‘code’)

Appendix C: Programming and Coding Examples C-3

Database File DDS Example

X* J = journal level info

X* F = file level info

X* R = record 1level info

X* C = commit Tlevel info

X* U = user generated info

A $$JRNM 8 COLHDG(‘Journal tp’' ‘name’)

A $$JRLG 55 0 COLHDG(‘Journal’ ‘entry’ +

A ‘length (#)')

A $$JRSQ 10S 0 COLHDG(‘Journal entry’ +

A ‘sequence’ ‘number (#)')

A $$IRTT 2 COLHDG(“Journal’ ‘entry’

A ‘type’)

* See 0S/400 manuals

K o e e e e e e o e e e e e e e e = e = o = = = —
Database File DDS Example
Sample Physical File DDS

T YQ : Birth details (*NONE)

Z* CRTPF MAXMBRS (*NOMAX) SIZE (*NOMAX)

*

H* SYSTEM : Widget processing system

H* PROGRAMMER : E. Codd

H* DATE : 07/07/87

H* (C) COPYRIGHT 1987 Universal Sprocket Co
M* 12/12/89 HF Name at birth

A REF (YYFDRFP)
A R @USDAYQ TEXT(‘YQ: Birth details)
*
* Gender code
A YQSXCD R REFFLD ($$SXCD)
* Birth date
A YQBTDT R REFFLD ($$BTDT)
* Effective date
A YQEFDT R REFFLD ($$EFDT)
* Name at birth
A YQBTNM R REFFLD ($$BTNM)

C-4 Standards Guide

Display File DDS Example

Sample Logical File DDS
T* YQ: Birth details (0|BTDT|SEX).

Z* CRTLF
%

H* SYSTEM : Widget processing system

H* PROGRAMMER: Alfred E Neuman

H* DATE : 07/07/87

H* (C) COPYRIGHT 1987 Universal Sprocket Co
*===============================

A UNIQUE
*===============================

A R @USDAYQ PFILE (YMUSDAP)

A TEXT(‘YQ: Birth details+ (O|BTDT|SX)')

A

* Birth date

A K YQBTDT
* Gender code
A K YQSXCD

Display File DDS Example

/*T: YEDTSCR - Screen selection display.
/*Z: CRTDSPF DFRWRT(*YES) RSTDSP(*YES)

*

H* SYSTEM : Universal Sprocket Company
H* PROGRAMMER : P Wilson
H* DATE : 16/06/84

H* (C) Copyright 1987 Universal Sprocket Company

X = e =

M* 07/05/87 FRED Add sequence field selection
REF (YYFDRFP)
HELP
ALTHELP
ALTPAGEDWN
ALTPAGEUP
CA0O3(03 ‘Exit’)
CF12(12 ‘Exit’)
PRINT (LPRTKEY)
HLPSCHIDX (WSCHIDX)

* Subfile of code & name details.

A R #SFRC#1 SFL

>r>rrrXr>>r>>

Appendix C: Programming and Coding Examples

C-5

Display File DDS Example

84 SFLNXTCHG
#1SFSL 1 B 10 3VALUES(‘P’ ‘E’ ‘C’‘R’)
CHECK (AB)
#1SCSQ R B +2REFFLD ($$5CSQ)
CHANGE (46 ‘Prt Seq

>r> > > >

Changed’)
31 DSPATR(RI PC)
N31 DSPATR(UL HI)
#1SCTL 50w B +2LOWER
CHANGE (47 ‘Title
changed’)
32 DSPATR(RI PC)
N32 DSPATR (UL HI)
SASCVN R +2REFFLD ($$SCVN)
DSPATR(HI)

> > > >

> > >

A SASCSQ R H REFFLD ($$SCSQ)
R #SFCT#1 TEXT(‘Screen

A

S

A BLINK OVERLAY

A SFLCTL (#SFRC#1)

A SFLPAG(09) SFLSIZ(11)
A INDTXT(80‘Clear

subfile)
A INDTXT(81 ‘Display SFL Rcd’)
A INDTXT (82 ‘Condition SLFEND)
A 80 SFLCLR
A N8O SFLDSPCTL
A N80 81 SFLDSP
A N8O 81 82 SFLEND

*

A N82 ROLLUP(27 ‘ROLL UP")
A HOME(30 ‘HOME key.’)

*, . SETOFS . e e e e e e e e e e e
A SETOF(99 ‘Error - general’)
A SETOF(31 ‘Error on #1SCSQ')
A SETOF (32 ‘Error on #1SCTL')

*

* HELP TEXT
A HLPTITLE(‘Select screen’)

A H HLPARA (*NONE)
A HLPPNLGRP (‘ ZSFCTZ1/PNL/INTRO
A YYEDSCH)

e S

* Header fields
A H HLPARA(03 02 03 80)

A HLPPNLGRP (‘ ZSFCTZ1/Z1SFSL")
A YYEDSCH)

C-6 Standards Guide

Display File DDS Example

A H
A
A
A H
A
A
*
* Subfile columns
A H
A
A
A H
A
A
A H
A
A
X L 0 o o e e e e m e e e a e a
A #1SFRN 3
* . . .
A 01
A PNLTTL 050
A #USVN R
A
*
* Positioning value
A USR0020
*
A ##SCUN R
A
A UIS0005
* Subsetting value
A USR0022
*
A ##SBVN R
A
A UIS0010
*
* Top instruction
A PNLTX1IMSID
A
A
A PNLTX2MSID
A
A

*
* Column Headings
A COLHD1IMSID

HLPARA (G5 02 05 80)

HLPPNLGRP (“ ZSFCTZ1/SASCVN")
YYEDSCH)

HLPARA(Q7 02 08 80)

HLPPNLGRP (‘ZSFCTZ1/SASCSQ")
YYEDSCH)

HLPARA(10 03 19 00)

HLPPNLGRP (‘ZSFCTZ1/Z1SFSL")
YYEDSCH)

HLPARA(10 04 19 14)

HLPPNLGRP (‘ ZSFCTZ1/Z1SCVN")
YYEDSCH)

HLPARA(10 15 19 80)

HLPPNLGRP (‘ ZSFCTZ1/Z1SCSQ")
YYEDSCH)

SFLRCDNBR (CURSOR)
2 'YSELPNL’ COLOR(BLU)
1 12 DSPATR(HI)

1 62 REFFL($$USVN)DSPATR(HI)
+1DATE EDTCDE(Y)DSPATR(HI)

30 3
+1'.’
B +3REFFLD ($$SCVN)
CHANGE (41 ‘Seln screen’)

3MSGID (USROG20 USRPMT)

20 +3MSGID (UIS0003 USRPMT)
30 4 3MSGID (USRO022 USRPMT)
+1'.’
B +3REFFLD ($$5CSQ)
CHANGE (40 ‘Start seq’)
20 +3MSGID (UIS0003 USRPMT)
078 6 2MSGID (UIS0008 USRPMT)

TEXT(‘TYPE OPTION,PRESS E’)
COLOR(BLU)

078 7 2MSGID(WUT2110 USRPMT)
TEXT(‘1=Select’)
COLOR(BLU)

078 9 2MSGID(WUT2111 USRPMT)

Appendix C: Programming and Coding Examples

C-7

Display File DDS Example

A DSPATR(HI)
R #CMTX##]
TEXT(‘Command key line’)
OVERLAY
HLPTITLE(‘Function keys')
* Command key explanations
H HLPARA(22 01 23 80)

HLPPNLGRP (‘ZCMTXZ1/BOTINS")
YYEDSCH)

> > >

*
83N88 MOREMSID 10 28 70MSGID (UISO016 USRPMT)
TEXT(‘more’)
DSPATR(HI)
83 88 BOTTOMMSID 10 22 70MSGID (UISGO17 USRPMT)
TEXT(‘BOTTOM’)
DSPATR(HI)
CMDTXIMSI 078 23 2MSGID (WLL2191 WPMTMSG)
TEXT(‘F3=Exit')
COLOR(BLU)
R#NODA##1 TEXT(‘NO DATA')
OVERLAY
NODATAMSI 078 13 2MSGID (WUT2131 wPMTMSG)

>r>>r>>>>>

> > >

* Error messages subfile.

A R#SFRC#Q SFL

A SFLMSGRCD (24)

A MSGKEY SFLMSGKEY

A ##PGUN SFLPGMQ
*===============================
* Error messages subfile Control

A R#SFCT#Q TEXT(‘Program messages’)

A SFLCTL (#SFRC#Q)

A SFLPAG(1) SFLSIZ(15)

A OVERLAY

A SFLINZ SFLDSP SFLDSPCTL

A ##PGVN SFLPGMQ

C-8 Standards Guide

Printer File DDS Example

Printer File DDS Example

/*T: YDOCF Document file.
/*Z: CRTPRTF FORMSIZE(88 132) OVRFLW(80) LPI(8) CPI(15)

/*Z: SCHEDULE (*FILEEND)

*
H*
H*
H*
H*

SYSTEM

DATE

HOLD (*YES)

: Widget processing system
PROGRAMMER: T. Codd

: 7/20/84

(C) COPYRIGHT 1987 Universal Sprocket Company

M* MAINTENANCE:

R

TEXT(‘File headings.’)

*NONE
¥ oo === === ==D=C====D=============
REF (YYFDRFP)
¥ =22 === ====================&===
$FLHD
SKIPB(3) SPACEA(2)
YYCOTX R 1REFFLD ($$COTX)

>r>rrrr>r>r>>>>>>>

* File

> > > >

*]] = =]
* Library

> > > >

* Text

> > > >

42MSGCON (040 WFL4101 UPMTMSG)

TEXT(‘Document file')

UNDERLINE
#HUSVN R 8OREFFLD ($$USVN)
##IBVN R +1REFFLD ($$JBVN)

+1DATE EDTCDE(Y)
+1TIME EDTWRD(‘0O

42MSGCON (040 UISO010 UPMTMSG)
TEXT(‘Page’)

+1PAGNBR EDTCDE(Z)

SPACEA(2)

IMSGCON (032 UIS0010 UPMTMSG)

TEXT(‘File’)
+1':’

ATFLNM 10 +3

1IMSGCON (030 UIS0010 UPMTMSG)
TEXT(‘Library’)

+1':’

ATFLLB 10 +5

IMSGCON (032 UIS0010 UPMTMSG)

TEXT(‘Text’)
+1':’
+3SPACEA(1)

ATFLTX 50

Appendix C: Programming and Coding Examples

c-9

Printer File DDS Example

*

* Type
A
A
A
A 40
A 41
A 42
A 43
A 44
*
A
A
A
A $$FCDT
A $$FCTM
*llllllllll
* Column headings
A
¥ = e == === === = =
A R $FDDA
A
A
A
A WHFDNM
A
A WHFLDT
A
A $$DCLN
A
A WHFDDB
A
A 91 WHFDTX
A 91
¥ = === ==2===== =
A R $ENDA
A
A
*
A
A

IMSGCON (032 UIS0011 UPMTMSG)
TEXT(‘Type')
+1":'
+3 " *PHY'’
36" *LGL’
36’ *DDSPF’
36" *PRTF’
36" *TAPF’
IMSGCON (032 UIS0012 UPMTMSG)
TEXT(‘Created’)

+1':’
6 0 +3EDTWRD(‘ / / 0')
6 0

+1EDTWRD(‘O : : ‘)

1IMSGCON (080 UISO072 UPMTMSG)

TEXT(‘Field details.’)

SPACEA(1)
INDTXT (91 ‘DETAIL(*FULL)")
1"
10 2
127"
1 15
17"
3 1 20EDTCDE(4)
257"
50 26EDTCDE(Z)
327"
50 33
83" |"

TEXT(‘End of data.')
SPACEA(1)
INDTXT (91 ‘DETAIL(*FULL)")
IMSGCON(070 UISO055 UPMTMSG)
TEXT(‘ENDOF REPORT')

C-10

Standards Guide

CL Program Source Example

CL Program Source Example

PGM PARM(&FL &MBR)
/*T: YDSPHLP Display Help Text - CPP /
/*Z: CRTCLPGM LOG(*NO)

/*H: SYSTEM : Widget processing system
/*H: PROGRAMMER : G.Henry
/*H: DATE 1 24/04/84

/*H: (C) COPYRIGHT 1984,92 The Widget corporation
/*M: 01/04/92 R.Fess Change to V2R2 Message Handling

/¥ Entry variables */

DCL &FL *CHAR 20 /* MENU FILE/LIB */
DCL &FILE *CHAR 10 /* MENU FILE NAME */
DCL &FLIB *CHAR 10 /* LIBRARY NAME */
DCL SMBR *CHAR 10 /* MENU FILE/MBR */
/* Work variables */
DCL &KEYVAR *CHAR 4 /* MESSAGE KEY */
DCL &ERRCDE *CHAR 4 X'00000000’

/*H: 0. Global monitor for errors. */

MONMSG MSGID(CPFO0O0 YYYQ000) EXEC(GOTO ERROR)
/*****************************/
/*H: 1. Process input parameters . */

CHGVAR &FILE %SUBSTRING (&FL 1 10)

CHGVAR &FLIB %SUBSTRING (&FL 11 10)
74
/*H: 1.1 Check library & file exist. */

IF (%SST(&FLIB 1 1) *NE ‘*'")CHKOBJ QSYS/&FLIB *LIB

CHKOBJ 0BJ(&FLIB/&FILE) OBJTYPE(*FILE) MBR(&MBR) +

AUT (*USE)
/*H: 2. Call RPG program to Display help text */
CALL YDDSHPR (8MBR &FILE &FLIB &MSGID)

/*H: 3. Send completion message. */
SNDPGMMSG ~ MSGID (&MSGID) MSGF (YMSG)+
MSGDTA(&FILE| |&FLIB||&MBR) +
MSGTYPE (*COMP)
/F====z========z=z===z=========== %/
ENDPGM: RCLRSC
RMVMSG CLEAR(*ALL) /* Remove irrelevant messages */
RETURN

/****************************/

/*H: 99. ERROR HANDLING */

Appendix C: Programming and Coding Examples C-11

RPG Il Program Source Example

ERROR: RCVMSG MSGTYPE (*EXCP)RMV(*NO) KEYVAR(&KEYVAR)
CALL QMHRSNEM(&KEYVAR &ERRCDE)/*RESEND */
MONMSG CPFQO00
GOTO ENDPGM
YCOPYRIGHT COPYRIGHT(‘G.Henry’) WIDGETCORP(WIDGETCORP) +
DATE (240484)
ENDPGM

RPG Ill Program Source Example

H/TITLE YEDTSCR - Screen name selection.

H* SYSTEM : Universal Sprocket Co
H* PROGRAMMER: A Turing
H* DATE : 16/06/87

H* (C) Copyright 1989 Universal Sprocket Company
*

M* 20/07/04 PW Add copy screen option

M* 20/07/92 MS Revise Help handling to use UIM

*

H* SYNOPSIS : Display the titles of screens from within the

H* current DBF member
H* Permit selection of a single line, or exit.
H*

H* 1. RECEIVE ENTRY PARAMETERS :

H* 1.1 (0) SCREEN NAME.

H* 1.2 (0) MSGID OF RETURN MESSAGE.

H*

H* 2. LOAD AND DISPLAY FIRST PAGE OF SCREEN TITLES.

H* 3. PROCESS INPUT:

H* 3.1 IF START OPTION CHANGED RE-POSITION THE FILE AND
H* CONTINUE FROM 2.

H* 3.2 PROCESS COMMAND KEYS (EXIT, ROLLUP)

H* CMD5 = PROMPT INCLUDE SCREEN.

H* 3.3 PROCESS LINE ENTRIES.

H* 3.3.1 IF ‘X’, RETURN WITH SELECTED SCREEN NAME.
H* ALSO 1,2,3

H* 3.3.2 IF ‘C’, PROMPT COPY SCREEN.

H* 3.3.3 IF ‘R’, PROMPT RENAME SCREEN.

H* 3.3.4 IF ‘D', DELETE SCREEN.

H* 3.3.5 IF ‘P’, PRINT SCREEN.

H* 3.3.6 IF ‘?’, DISPLAY SCREEN.

/EJECT

FYDSCSSR#CF E WORKSTN

F #1RR KSFILE #SFRC#1

* #: Display file.

*

FYDSCDAL1IF E K DISK

C-12

Standards Guide

RPG Il Program Source Example

F @SCDASA KRENAME@SCDASAI
* SA: SCREEN FILE (0]SCSQ|SCVN)
%
FYDSCDAP UF E K DISK
F @SCDASA KRENAME@SCDASAU
* SA: SCREEN FILE (0]SCSQ|SCVN)
k3
/EJECT
E @P 1 61 @M 7 OPT/RQS MSGID
/EJECT
IPGMDS SDS
* PGM DS
I* PROGRAM ##PGVN
I 81 90 ##PGLB
I 244 253 ##IBVN
I 254 263 ##USVN
I 264 2690##IBNO
/EJECT
IWMMSDA DS 50
* MESSAGE SUBSTITUTION DATA
I 1 20 WMFL
I 1 10 WMFLVN
I 11 20 WMLBV
I 21 30 WMMBUN
I 31 40 WMSCUN
I P 41 432WMSCSQ
/EJECT
k ok ok ok ok %k %k %k %k %k %k)) %k %k %k % % %) % %k %k %k % % % 3k %k %k %k %
C *ENTRY PLIST * ENTRY LIST
*k XALL “YSSCNSR’
C PARM $$SCVN 10 0:SEL SCREEN
C PARM $$FLVN 10 I:SCREEN FILE
C PARM $$LBVN 10 I:SCREEN LIB
C PARM $$MBVN 10 I:SCREEN MBR
C PARM #1XX 0:TITLE OPTN
C PARM $RTCD 1 O:RETURN CODE
* Y:EXIT PROC

k %k >k 3k k Xk %k x %k % %k) %) %k) %k) % %k *x %k x %k X %k) %k) % * x

* INITIALISE

C EXSR ZZINIT
*
* INITIALISE SF & LOAD A PAGE
C SETON 82%
C EXSR BAIZSF *ROLLUP/DOWN
C N81 SETOF 82
% *

* DISPLAY RECORDS UNTIL EXIT PRESSED

Appendix C: Programming and Coding Examples C-13

RPG Il Program Source Example

C DO *HIVAL
* DISPLAY SCREEN
C EXSR CAEXFM
*
* PROCESS RESPONSE FROM SCREEN
* CAG1: CANCEL & EXIT
C 01 CAS KAEXKY CAS
* CFO5: COPY SCREEN
C 05 CAS EGINSC
* SCREEN NAME ENTERED
C 41 CAS DASCVN
* SCREEN START NAME ENTERED
C 40 CAS BAIZSF
* CK27: ROLLUP ON CURRENT POSITION
C 27 CAS BBLDSF
* OTHERWISE READ CHANGED SFL RECORDS FOR SELECTION.
C 81 CAS EARDSF
C END SAC : KAEXKY
*
C END 0D *HIVAL
k ok ok ok ok ok ok ok ok ok ok Xk ok X X X X X X X X X X X X X)) X)) %
/EJECT
CSR BAIZSF BEGSR

* CLEAR SUBFILE

C SETON 80
C WRITE#SFCT#1
C SETOF 80
* RESET NO OF RECS IN SUBFILE & CURRENT POSITION
C Z-ADD*ZERO #IRR 50 81 SETOF 81
C Z-ADD*ZERQ #IRRMX 50 SETOF 81
* *
* POSITION FILE
C ##NXSQ SETLL@SCDASAT 81 *
C 81 MOVE *BLANK ~ SASCVN
* LOAD PAGE.
C EXSR BBLDSF
*
¥ o o = === =====================&=2=z%2=&=2==
CSR BAEXIT ENDSR
JEJECT
CSR BBLDSF BEGSR

* LOAD SUBFILE WITH ONE MORE PAGE OF #1PGSZ RECORDS.

C-14 Standards Guide

RPG Il Program Source Example

* START AT PREVIOUS LAST RECORD

C Z-ADD#1RRMX #1RR
C SETOF 67*

* READ UP TO A SF PAGE AT A TIME
C 1 DO #1PGSZ DO
C READ @SCDASAI 81 CODE ORDER
* FOR EACH RECORD READ :
C N81 DO DO
* CANCEL ROLLUP AS SUCCESSFULLY ACTIONED.
C SETOF 27%
* OUTPUT TO SUBFILE
C MOVE *BLANK #1IXX
C Z-ADDSASCSQ ##SCSQ
C MOVELSASCDA ##SCTL
C ADD 1 #1RR 81 81=DSPSFLREC
C SETON 67
C WRITE#SFRCG#1
C END 0D : *N81
*
C N8l END 0D 1 - #1PGSZ
* *
* DISPLAY ERROR MESSAGE IF NO RECORDS FOUND,
c 81 #1RR IFEQ *ZERO IF
C MOVE ‘YYY7104' MSGID NO RECORDS
C EXSR ZASNMS
C ELSE XFI #1RR = 0
* DISPLAY MESSAGE IF ROLL UP & NO MORE TO ROLL-UP
c 27 SETON 55
C END FI #1RR = 0
*
*......................... *
SAVE POSITION SO LOAD CAN CONTINUE AT END POINT
C 67 DO
C #1RRMX ADD 1 #1SFRN *
C Z-ADD#1RR #1RRMX
C END 0D 67
¥ — = — — — — = — — — — = =— —_ —_ = = =_ =— — = = =— — = = = — — — —
CSR BBEXIT ENDSR
/EJECT
CSR CAEXFM BEGSR

C DO *HIVAL
* DISPLAY MESSAGES & COMMAND KEY LINE

Appendix C: Programming and Coding Examples C-15

RPG Il Program Source Example

C WRITE#SFCT#Q MESSAGES

* DISPLAY SCREEN.

C EXFMT#SFCT#1 SFL CTL

*

* CLEAR MESSAGES PROM PROGRAM MESSAGE QUEUE

C EXSR ZBCLMS
*===============================
/EJECT

CSR DASCVN BEGSR

C ##SCVN CABEQ*BLANK DAEXIT

C MOVE ##SCVN SASCVN

C MOVE ‘X’ #IXX

* EXIT PROGRAM WITH SELECTED SCREEN NAME.

C EXSR EBSLLN

¥ o — — — — - — — — — — — — = — — = = = = — — — — — — — — — — —
CSR DAEXIT ENDSR

/EJECT

CSR EARDSF BEGSR

* SET NO CHANGE TO SFL ORDER.

C MOVE ‘N’ WWRLSF 1
*

C DO *HIVAL DO

C READC#SFRC#1 70

C N70 DO DO
* CHANGED LINE DATA

C 46

COR 47 EXSR EDCHLN
* ENTER/UPDATE SCREEN (EXIT PROGRAM)

C #1XX CASEQ’X’ EBSLLN CAS
C #1XX CASEQ'1’ EBSLLN
C #1XX CASEQ’2’ EBSLLN
C #1XX CASEQ’3’ EBSLLN
C #1XX CASNE' ECPROP
C END SAC #1XX = X
C WWRLSF IFEQ ‘N’
* CLEAR SELECTION LINE UNLESS SFL RE-LOAD PENDING.
C MOVE * #1XX
C UPDAT#SFRC#1
C END FI WWRLSF='N'
C END 0D N70
C N70 END 0D *HIVAL

C-16

Standards Guide

RPG Il Program Source Example

*
* RE-LOAD SFL IF ORDER CHANGED.
C WWRLSF IFEQ ‘Y’ IF
* COPY COMP MESSAGES TO *PRV
C EXSR ZECMMS
* REDISLAY SUBFILE (DUE TO CHANGED CONTENTS).
C Z-ADD*ZEROQ #HNXSQ
C EXSR BAIZSF * RELOAD
C END FI WWRFSF="Y'
¥ = = —m = — = = — = — = = = = =_ = =— = = =— = — = = = = — = — — =—
CSR EAEXIT ENDSR
/EJECT
CSR EBSLLN BEGSR
¥ — = — = — = = — = — = = = = =— = =— = = =— = — = = = = — = — — —

* EXIT WITH SELECTED SCREEN

C MOVE SASCVN $$SCVN

C SETON LR*

C RETRN

* - R

CSR EBEXIT ENDSR

/EJECT

CSR ECPROP BEGSR
*===============================
* PROCESS OPTION REQUEST.
*===============================
* SFL RELOAD NECESSARY.

C #1XX IFNE ‘P’ IF

C MOVE ‘Y’ WWRLSF

C END FI #1XX = ‘P’

*

C Z-ADD1 P 30

C #1XX LOKUP@OP, OP 60*

C MOVE @RM,OP MSGID

* EXECUTE OPTION.

C EXSR FAEXOP
*===============================

CSR ECEXIT ENDSR

JEJECT

CSR EDCHLN BEGSR
*==============================
* UPDATE CHANGED LINE DATA.
*===============================

C KSCDAP KLIST

C KFLD SASCUN

C KFLD WKSCTP 1

Appendix C: Programming and Coding Examples C-17

RPG Il Program Source Example

C KFLD SASCSQ
C MOVE ‘1’ WKSCTP
C KSCDAP CHAIN@SCDASAU 60
C Z-ADD##SCSQ SASCSQ
C MOVEL##SCTL SASCDA
C UPDAT@SCDASAU
C 46 MOVE ‘Y’ WWRLSF

X = = = —m = = == m = —m —m —m = —= —m= = = = = = = = = = = = = = = = =
CSR EDEXIT ENDSR

/EJECT
CSR EGINSC BEGSR

* YCPYSCR COMMAND STRING MESSAGE.
* THIS STRING CONTAINS COMMAND PROMPTING INFO.

C MOVE ‘YSD0OO15’ MSGID

C MOVE *BLANK SASCVN
* EXECUTE OPTION.

C EXSR FAEXOP

C Ne60O DO DO
* COPY COMP MESSAGES TO *PRV

C EXSR ZECMMS

* REDISLAY SUBFILE (DUE TO CHANGED CONTENTS).

C MOVE *ZERO #HNXSQ
C EXSR BAIZSF * RELOAD
C END 0D No©
¥ - = = = —m — = = = =— =— = = = =— — = = = =—_ —_ = = = =— =— = = = — — —
CSR EGEXIT ENDSR
/EJECT
CSR FAEXOP BEGSR
¥ = = = — — = = = =— — = = = =—_ — = = = =— = = = =— = = = = = — — —

* RETRIEVE COMMAND STRING.

C MOVE SASCVN WMSCVN

C Z- ADD##SCSQ WMSCSQ

C EXSR ZCRTMS

* EXEC COMMAND.

C CALL ‘QCMDEXC’ 60 *

A D* MSG MSGLEN

C PARM MSG I:
RQST STR

C PARM MSGLEN WISN5 155 I: RQST LEN
X = = = —m = = = =m m —m —m —m —m —m —m —m = = = = = = = = = = = = = = =
CSR FAEXIT ENDSR

/EJECT

C-18 Standards Guide

RPG Il Program Source Example

CSR KAEXKY BEGSR
*===============================
* CKO1:CANCEL AND EXIT
*===============================
* COMMAND CANCELLED (ESCAPE MESSAGE)

C MOVE ‘Y’ $RTCD

C SETON LR

C RETRN

*================================

CSR KAEXIT ENDSR
/EJECT

CSR ZASNMS BEGSR
*===============================
* SEND MESSAGE TO PROGRAM Q
*===============================

C N99 CALL ‘YYPGMSC’ Send message

C PARM ##PGUN 10 I:PGM QUEUE

C PARM ‘*SAME' ##PGRL 5 I:REL QUEUE

C PARM MSGID 7 I: MSG

ID.

C PARM MSGDTA132 I:MSGDATA.

C PARM ‘*INFO ‘ MSGTYP 7 I:MSGTYPE.

C SETON 99
*
*===============================

CSR ZAEXIT ENDSR
/EJECT

CSR ZBCLMS BEGSR
X e e e e e m m m m m m m m m m m m m m — — — — — — — —

¥ = = = = — = = = =— — = = = =—_ — = = = =— = = = =— =— = = = = — —= —
C CALL ‘YYCLMSC’ Clear
message
C SETOF 99
*
¥ === =========================&=-=2&=
CSR ZBEXIT ENDSR
/EJECT
CSR ZCRTMS BEGSR
¥ = —
* RETRIEVE MESSAGE.
¥ = —
C CALL ‘YYRTMSC'’ RTVM MESSAGE
C PARM MSGID 7 I:MESSAGEID.
C PARM WMMSDA MSGDTA 50 I:MSG DATA
C PARM MSG 132 0:MSG TEXT
C PARM MSGLEN 50 0:MSG LENGTH

Appendix C: Programming and Coding Examples C-19

RPG Il Program Source Example

*===============================
CSR ZCEXIT ENDSR

JEJECT

CSR ZECMMS BEGSR
*===============================
* COPY COMP MESSAGES TO *PRV CPP.
*===============================
C CALL ‘YYCMMSC'

C PARM ‘YDSCEDC@'W10X 10 I: PGM Q NAME
*===============================
CSR ZEEXIT ENDSR

JEJECT

CSR ZZINIT BEGSR
>k===============================
* INITIALISATION
>k===============================
C MOVE *BLANK $RTCD

X *
* SETUP MESSAGE SUBSTITUTION DATA.

C

C MOVE $$LBVN WMLBVN

C MOVE $$MBVN WMMBVN

* *
* GET COMPANY NAME.

C *NAMVAR DEFN YYCOTXA YYCOTX

C IN *NAMVAR

**
* SUBFILE PAGE SIZE

C Z-ADD15 #1PGSZ 30 !

* SUBFILE INITIAL RECORD AT
C Z-ADD1 #1SFRN SFL POSN
C Z-ADD*ZERO #1RRMX MAX RECNO

* *
C MOVE *BLANK SASCVN
*===============================
CSR ZZEXIT ENDSR

** @OP,@RM OPTION/REQUEST MESSAGE ID.
?7YSD0O11
CYSDO0O10
RYSDO0O16
DYSDO0O7
PYSD0OO35
GYSD0024

C-20

Standards Guide

COBOL ‘85 Program Example

COBOL ‘85 Program Example

PROCESS APOST.
IDENTIFICATION DIVISION.

H/TITLE Edit customer file Edit file
Z* CRTCBLPGM

*
H* SYNOPSIS :
H* - Maintain database file using subfile display
H* - Existing records may be updated or deleted,
H* - Key changes are not allowed
H* - Program operates in two modes: *CHANGE and *ADD
H* - Multiple new records may be added by changing to add mode
H* Generated by : COOL:2E Version: 8644

H* Function type : Edit file Version: 0.1
*

H* Company : Universal Sprocket Company Ltd.
H* System : Universal Sprocket Company Ltd.
H* User name : P.Djikastra

H* Date : 10/09/87

H* (C) Copyright 1987 Universal Sprocket Company Ltd.

PROGRAM-ID. UUB7EFK.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS400,
OBJECT-COMPUTER. IBM-AS400,
SPECIAL-NAMES. OPEN-FEEDBACK IS OPEN-FEEDBACK-AREA,
I-0-FEEDBACK IS I-O-FEEDBACK-AREA.
/EJECT
INPUT-OUTPUT SECTION.
FILE-CONTROL.
*
SELECT UUB7EFK
ASSIGN TO WORKSTATION-UUB7EFK-SI
ORGANIZATION IS TRANSACTION
ACCESS MODE IS DYNAMIC
RELATIVE KEY IS ZZRR
FILE STATUS IS FILE-STATUS, MAJOR-MINOR-CODE.
* DSP: Edit customer file Edit file

Appendix C: Programming and Coding Examples C-21

COBOL ‘85 Program Example

SELECT UUAIREL1
ASSIGN TO DATABASE-UUAIREL1
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS EXTERNALLY-DESCRIBED-KEY

FILE STATUS IS FILE-STATUS.
* RTV: customer file Retrieval index

SELECT UUAIRELG

ASSIGN TO DATABASE-UUAIRELOG

ORGANIZATION IS INDEXED

ACCESS MODE IS DYNAMIC

RECORD KEY IS EXTERNALLY-DESCRIBED-KEY

FILE STATUS IS FILE-STATUS.
* UPD: customer file Update index
*

I-0-CONTROL.
*
/EJECT
DATA DIVISION.
FILE SECTION.
*
FD UUB7EFK
LABEL RECORDS ARE STANDARD.
01 UUB7EFK-F.
COPY DDS-ALL-FORMATS OF UUB7EFK.
*
FD UUAIREL1
LABEL RECORDS ARE STANDARD.
01 UUAIREL1-R.
COPY DDS-ALL-FORMATS OF UUAIRELL.
*
FD UUAIRELO
LABEL RECORDS ARE STANDARD.
01 UUAIRELO-R.
COPY DDS-ALL-FORMATS OF UUAIRELO.
/EJECT
WORKING-STORAGE SECTION.
* Job context
01 JOB-CONTEXT.
COPY DDS-ALL-FORMATS OF Y2PGDSPK.
* Job date/time
03 IJBDTTM.
05 ZZ3IDT PIC S9(6).
05 ZZIDTE REDEFINES ZZIDT.
07 ZZJIYY PIC S9(2).
07 ZZIMM PIC S9(2).
07 ZZ3IDD PIC S9(2).

C-22 Standards Guide

COBOL ‘85 Program Example

01

77
77

01

01

01

01
01

01
01

01
01

01

01

05 ZZJTM PIC S9(0).

05 ZZJTME REDEFINES ZZJTM.
07 ZZJHH PIC S9(2).

07 ZZINN PIC S9(2).
07 ZZ3SS PIC S9(2).
03 ZZFQL PIC X(10).
03 ZZFLB PIC X(1
03 ZZFFL PIC
03 ZZFMB PIC
ZZTIME.

03 ZZHNS PIC S9
03 ZZHH PIC S9(2).
C-IND-OFF PIC 1(1) VALUE B'0’.
C-IND-ON PIC 1(1) VALUE B'1’.

FILE-STATUS PIC X(2).

88 (C-I0-0K VALUE ‘00'.

88 C-EOF VALUE ‘10'.

88 (C-NO-MOD-SFLRCDS VALUE ‘12'.

88 C-IO-ERR VALUE ‘21’ ‘24" ‘30’ ‘34" ‘90’ ‘91’ ‘92’
‘04" ‘95’ ‘OA’ ‘OH’' ‘OI’ ‘9K’ ‘OM’ ‘ON’ ‘OP’.

88 (C-NO-RECORD VALUE ‘23'.

88 (C-RECORD-LOCKED VALUE ‘9D’.

UNTIL-CONDITION PIC 1(1).

88 CONDITION-FALSE VALUE B'0Q’.

88 CONDITION-TRUE VALUE B'1’.

FOREVER PIC 1(1) VALUE B'1’.

88 C-FOREVER VALUE B'1’.

WORTN PIC X(7).

Y1DBRC.

COPY DDS-ALL-FORMATS OF UUAIRELO.

Current/previous master file format fields for change
control

WORSF PIC X(1).

ZZRRMX PIC S9(5) COMP-3.
customer code

WZAICD PIC X(6).

KPOS.

customer code

03 AIAICD PIC X(6).
KPOS-TMP.

customer code

03 AIAICD PIC X(6).
Define Full Externally Described Keylist
KPOS-EXT.

customer code

03 AIAICD PIC X(6).

Appendix C: Programming and Coding Examples

C-23

COBOL ‘85 Program Example

01 WKINDO-A.
03 WKINDO PIC 1(1) OCCURS 3.
01 WKIND1-A.
03 WKIND1 PIC 1(1) OCCURS 3.
01 ZZRROK PIC S9(5) COMP-3,
01 CAIN89 PIC 1(1).
01 CAIN81 PIC 1(1).
01 ZAPGM PIC X(10).
01 ZAPGRL PIC X(5).
01 ZAFSMS PIC X(1).
01 WKIPIN PIC X(1)
01 WODCF PIC X(1).
01 WONLR PIC X(1).
01 WN30-A.
03 WN30 PIC 1(1) OCCURS 30.
01 IND-COUNT PIC S9(5) COMP-3.
01 ZADFMF PIC X(10).
01 DATA-AREA-NAME PIC X(10).
01 ZZSFPG PIC S9(3).
01 WOPMD PIC X(3).
88 C-ADD-MODE VALUE ‘ADD’.
88 C-CHANGE-MODE VALUE ‘CHG’.
88 C-SELECT-MODE VALUE ‘SEL’.
01 ZAMSID PIC X(7).
01 ZAMSGF PIC X(10).
01 ZAMSDA PIC X(132).
01 ZAMSTP PIC X(7).
01 ZZRR PIC 9(5) COMP-3.
01 UUB7EFK-I-0-DSPF.
COPY DDS-ALL-FORMATS OF Y2IDSPFIO.
* Subfile I/0 feedback area

01 MAJOR-MINOR-CODE.
COPY DDS-ALL-FORMATS OF Y2IMAJMIN.
* Display major/minor code for timeouts

01 UUAIREL1-OPEN.
COPY DDS-ALL-FORMATS OF Y2IOPEN.
* Open feedback area

01 UUAIRELO-OPEN.
COPY DDS-ALL-FORMATS OF Y2IOPEN.
* Open feedback area

01 UUB7EFK-WS-0.
03 ZSFLRCD-WS-0.
COPY DDS-ZSFLRCD-0 OF UUB7EFK.
06 FILLER PIC X.
03 ZSFLCTL-WS-0.
COPY DDS-ZSFLCTL-O OF UUB7EFK.

C-24 Standards Guide

COBOL ‘85 Program Example

*

/

01

01

01

06 FILLER PIC X.

03 ZCMDTXT1-WS-0.

COPY DDS-ZCMDTXT1-0 OF UUB7EFK.
06 FILLER PIC X.

03 ZMSGCTL-WS-0.

COPY DDS-ZMSGCTL-0 OF UUB7EFK.
06 FILLER PIC X.

03 ZCONFIRM-WS-0.

COPY DDS-ZCONFIRM-0 OF UUB7EFK.
06 FILLER PIC X.

UUB7EFK-WS-I.

03 ZSFLRCD-WS-I.

COPY DDS-ZSFLRCD-I OF UUB7EFK.
06 FILLER PIC X.

03 ZSFLCTL-WS-TI.

COPY DDS-ZSFLCTL-I OF UUB7EFK.
06 FILLER PIC X.

03 ZCMDTXT1-WS-I.

COPY DDS-ZCMDTXT1-I OF UUB7EFK.
06 FILLER PIC X.

03 ZMSGCTL-WS-TI.

COPY DDS-ZMSGCTL-I OF UUB7EFK.
06 FILLER PIC X.

03 ZCONFIRM-WS-TI.

COPY DDS-ZCONFIRM-I OF UUB7EFK.
06 FILLER PIC X.

WOOPN PIC X(1).

Indicators

INDICS.

03 IND PIC 1(1) OCCURS 990INDICATOR 1.

88 C-INDICATOR-ON VALUE B'1".

88 C-INDICATOR-OFF VALUE B'0’.

EJECT

kk ok ko ok 3k ok 3k ok ok ok Xk k Xk >k X %k X %k) %k) %) %) %) *x X

*

LINKAGE SECTION.
Return code
01 PORTN PIC X(7).

kk ok ko ok ko ok ok ok kk ok ok ok ok 3k ok 3k ok 3k)k Xk)k Xk k% X >k X k X Xk

PROCEDURE DIVISION USING

PORTN.

kk ok ko ok ko ok ok ok 3k ok ok ok ok ok Xk k X %k X %k X %k) %k) %k)k X Xk

*

MAINLINE SECTION.
Initialise
PERFORM ZZINIT

Initialisation

MOVE ZZPGM OF JOB-CONTEXT TO ZZPGM OF ZMSGCTL-WS-0

Main loop

Appendix C: Programming and Coding Examples

C-25

COBOL ‘85 Program Example

PERFORM UNTIL NOT (C-FOREVER)
* Initialise and load subfile page
PERFORM BAIZSF
MOVE ‘N’ TO WORSF

* Display screen until reload requested:
PERFORM UNTIL NOT (WORSF = ‘N')
* Display screen
PERFORM CAEXFM
* Process response:
* EVALUATE
* Cancel & exit program

IF (C-INDICATOR-ON(G3)) THEN

PERFORM ZXEXPG
* HOME: Request subfile reload
ELSE IF (C-INDICATOR-ON(30)) THEN
PERFORM FBRQRL
* Display next sfl page
ELSE IF (C-INDICATOR-ON(27)) THEN
PERFORM BBLDSF
ELSE
* Process screen input
PERFORM DAPRZZ

END-IF END-IF END-IF
END - PERFORM

END-PERFORM

MAINLINE-EXIT.
EXIT.

kk ok ok ok ok ok 3k ok ok ok 3k ok Xk >k X >k X %k) %k) %) %) %) *x X%

/EJECT
BAIZSF SECTION.

* Clear subfile
SET C-INDICATOR-ON(80) TO TRUE
WRITE UUB7EFK-F FROM ZSFLCTL-WS-0

FORMAT IS ‘ZSFLCTL’ INDICATORS ARE INDICS

END-WRITE

* Reset count of no of records in SFL
MOVE ZERO TO ZZRRMX
SET C-INDICATOR-OFF(81) TO TRUE

* If CHANGE mode, then position file:
IF (NOT C-ADD-MODE) THEN

* customer code

C-26 Standards Guide

COBOL ‘85 Program Example

MOVE Z2AICD OF ZSFLCTL-WS-0 TO WZAICD
Setup key
MOVE Z2AICD OF ZSFLCTL-WS-0 TO AIAICD OF KPOS
Initialise Full Externally Described Keylist
customer code
MOVE LOW-VALUES TO AIAICD OF KPOS-EXT
MOVE CORRESPONDING
KPOS-EXT TO
FAIREA4 OF UUAIREL1-R
MOVE CORRESPONDING
KPOS TO
FAIREA4 OF UUAIREL1-R
START UUAIREL1 KEY NOT EXTERNALLY-DESCRIBED-KEY
FORMAT IS ‘FAIREA4’
END-START

IF (C-IO-ERR) THEN

STOP RUN
END-IF
IF (C-EOF) THEN
SET C-INDICATOR-ON(82) TO TRUE
ELSE
SET C-INDICATOR-OFF(82) TO TRUE
SET C-INDICATOR-OFF(91) TO TRUE
READ UUAIREL1 NEXT
FORMAT IS ‘FAIREA4’
END-READ
IF (C-EOF) THEN
SET C-INDICATOR-ON(82) TO TRUE
ELSE
IF (C-IO-ERR) THEN
SET C-INDICATOR-ON(91) TO TRUE
END-IF
END-IF
IF (C-I0-0K) THEN
MOVE CORRESPONDING
FAIREA4 OF UUAIREL1 TO
FAIREA3 OF Y1DBRC
END-IF
END-IF
ELSE
SET C-INDICATOR-OFF(82) TO TRUE
END-IF
Load subfile page
PERFORM BBLDSF
If no records found, display error message
IF (C-INDICATOR-ON(82) AND

Appendix C: Programming and Coding Examples C-27

COBOL ‘85 Program Example

ZZRR = ZERQO) THEN

* Send message ‘*No data to display’
* Message ID

MOVE ‘Y2U0008’' TO ZAMSID
* Message file.

MOVE ‘Y2USRMSG’ TO ZAMSGF
PERFORM ZASNMS
END-IF

BAEXIT.
EXIT.
/EJECT

BBLDSF SECTION.

SET C-INDICATOR-OFF(84) TO TRUE
* No SFLNXTCHG
* Re-establish fields in read-ahead record

IF (C-INDICATOR-ON(27)) THEN
IF (C-INDICATOR-OFF(82) AND
NOT C-ADD-MODE) THEN
SET C-INDICATOR-OFF(90) TO TRUE
READ UUAIREL1 PRIOR
FORMAT IS ‘FAIREA4’
END-READ
IF (C-EOF) THEN
SET C-INDICATOR-ON(90) TO TRUE
ELSE
IF (C-IO-ERR) THEN
STOP RUN
END-IF
END-IF
SET C-INDICATOR-OFF(90) TO TRUE
READ UUAIREL1 NEXT
FORMAT IS ‘FAIREA4’
END-READ
IF (C-EOF) THEN
SET C-INDICATOR-ON(90) TO TRUE
ELSE
IF (C-IO-ERR) THEN
STOP RUN
END-IF
END-IF
MOVE CORRESPONDING
FAIREA4 OF UUAIREL1 TO

C-28 Standards Guide

COBOL ‘85 Program Example

FAIREA3 OF Y1DBRC
END-IF
END-IF
Setof record error indicators
MOVE ALL B'0’ TO WKIND1-A
MOVE ALL B'1’ TO WKIND1-A
Start at previous highest SFL record reached
MOVE ZZRRMX TO ZZRR
MOVE ZERO TO ZZRROK
Load next page of SFL:
PERFORM UNTIL NOT (C-INDICATOR-OFF(82) AND
ZZRROK ZZSFPG)
MOVE WKINDO(1) TO IND(32)
MOVE WKINDO(2) TO IND(33)
MOVE WKINDO(3) TO IND(34)
SET C-INDICATOR-OFF(87) TO TRUE
Clear SFL fields
PERFORM MAIZZ1
If change mode, load SFL fields
IF (NOT C-ADD-MODE) THEN
PERFORM MBFLZ1
END-IF
Output to subfile

ADD 1 TO ZZRR
IF (ZZRR ZERO) THEN
SET C-INDICATOR-ON(81) TO TRUE
ELSE
SET C-INDICATOR-OFF(81) TO TRUE
END-IF
ADD 1 TO ZZRROK
Set screen conditioning indicators
PERFORM GADSA1l
WRITE SUBFILE UUB7EFK-F FROM ZSFLRCD-WS-0
FORMAT IS ‘ZSFLRCD’ INDICATORS ARE INDICS
END-WRITE
IF (NOT C-ADD-MODE) THEN
SET C-INDICATOR-OFF(82) TO TRUE
READ UUAIREL1 NEXT
FORMAT IS ‘FAIREA4’
END-READ
IF (C-EOF) THEN
SET C-INDICATOR-ON(82) TO TRUE
ELSE
IF (C-IO-ERR) THEN
STOP RUN
END-IF
END-IF

Appendix C: Programming and Coding Examples C-29

COBOL ‘85 Program Example

MOVE CORRESPONDING
FAIREA4 OF UUAIREL1 TO
FAIREA3 OF Y1DBRC
END-IF
END - PERFORM
*
* Save highest SFL rec, so load can continue at end point
IF (ZZRR ZZRRMX) THEN
ADD 1, ZZRRMX GIVING ZZSFRC OF ZSFLCTL-WS-0
MOVE ZZRR TO ZZRRMX
END-IF

BBEXIT.
EXIT.
/EJECT

CAEXFM SECTION.

* Set screen conditioning indicators
PERFORM GBDSA2

* Update screen time
ACCEPT ZZTIME FROM TIME
MOVE ZZHNS TO ZZTME OF ZSFLCTL-WS-0

* PUTOVR unless conditioned fields change
SET C-INDICATOR-ON(86) TO TRUE

IF (IND(89) NOT = CAIN89 OR
IND(81) NOT = CAIN81) THEN
SET C-INDICATOR-OFF(86) TO TRUE

END-IF
MOVE IND(89) TO CAIN89
MOVE IND(81) TO CAINS1
WRITE UUB7EFK-F FROM ZMSGCTL-WS-0

FORMAT IS ‘ZMSGCTL' INDICATORS ARE INDICS
END-WRITE
WRITE UUB7EFK-F FROM ZCMDTXT1-WS-0

FORMAT IS ‘ZCMDTXT1’' INDICATORS ARE INDICS
END-WRITE
WRITE UUB7EFK-F FROM ZSFLCTL-WS-0

FORMAT IS ‘ZSFLCTL' INDICATORS ARE INDICS
END-WRITE
READ UUB7EFK INTO ZSFLCTL-WS-I

FORMAT IS ‘ZSFLCTL' INDICATORS ARE INDICS
END-READ
MOVE CORRESPONDING

ZSFLCTL-I OF ZSFLCTL-WS-I TO

C-30 Standards Guide

COBOL ‘85 Program Example

ZSFLCTL-0 OF ZSFLCTL-WS-0
* Update job time
ACCEPT ZZTIME FROM TIME
MOVE ZZHNS TO ZZJTM
* Clear messages from program message queue
MOVE ZZPGM OF JOB-CONTEXT TO ZAPGM
MOVE ‘*SAME’ TO ZAPGRL
CALL ‘Y2CLMSC’ USING
ZAPGM
ZAPGRL
END-CALL
* Reset first message only flag
MOVE ‘Y' TO ZAFSMS
SET C-INDICATOR-OFF(99) TO TRUE

CAEXIT.
EXIT.
/EJECT

DAPRZZ SECTION.

* Maintain subfile position where possible
ACCEPT UUB7EFK-I-0-DSPF FROM I-0-FEEDBACK-AREA
FOR UUB7EFK
IF (ZZSFRC OF UUB7EFK-I-0-DSPF ZERO) THEN
MOVE ZZSFRC OF UUB7EFK-I-0-DSPF TO ZZSFRC OF
ZSFLCTL-WS-0
END-IF
IF (NOT C-ADD-MODE) THEN

* Change of position specified?
* EVALUATE
* customer code

IF (WZAICD NOT = Z2AICD OF ZSFLCTL-WS-0) THEN
PERFORM FBRQRL
ELSE
CONTINUE
END-IF
END-IF
* Quit if reload requested
IF (WORSF = ‘Y’) THEN
GO DAEXIT
END-IF
IF (C-INDICATOR-ON(81)) THEN
* No data entered as yet
MOVE ‘N’ TO WKIPIN

Appendix C: Programming and Coding Examples C-31

COBOL ‘85 Program Example

* Confirm/update is not defered
MOVE ‘N’ TO WODCF
* Process subfile records
PERFORM DBPRSF
* If error, exit:
IF (C-INDICATOR-ON(99)) THEN
GO DAEXIT
END-IF
* Defer confirm/update requested:
IF (WODCF = ‘Y’) THEN
GO DAEXIT
END-IF
* If data entered
IF (WKIPIN = ‘Y’) THEN
* Prompt for confirm
PERFORM DHPRCF
* Exit if not confirmed
IF (C-INDICATOR-ON(99)) THEN
GO DAEXIT
END-IF
* Update DBF from subfile
PERFORM EAPRSF
* If error during update, exit:
IF (C-INDICATOR-ON(99)) THEN
GO DAEXIT
END-IF
END-IF
END-IF
* = = = = = Process function keys = = = = =

* Switch between *ADD/*CHANGE modes
IF (C-INDICATOR-ON(09)) THEN
PERFORM FACHMD
END-IF

DAEXIT.
EXIT.
/EJECT

DBPRSF SECTION.

READ SUBFILE UUB7EFK NEXT MODIFIED INTO ZSFLRCD-WS-I
FORMAT IS ‘ZSFLRCD' INDICATORS ARE INDICS
END-READ
IF (C-NO-MOD-SFLRCDS) THEN
SET C-INDICATOR-ON(92) TO TRUE

C-32 Standards Guide

COBOL ‘85 Program Example

ELSE
SET C-INDICATOR-OFF(92) TO TRUE
MOVE CORRESPONDING
ZSFLRCD-I OF ZSFLRCD-WS-I TO
ZSFLRCD-0 OF ZSFLRCD-WS-0
END-IF
PERFORM UNTIL NOT (C-INDICATOR-OFF(92))
PERFORM DCPRSR
SET C-INDICATOR-OFF(87) TO TRUE
* Set screen conditioning indicators
PERFORM GADSA1l
REWRITE SUBFILE UUB7EFK-F FROM ZSFLRCD-WS-0
FORMAT IS ‘ZSFLRCD’ INDICATORS ARE INDICS
END-REWRITE
READ SUBFILE UUB7EFK NEXT MODIFIED INTO ZSFLRCD-WS-I
FORMAT IS ‘ZSFLRCD’ INDICATORS ARE INDICS
END-READ
MOVE CORRESPONDING
ZSFLRCD-I OF ZSFLRCD-WS-I TO
ZSFLRCD-0 OF ZSFLRCD-WS-0
IF (C-NO-MOD-SFLRCDS) THEN
SET C-INDICATOR-ON(92) TO TRUE
ELSE
SET C-INDICATOR-OFF(92) TO TRUE
END-IF
END - PERFORM

DBEXIT.

EXIT.
/EJECT
DCPRSR SECTION.

* Setoff error indicators
MOVE WKINDO(1) TO IND(32)
MOVE WKINDO(2) TO IND(33)
MOVE WKINDO(3) TO IND(34)

* SFLRCD error
SET C-INDICATOR-OFF(98) TO TRUE
* NO SFLNXTCHG
SET C-INDICATOR-OFF(84) TO TRUE
IF (C-ADD-MODE) THEN
* Check for null record
PERFORM DDNLRC
IF (WONLR = ‘Y') THEN
GO DCEXIT

Appendix C: Programming and Coding Examples

C-33

COBOL ‘85 Program Example

END-IF
* If not null record, continue
END-IF
* Data entered
MOVE ‘Y’ TO WKIPIN
* 84 SFLNXTCHG
SET C-INDICATOR-ON(84) TO TRUE
* If delete request, bypass validation
* Validate subfile record
PERFORM DEV1RC
* If SFLRCD invalid, note the fact
IF (C-INDICATOR-ON(98) AND
C-INDICATOR-OFF(99)) THEN
MOVE ZZRR TO ZZSFRC OF ZSFLCTL-WS-0
IF (ZZSFRC OF ZSFLCTL-WS-0 ZERO) THEN
SET C-INDICATOR-ON(99) TO TRUE
ELSE
SET C-INDICATOR-OFF(99) TO TRUE
END-IF

DCEXIT.
EXIT.
/EJECT

DDNLRC SECTION.

MOVE ‘N’ TO WONLR
* customer code
IF (Z1AICD OF ZSFLRCD-WS-0 NOT
GO DDEXIT
END-IF
* customer name
IF (Z1APTX OF ZSFLRCD-WS-0 NOT
GO DDEXIT
END-IF
MOVE ‘Y’ TO WONLR

SPACES) THEN

SPACES) THEN

DDEXIT.

EXIT.
/EJECT
DEVIRC SECTION.

* Validate subfile record

C-34

Standards Guide

COBOL ‘85 Program Example

* customer code required
IF (Z1AICD OF ZSFLRCD-WS-0 = SPACES) THEN
SET C-INDICATOR-ON(98) TO TRUE
SET C-INDICATOR-ON(33) TO TRUE

* Send message ‘*Value required’
* Message ID

MOVE ‘Y2U0001’' TO ZAMSID
* Message file.

MOVE ‘Y2USRMSG' TO ZAMSGF
PERFORM ZASNMS
END-IF
* customer name required
IF (Z1APTX OF ZSFLRCD-WS-0 = SPACES) THEN
SET C-INDICATOR-ON(98) TO TRUE
SET C-INDICATOR-ON(34) TO TRUE

* Send message ‘*Value required’
* Message ID

MOVE ‘Y2U0001’ TO ZAMSID
* Message file.

MOVE ‘Y2USRMSG' TO ZAMSGF
PERFORM ZASNMS
END-IF

DEEXIT.
EXIT.
/EJECT

DHPRCF SECTION.

* Set screen conditioning indicators
PERFORM GBDSA2
* Update screen time
ACCEPT ZZTIME FROM TIME
MOVE ZZHNS TO ZZTME OF ZSFLCTL-WS-0
* Force PUTOVR
SET C-INDICATOR-ON(86) TO TRUE
WRITE UUB7EFK-F FROM ZMSGCTL-WS-0
FORMAT IS ‘ZMSGCTL' INDICATORS ARE INDICS
END-WRITE
WRITE UUB7EFK-F FROM ZCMDTXT1-WS-0
FORMAT IS ‘ZCMDTXT1’' INDICATORS ARE INDICS
END-WRITE
WRITE UUB7EFK-F FROM ZSFLCTL-WS-0

FORMAT IS ‘ZSFLCTL' INDICATORS ARE INDICS

Appendix C: Programming and Coding Examples C-35

COBOL ‘85 Program Example

END-WRITE
MOVE SPACES TO ZZCFCD OF UUB7EFK-WS-0
MOVE ‘N’ TO ZZCFCD OF UUB7EFK-WS-0
* Save CMD keys
MOVE INDICS TO WN30-A
WRITE UUB7EFK-F FROM ZCONFIRM-WS-0
FORMAT IS ‘ZCONFIRM’' INDICATORS ARE INDICS
END-WRITE
READ UUB7EFK INTO ZCONFIRM-WS-I
FORMAT IS ‘ZCONFIRM' INDICATORS ARE INDICS
END-READ
MOVE CORRESPONDING
ZCONFIRM OF ZCONFIRM-WS-I TO
ZCONFIRM OF ZCONFIRM-WS-0
* Restore CMD keys
MOVE 1 TO IND-COUNT
SET CONDITION-FALSE TO TRUE
PERFORM UNTIL (CONDITION-TRUE)
MOVE WN30(IND-COUNT) TO IND(IND-COUNT)
ADD 1 TO IND-COUNT
IF (IND-COUNT 30)
SET CONDITION-TRUE TO TRUE
END-IF
END - PERFORM
* Update job time
ACCEPT ZZTIME FROM TIME
MOVE ZZHNS TO ZZJTM OF JOB-CONTEXT
IF (ZZCFCD OF UUB7EFK-WS-0 NOT = ‘Y’') THEN
SET C-INDICATOR-ON(99) TO TRUE
ELSE
SET C-INDICATOR-OFF(99) TO TRUE
END-IF

DHEXIT.

EXIT.
/EJECT
EAPRSF SECTION.

* Initialise subfile reload flag
IF (C-ADD-MODE) THEN
MOVE ‘Y’ TO WORSF
ELSE
MOVE ‘N’ TO WORSF
END-IF
* Process all modified subfile records
READ SUBFILE UUB7EFK NEXT MODIFIED INTO ZSFLRCD-WS-I
FORMAT IS ‘ZSFLRCD' INDICATORS ARE INDICS

C-36 Standards Guide

COBOL ‘85 Program Example

END-READ
IF (C-NO-MOD-SFLRCDS) THEN
SET C-INDICATOR-ON(92) TO TRUE
ELSE
SET C-INDICATOR-OFF(92) TO TRUE
MOVE CORRESPONDING
ZSFLRCD-I OF ZSFLRCD-WS-I TO
ZSFLRCD-0 OF ZSFLRCD-WS-0
END-IF
PERFORM UNTIL NOT (C-INDICATOR-OFF(92))
* Process modified subfile record
PERFORM EBPRSR
MOVE SPACES TO Z1SEL OF ZSFLRCD-WS-0
* Set screen conditioning indicators
PERFORM GADSA1
REWRITE SUBFILE UUB7EFK-F FROM ZSFLRCD-WS-0
FORMAT IS ‘ZSFLRCD’ INDICATORS ARE INDICS
END-REWRITE
READ SUBFILE UUB7EFK NEXT MODIFIED INTO ZSFLRCD-WS-I
FORMAT IS ‘ZSFLRCD’ INDICATORS ARE INDICS
END -READ
MOVE CORRESPONDING
ZSFLRCD-I OF ZSFLRCD-WS-I TO
ZSFLRCD-0 OF ZSFLRCD-WS-0
IF (C-NO-MOD-SFLRCDS) THEN
SET C-INDICATOR-ON(92) TO TRUE
ELSE
SET C-INDICATOR-OFF(92) TO TRUE
END-IF
END - PERFORM
* If any errors, cancel reload
IF (C-INDICATOR-ON(99)) THEN
MOVE ‘N’ TO WORSF
END-IF

EAEXIT.

EXIT.
/EJECT
EBPRSR SECTION.

* Set off error indicators
* Clear errors
MOVE WKINDO(1) TO IND(32)
MOVE WKINDO(2) TO IND(33)
MOVE WKINDO(3) TO IND(34)

Appendix C: Programming and Coding Examples C-37

COBOL ‘85 Program Example

SET C-INDICATOR-OFF(98) TO TRUE
IF (C-ADD-MODE) THEN
* Process add request

IF (Z1SEL OF ZSFLRCD-WS-0 NOT = ‘D’) THEN
PERFORM DDNLRC
IF (WONLR NOT = ‘Y’) THEN
PERFORM ECADRQ
END-IF
END-IF
ELSE
IF (Z1SEL OF ZSFLRCD-WS-0 = ‘D’') THEN
* Process delete request
PERFORM EDDLRQ
ELSE
* Process change request
PERFORM EECHRQ
END-IF
END-IF
* If error occurred on update, note the fact
IF (C-INDICATOR-ON(98) AND
C-INDICATOR-OFF(99)) THEN
MOVE ZZRR TO ZZSFRC OF ZSFLCTL-WS-0
* Error on update
IF (ZZSFRC OF ZSFLCTL-WS-0 ZERO) THEN
SET C-INDICATOR-ON(99) TO TRUE
ELSE
SET C-INDICATOR-OFF(99) TO TRUE
END-IF
ELSE
CONTINUE
END-IF

EBEXIT.

EXIT.
/EJECT
ECADRQ SECTION.

*

USER: Create DBF record

Create object - customer file *

* X X ¥

PERFORM SACRRC

IF (WORTN NOT = SPACES) THEN
Write error detected
Screen errors

* ¥

C-38 Standards Guide

COBOL ‘85 Program Example

MOVE WKIND1(1) TO IND(32)
MOVE WKIND1(2) TO IND(33)
MOVE WKIND1(3) TO IND(34)

* Format error
SET C-INDICATOR-ON(98) TO TRUE
* Enable entry

SET C-INDICATOR-OFF(87) TO TRUE

* SFLNXTCHG
SET C-INDICATOR-ON(84) TO TRUE
ELSE
* DBF Write successful
* Disable entry
SET C-INDICATOR-ON(87) TO TRUE
* No SFLNXTCHG
SET C-INDICATOR-OFF(84) TO TRUE
END-IF
¥ =
ECEXIT.
EXIT.
/EJECT

EDDLRQ SECTION.

*

USER: Delete DBF record

* X ¥ ¥

Delete object - customer file *

PERFORM SBDLRC
IF (WORTN NOT = SPACES) THEN
Delete unsuccessful
* Screen errors
MOVE WKIND1(1) TO IND(32)
MOVE WKIND1(2) TO IND(33)
MOVE WKIND1(3) TO IND(34)

*

* Format Error
SET C-INDICATOR-ON(98) TO TRUE
* Enable entry
SET C-INDICATOR-OFF(87) TO TRUE
* SFLNXTCHG
SET C-INDICATOR-ON(84) TO TRUE
* If record altered, reset subfile record

IF (WORTN = ‘Y2U0007’) THEN
PERFORM MBFLZ1
END-IF
ELSE
* DBF Delete successful

Appendix C: Programming and Coding Examples C-39

COBOL ‘85 Program Example

* Blank out record and protect from entry
PERFORM MAIZZ1
* Disable entry
SET C-INDICATOR-ON(87) TO TRUE
* No SFLNXTCHG
SET C-INDICATOR-OFF(84) TO TRUE
* Reload subfile
MOVE ‘Y’ TO WORSF
END-IF
¥ o == == =============z========&===
EDEXIT.
EXIT.
/EJECT

EECHRQ SECTION.

Change object - customer file *

PERFORM SCCHRC
IF (WORTN NOT = SPACES) THEN
* DBF Update error detected
* Screen errors
MOVE WKIND1(1) TO IND(32)
MOVE WKIND1(2) TO IND(33)
MOVE WKIND1(3) TO IND(34)
* Format Error
SET C-INDICATOR-ON(98) TO TRUE
* Enable entry
SET C-INDICATOR-OFF(87) TO TRUE
* SFLNXTCHG
SET C-INDICATOR-ON(84) TO TRUE
* Reset subfile record if changed record
IF (WORTN = ‘Y2U0007') THEN
MOVE CORRESPONDING
FAIREA3 OF UUAIRELO TO
FAIREA4
PERFORM MBFLZ1
END-IF
ELSE
* DBF Update successful
* Enable entry
SET C-INDICATOR-OFF(87) TO TRUE
* No SFLNXTCHG
SET C-INDICATOR-OFF(84) TO TRUE

C-40 Standards Guide

COBOL ‘85 Program Example

END-IF
>k=============================
EEEXIT.
EXIT.
/EJECT
FACHMD SECTION.
*=============================
* Flip between *ADD and *CHANGE modes
*=============================
IF (NOT C-ADD-MODE) THEN
SET C-ADD-MODE TO TRUE
ELSE
SET C-CHANGE-MODE TO TRUE
END-IF
PERFORM FBRQRL
*=============================
FAEXIT.
EXIT.
/EJECT
FBRQRL SECTION.
>k=============================
* Request subfile reload
>k=============================
MOVE ‘Y’ TO WORSF
>k=============================
FBEXIT.
EXIT.
/EJECT
GADSA1 SECTION.
*=============================
* Set display attributes for Subfile record
K o e e e e e e e e e = e e e = = — —

IF (C-ADD-MODE) THEN

SET C-INDICATOR-ON(89) TO TRUE
ELSE

SET C-INDICATOR-OFF(89) TO TRUE
END-IF

* Protect keys if change mode or updated record

IF (C-INDICATOR-ON(89) AND

C-INDICATOR-OFF(87)) THEN

SET C-INDICATOR-OFF(88) TO TRUE
ELSE

SET C-INDICATOR-ON(88) TO TRUE
END-IF

Appendix C: Programming and Coding Examples C-41

COBOL ‘85 Program Example

GAEXIT.

EXIT.
/EJECT
GBDSA2 SECTION.

IF (C-ADD-MODE) THEN

SET C-INDICATOR-ON(89) TO TRUE
ELSE

SET C-INDICATOR-OFF(89) TO TRUE
END-IF

GBEXIT.

EXIT.
/EJECT
MAIZZ1 SECTION.

MOVE SPACES TO Z1DBRC OF UUB7EFK-WS-0
MOVE SPACES TO Z1SEL OF ZSFLRCD-WS-0
MOVE SPACES TO Z1AICD OF ZSFLRCD-WS-0
MOVE SPACES TO Z1APTX OF ZSFLRCD-WS-0

MAEXIT.

EXIT.
/EJECT
MBFLZ1 SECTION.

* customer code

MOVE AIAICD OF FAIREA4 TO Z1AICD OF ZSFLRCD-WS-0
* customer name

MOVE AIAPTX OF FAIREA4 TO Z1APTX OF ZSFLRCD-WS-0
* Hold current record image for change detection

MOVE Y1DBRC TO Z1DBRC OF ZSFLRCD-WS-0

MBEXIT.
EXIT.
/EJECT

MEIZZ2 SECTION.

C-42 Standards Guide

COBOL ‘85 Program Example

MEEXIT.

EXIT.
/EJECT
SACRRC SECTION.

MOVE SPACES TO WORTN
* Move all fields to FAIREA3
* customer code

MOVE Z1AICD OF ZSFLRCD-WS-0 TO AIAICD OF UUAIRELO-R
* customer name

MOVE Z1APTX OF ZSFLRCD-WS-0 TO AIAPTX OF UUAIRELO-R

* Check for duplicate primary key
START UUAIRELO KEY = EXTERNALLY-DESCRIBED-KEY
FORMAT IS ‘FAIREA3’
END-START
IF (NOT C-NO-RECORD) THEN
SET C-INDICATOR-ON(90) TO TRUE
MOVE ‘USR0028’' TO WORTN
* Send message ‘customer file EX’
* Message ID
MOVE ‘USR0O28’' TO ZAMSID
PERFORM ZASNMS
GO SAEXIT
ELSE
SET C-INDICATOR-OFF(90) TO TRUE
END-IF

WRITE UUAIRELO-R END-WRITE
IF (C-IO-ERR) THEN
SET C-INDICATOR-ON(91) TO TRUE

* Write error detected
MOVE ‘Y2U0004’' TO WORTN
ELSE
SET C-INDICATOR-OFF(91) TO TRUE
* DBF Write successful

Appendix C: Programming and Coding Examples

C-43

COBOL ‘85 Program Example

* Update saved record image
MOVE CORRESPONDING
FAIREA3 OF UUAIRELO TO
FAIREA3 OF Y1DBRC
END-IF

SAEXIT.

EXIT.
/EJECT
SBDLRC SECTION.

MOVE SPACES TO WORTN
* Move key fields to FAIREA3
* customer code
MOVE Z1AICD OF ZSFLRCD-WS-0 TO AIAICD OF UUAIRELO-R

READ UUAIRELO END-READ
IF (C-NO-RECORD) THEN

SET C-INDICATOR-ON(90) TO TRUE
ELSE

SET C-INDICATOR-OFF(90) TO TRUE
END-IF

IF (C-IO-ERR) THEN
SET C-INDICATOR-ON(91) TO TRUE
ELSE
SET C-INDICATOR-OFF(91) TO TRUE
END-IF
IF (C-I0-0K) THEN
MOVE CORRESPONDING
FAIREA3 OF UUAIRELO TO
FAIREA3 OF Y1DBRC

END-IF
*
IF (C-INDICATOR-ON(90)) THEN
* Record already deleted
MOVE ‘Y2U0009’' TO WORTN
* Send message ‘*Record no longer on file’
* Message ID
MOVE ‘Y2U0009’' TO ZAMSID
* Message file.

MOVE ‘Y2USRMSG' TO ZAMSGF
PERFORM ZASNMS
GO SBEXIT

C-44 Standards Guide

COBOL ‘85 Program Example

ELSE
CONTINUE
END-IF

IF (C-INDICATOR-ON(91)) THEN
Record locked
MOVE ‘Y2U0004’ TO WORTN
GO SBEXIT

ELSE
CONTINUE

END-IF

Check for changed record
IF (Z1DBRC OF ZSFLRCD-WS-0 NOT = Y1DBRC) THEN
MOVE ‘Y2U0007’ TO WORTN
Send message ‘*Update not accepted’
Message ID
MOVE ‘Y2U0007' TO ZAMSID
Message file.
MOVE ‘Y2USRMSG' TO ZAMSGF
PERFORM ZASNMS
Use SETLL to release record lock
START UUAIRELO KEY = EXTERNALLY-DESCRIBED-KEY
FORMAT IS ‘FAIREA3’
END-START
IF (C-NO-RECORD) THEN
SET C-INDICATOR-ON(90) TO TRUE
ELSE
SET C-INDICATOR-OFF(90) TO TRUE
IF (C-IO-ERR) THEN

SET C-INDICATOR-ON(91) TO TRUE
ELSE
SET C-INDICATOR-OFF(91) TO TRUE
END-IF
END-IF
GO SBEXIT
ELSE
CONTINUE
END-IF
DELETE UUAIRELO END-DELETE
IF (C-IO-ERR) THEN
SET C-INDICATOR-ON(91) TO TRUE
Delete error detected
MOVE ‘Y2U0004’ TO WORTN
ELSE
SET C-INDICATOR-OFF(91) TO TRUE
END-IF

Appendix C: Programming and Coding Examples C-45

COBOL ‘85 Program Example

SBEXIT.
EXIT.
/EJECT

SCCHRC SECTION.

MOVE SPACES TO WORTN
* Move key fields to FAIREA3
* customer code
MOVE Z1AICD OF ZSFLRCD-WS-0 TO AIAICD OF UUAIRELO-R

READ UUAIRELO END-READ
IF (C-NO-RECORD) THEN
SET C-INDICATOR-ON(90) TO TRUE

* Record not found
MOVE ‘Y2U0009’' TO WORTN
* Send message ‘*Record no longer on file’
* Message ID
MOVE ‘Y2U0009' TO ZAMSID
* Message file.

MOVE ‘Y2USRMSG’ TO ZAMSGF
PERFORM ZASNMS
GO SCEXIT
ELSE
SET C-INDICATOR-OFF(90) TO TRUE
IF (C-IO-ERR) THEN
SET C-INDICATOR-ON(91) TO TRUE
* Record locked
MOVE ‘Y2U0004' TO WORTN
GO SCEXIT

ELSE
SET C-INDICATOR-OFF(91) TO TRUE
IF (C-IO-O0K) THEN
MOVE CORRESPONDING
FAIREA3 OF UUAIRELO TO
FAIREA3 OF Y1DBRC
END-IF
END-IF
END-IF

*

Check for changed record

IF (Z1DBRC OF ZSFLRCD-WS-0 NOT = Y1DBRC) THEN
MOVE ‘Y2U0007’' TO WORTN

* Send message ‘*Update not accepted’

C-46 Standards Guide

COBOL ‘85 Program Example

* Message ID
MOVE ‘Y2U0007' TO ZAMSID
* Message file.

MOVE ‘Y2USRMSG’' TO ZAMSGF
PERFORM ZASNMS
* Use SETLL to release record lock
START UUAIRELO KEY = EXTERNALLY-DESCRIBED-KEY
FORMAT IS ‘FAIREA3’
END-START
IF (C-NO-RECORD) THEN
SET C-INDICATOR-ON(90) TO TRUE
ELSE
SET C-INDICATOR-OFF(90) TO TRUE
IF (C-IO-ERR) THEN
SET C-INDICATOR-ON(91) TO TRUE
ELSE
SET C-INDICATOR-OFF(91) TO TRUE
END-IF
END-IF
GO SCEXIT
END-IF
* Move Non-key fields to FAIREA3
* customer name
MOVE Z1APTX OF ZSFLRCD-WS-0 TO AIAPTX OF UUAIRELO-R

REWRITE UUAIRELO-R END-REWRITE
IF (NOT C-IO0-OK) THEN
SET C-INDICATOR-ON(91) TO TRUE

* Change error detected
MOVE ‘Y2U0004' TO WORTN
ELSE
SET C-INDICATOR-OFF(91) TO TRUE
* DBF Change successful
* Update saved record image

MOVE CORRESPONDING
FAIREA3 OF UUAIRELO TO
FAIREA3 OF Y1DBRC

MOVE Y1DBRC TO Z1DBRC OF ZSFLRCD-WS-0
END-IF

SCEXIT.

EXIT.
/EJECT
ZASNMS SECTION.

Appendix C: Programming and Coding Examples C-47

COBOL ‘85 Program Example

* Send if message is first *DIAG or not *DIAG
IF (ZAMSTP NOT = SPACES OR
ZAFSMS NOT = ‘N’) THEN
IF (ZAMSTP = SPACES) THEN

* Signal first error message sent
MOVE ‘N' TO ZAFSMS
END-IF

IF (ZAPGM = SPACES) THEN
MOVE ZZPGM OF JOB-CONTEXT TO ZAPGM
END-IF
* If no message file specified use default
IF (ZAMSGF = SPACES) THEN
MOVE ZADFMF TO ZAMSGF
END-IF
CALL ‘Y2SNMGC’ USING
* Program queue
ZAPGM
* Relative queue
ZAPGRL
* Message id
ZAMSID
* Message file
ZAMSGF
* Message data
ZAMSDA
* Message type
ZAMSTP
END-CALL
END-IF
* Clear all fields for default mechanism next time
* Program queue
MOVE SPACES TO ZAPGM
* Relative queue
MOVE SPACES TO ZAPGRL
* Message id
MOVE SPACES TO ZAMSID
* Message file
MOVE SPACES TO ZAMSGF
* Message data
MOVE SPACES TO ZAMSDA

* Message type
MOVE SPACES TO ZAMSTP

ZAEXIT.

EXIT.
/EJECT
ZXEXPG SECTION.

C-48 Standards Guide

COBOL ‘85 Program Example

>k====================
* Exit program: Normal
>k====================
MOVE SPACES TO PORTN
PERFORM ZYEXPG
>k====================
ZXEXIT.
EXIT.
/EJECT
ZYEXPG SECTION.
*====================
* Exit program: Direct
K o e o e o e o = = = —

CLOSE UUB7EFK
CLOSE UUAIREL1
CLOSE UUAIRELOG
* Reset entry parameters as appropriate
PERFORM ZZEXPM.
* Exit program

ZYEXPG-EXIT.
GOBACK

ZYEXIT.

EXIT.
/EJECT
ZZEXPM SECTION.

ZZPEXT.

EXIT.
/EJECT
ZZINIT SECTION.

MOVE SPACES TO PORTN

MOVE SPACES TO WORTN
MOVE ALL B’'0' TO INDICS
* Setup job date/time

Appendix C: Programming and Coding Examples C-49

COBOL ‘85 Program Example

ACCEPT ZZJIDT FROM DATE
ACCEPT ZZTIME FROM TIME
MOVE ZZHNS TO ZZJTM OF JOB-CONTEXT
* Retrieve job attributes
CALL ‘Y2RTJIBR' USING
JOB-CONTEXT
END-CALL
MOVE ‘UUB7EFK’ TO ZZPGM OF JOB-CONTEXT
* OBTAIN DEFAULT MESSAGE FILE.
MOVE ‘Y2MGFLA’ TO DATA-AREA-NAME
CALL ‘Y2RTDAC' USING
DATA-AREA -NAME
ZADFMF
END-CALL
* Signal first *DIAG message outstanding
MOVE ‘Y' TO ZAFSMS
* Open files
OPEN I-0 UUB7EFK
OPEN INPUT UUAIREL1
ACCEPT UUAIREL1-OPEN FROM OPEN-FEEDBACK-AREA FOR UUAIREL1
* Move main file information to JOB context
MOVE CORRESPONDING OPENFA OF UUAIREL1-OPEN TO JOB-CONTEXT
CALL ‘Y2QLNMR’ USING
ZZFFL OF JOB-CONTEXT
ZZFLB OF JOB-CONTEXT
ZZFQL OF JOB-CONTEXT
END-CALL
OPEN I-O UUAIRELO
ACCEPT UUAIRELO-OPEN FROM OPEN-FEEDBACK-AREA FOR UUAIRELO
MOVE ‘Y’ TO WOOPN

MOVE ‘UUB7EFK’ TO ZZPGM OF ZSFLCTL-WS-0
MOVE 12 TO ZZSFPG
* SFLRCDNBR
MOVE 1 TO ZZSFRC OF ZSFLCTL-WS-0
* MAX RECNO
MOVE ZERO TO ZZRRMX
* If member empty, set to *ADD mode, else to *CHANGE mode
IF (ZZNROP OF UUAIREL1-OPEN = ZERO) THEN
SET C-ADD-MODE TO TRUE
ELSE

SET C-CHANGE-MODE TO TRUE
END-IF

C-50 Standards Guide

Command Source Example

* Initialise subfile control

PERFORM MEIZZ2

ZZEXIT.
EXIT.

Command Source Example
CMD PROMPT (YYY0052)

/*T: Display Help Text. */

/*Z: CRTCMD PGM(YDDSHPC@)ALLOW(*INTERACT *IPGM *EXEC)*/
/*Z: PMTFILE(YYYYPMT) */

/*H: SYSTEM : Widget Processing System

/*H: PROGRAMMER : J. Sloan

/*H: DATE 1 24/04/85

/*H: (C) COPYRIGHT 1985 WIDGET CORPORATION

/*H: P. Help file name and library */
PARM KWD(FILE) TYPE(FL)
PROMPT (YYF1001) FILE(*IN)MIN(1) +
SNGVAL ((*PRV))
FL: QUAL TYPE(*NAME) DFT(QTXTSRC) /* File */
QUAL TYPE(*NAME) PROMPT(YYLO0O1l) /* Library */ +
DFT(*LIBL) SPCVAL((*LIBL))

/¥ oL 0o . X/
/*H: P. Help member name */
PARM KwD (MBR) TYPE(*NAME) PROMPT(YYF1051) +
DFT(*FILE) SPCVAL(*FILE)
/¥ oL e e e e e e e e . X/
/*H: P. Label */

PARM KWD(MBR) TYPE(*CHAR) LEN(30) PROMPT(YYL1011l) +
DFT(*NONE) PMTCTL (*PMTRQS)

Command Diagram Example

The example below shows the layout of a typical command diagram.

Appendix C: Programming and Coding Examples C-51

Command Diagram Example

YEDTLIBLST (Edit Library List)

Function

Parameters

Notes

Calls an interactive program to edit or change a library list.

m The edited list may be stored away permanently as a CA 2E Toolkit library
list.

m It may also be used to change the current job’s library list.

Command diagram, prepared, using 0S/400 conventions:

Optional
>*JOB
>*LIBL/ -*SELECT
YEDTLIBLST LIBLST — [-*CURLIB/
- -library-name/ -*USER
-library-list-name
Job: | Pgm: |

400 Toolkit Modules: *USR *PGMR

LIBLST—Qualified name of library list which is to be edited:
m *]JOB: current job’s library list
m *USER: library list has same name as user

m *SELECT: display list of existing lists

1. Calls an interactive display to edit a library list. Press the HELP key while
using the program for instructions.

2. Library lists are stored in file YLIBLST in the library specified by the LIBLST
parameter.

It is recommended that you have only one library list file per installation.
However, additional files can be created as follows:

CRTDUPOBJ OBJ(YLIBLST) FROMLIB(pgmlib) OBJTYPE(*FILE) TOLIB(library-
name)

C-52

Standards Guide

Command Diagram Example

Example

To edit the current job’s library list:

YEDTLIBLST

To edit a library list named BORGES:-

YEDTLIBLST LIBLST(BORGES)

General Rules for Preparing Command Diagrams

The following rules apply to the layout of the diagram:

Begin the syntax base line with the command name in upper case:-

YEDTLIBLST

Start each continuation syntax base line with *>—"and end it with *—>".
Show all parameter keywords in upper case on the syntax base line.
Do not split parameter descriptions over two lines, if this can be avoided.

List the parameters in the order in which they appear in the code for the
command. Note that on IBM i, the order in which the parameters appear
on the panel may be altered by use of the PMTCTL keyword.

Example

If additional information about a parameter is required, enter a number
enclosed in brackets against the parameter, and explain it at the bottom of
the diagram.

Use ‘>’ before a parameter value to indicate that it is the default value.
Use '-|" and ‘|-’ to indicate a fork in a syntax base or branch line.

Use '‘——' to indicate the termination of the syntax base line (for example,
no **’ or ‘"), and continue the line to the edge of the diagram:

>*REPLACE-
> STOPT-

-"ALL

For qualified object names, place ‘/’ after an element name to indicate
qualification.

Place a box containing a ‘P’, after the last permitted positional parameter:

Appendix C: Programming and Coding Examples C-53

Command Diagram Example

YCRTUSRPRF—USRPRF user-profile-name >

Place a box containing a ‘K’, after the last permitted keyword parameter.

Draw a line across the diagram to indicate the last required parameter.
Place the word ‘Required’ above this line on the right-hand side. Place
‘Optional’ below this line. If all parameters are optional, place ‘Optional’ in
the top left hand corner of the box.

Required

Optional

To indicate variables, use lower case and connect compound nouns with
hyphens, for example, ‘library-list-name’. Values should be of a data type,
rather than a specific name, for example ‘date’ rather than ‘order- date’.

For parameters that have a choice of values, place each value on a
different branch line. If more than one value can be specified, indicate this
with an arrow below, and state the maximum number of allowed values.
For example:

*ALL
>—O0BJTYPE—-

>
—-object-type———
A

-23-maximum—

State the environments in which the command may be used (interactive or
batch) in a box at the bottom right-hand corner of the command diagram.
List the modules of the product for which the command is applicable,
underneath the command diagram. For example:

Job: | Pgm: |

400 Toolkit Modules: *USR *PGMR

Parameter Descriptions

The following rules apply to the description of command parameters, which
should appear below the diagram.

The command parameters should be described individually in the same
order as they are listed in the command diagram. The parameter keyword
should be in bold type.

C-54 Standards Guide

UIM Help Text Example

Parameter descriptions should begin with a statement of the type of value
expected, for example, ‘Qualified name’, ‘Generic qualified hame’,
‘Message identifier’, ‘Text description’, or ‘Compound list made up of the
following three elements’.

m Each special value should be described. The actual special value should be
shown (for example, **NONE’), followed by the text description.

m The default special value should be shown first, and underlined.

m For multi-part parameters which have a single value as well, show the
single value on a separate branch line from that containing the multi-part
parameter values (which may branch again to show a list of values):

>*SYSVAL

>—-LIBLST- - *LIBL/

- 0>

-*USER

-library-name/- -library-list-name-

The following rule applies to the notes on using the command:

m Notes should explain additional specific information that is required to use
the command or understand its actions. Information pertaining to
particular parameters should normally appear in the parameter
description, not in the notes.

The following rule applies to the examples of using the command which should
appear at the end:

m Examples should cite at least one instance of using the command. Give a
typical example or examples.

YEDTLIBLST LIBLST(BORGES)

UIM Help Text Example

This section contains sample source for UIM help text. There are separate
examples for Command help, Panel help, Search index, and Hypertext
definitions.

Command Help (‘wllicmH’)

PNLGRP SUBMSGF='WPMTMSG"’ .
*T: Library list Object - command help

Appendix C: Programming and Coding Examples C-55

UIM Help Text Example

. *H: SYSTEM : Widget Processing System

. *H: PROGRAMMER : J. Sloan

. *H: DATE 1 24/04/92

. *H: (C) COPYRIGHT 1992 WIDGET CORPORATION

IMPORT PNLGRP=wssycmh NAME='*", <==Standard definitions
: IMPORT PNLGRP=ghckmstl NAME='dspobjd/output’.

: IMPORT PNLGRP=ghckmstl NAME='dspobjd/outfile’.

: IMPORT PNLGRP=ghckmstl NAME='dspobjd/outmbr’.

Lok ok ok oskok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok

. * Primary help text for the commands
.*****************************

:HELP NAME='wchgliblst/ALL". <== Help group to
:IMHELP NAME=wchgliblst. gather all parameters
:IMHELP NAME='wchgliblst/liblst’ together

:IMHELP NAME='wchgliblst/libl’.

:IMHELP NAME='wchgliblst/text’.

:EHELP.

. * C. Change library list command overview

:HELP NAME='wchgliblst’. <== Command overview
&MSG(WL156002) . &MSG(uisle05).

:P.The &MSG(W115002). (WCHGLIBLST) &MSG(uis0021).

changes the contents of an existing

:LINK PERFORM ='DSPHELP wlllenh/went/liblst wlllenh’.
&MSG(WL10301) . :ELINK.

:EHELP.

. * P. Library list name
*

:HELP NAME='wchgliblst/liblst’. <== Parameter
descriptions

:IMHELP NAME='1liblst/liblst’.

:P.Specifies the name and

&MSG(Wlb0301). of the

&MSG(W11e301). that is to be changed

:IMHELP NAME='whsyhph/STDTXT/REQVAL’. <== Standard text

fragments
:IMHELP NAME='whsyhph/STDPARMVAL/LIB’ .
:EHELP.

C-56 Standards Guide

UIM Help Text Example

. * P. Library list libraries
:HELP NAME='wchgliblst/LIBL’.
:IMHELP NAME='1liblst/LIBL’.

: PARML. <== Parameter values
:PT.:PK DEF. *SAME:EPK.

:PD.Do not change the
&MSG(W1b0015). stored in the
&MSG(W110301) .

:EPARML.

:IMHELP NAME='liblst/LIBL/LIB".
:EHELP.

:HELP NAME='wchgliblst/TEXT".

&MSG (WTX0001) . (TEXT) &MSG(uisle05).

:XH3 (WTX0001) . (TEXT)

:P.Specifies a text description of the new
&MSG(W110301) .

:PARML.

:PT.:PK DEF. *DFTTXT:EPK.

:PD.Default text is to be provided.

:PT. :PK. '8MSG(Wtx0201) . ' :EPK.

:PD.Up to fifty characters of free format text, enclosed in
apostrophes.

:EPARML.

:EHELP.

Lk ook ok ook ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ko k ok ok ok ok ok ok ok

. * Reused groups LIBLST

Lk ook ok ok ok sk ok ok ok ok ko ok ok ok ok ok ok ko ok ok ok ok ok ok ok ko ke ok

:P.Specifies the name and

&MSG(W1b0301) . of the

&MSG(W110301) . containing the
&MSG(Wlb0315) . to use to provide the
&MSG(W1b0305) . and the
&MSG(W1b0316) . of the submitted
&MSG(Wjb0301) .

:IMHELP NAME='whsyhph/STDTXT/POSVAL’. <== Standard text
fragment

:PARML.

Appendix C: Programming and Coding Examples C-57

UIM Help Text Example

:PT.:PK DEF. *NONE:EPK.

:PD.No

SMSG(W110301). is to be used.
:EPARML .,

:IMHELP NAME='1iblst/liblstVAL/JOB’.
:PARML.

:PT. :PK(Wlb0201).:EPK.

:PD.Name of

&MSG (W1lb0301) . containing the
&MSG(W110301).

:EPARML,

:IMHELP NAME='whsyhph/STDPARMVAL/LIB’.
:EHELP.

:HELP NAME='1liblst/liblstval/job’.
:PARML.

:PT.:PK. *JOB:EPK.

:PD.The

S&MSG(W110301) ., name is the same as the
&MSG(Wjb0305) .

:EPARML.

:EHELP.

. ¥ LIBL preamble
X L L L o o o o m e e e e e e e e e e e mm e e e e
:HELP NAME='liblst/libl’.
&MSG(WLBOOO6) . (LIBL) &MSG(uislO05).
:XH3(WLBO0OO6) . (LIBL)
:P.Specifies the libraries to be included in the
&MSG(WL10301).
:IMHELP NAME='whsyhph/STDTXT/PLUS’.
:EHELP.

Panel Help (‘wilipnh’)

PNLGRP SUBMSGF='WPMTMSG' .
. *T: Library lists - panel help
X = 2 = m - === = = = = = = = = = = = e = = = = — —

. *H: SYSTEM : Widget Processing System
. *H: PROGRAMMER : J. Sloan
. *H: DATE 1 24/04/85

. *H: (C) COPYRIGHT 1985 WIDGET CORPORATION

IMPORT PNLGRP=WhSYHPH NAME='*", <== Standard definitions

C-58 Standards Guide

UIM Help Text Example

Lok ok ok sk ok k ok ok sk ok sk ok ok ok ok sk ko ko ok ok ok ko ko ok ok Xk kX

. * Primary help text for the panels
_*****************************

;HELP NAME='zsflctl1l/PNL/INTRO’. <== Overview for whole
&MSG(W112101) . &MSG(uislE05). panel

:ISCH roots='relationship change panel wdspliblst’.
<== SCHIDX entry

:xh3 The &MSG(W112101). (DSPLIBLST) &MSG(uis0023).

Extended heading

:P.The &MSG(W112101). (DSPLIBLST) &MSG(uis0023).

shows the contents of a specified

:LINK PERFORM ='DSPHELP wlllenh/went/liblst wlllenh’.

&MSG(WL10301) . :ELINK.

:IMHELP NAME='whsyhph/STDTXT/ENTERRTN’. <== Standard

:EHELP. fragment

:HELP NAME='zsflctl1/PNL/BOTINS’.
: IMHELP NAME='whsyhph/STDTXT/ENTERRTN" .
:EHELP.

. * Online Help Information for Function Keys
*

:HELP NAME='zsflctl1/PNL/CMDINS’.
&MSG(uis1001). &MSG(uisle05).
:xh3(uis1001). Function keys
:IMHELP NAME='whsyhph/STD/F/F1HELP'.
:IMHELP NAME='whsyhph/STD/F/F3EXIT/END".
:IMHELP NAME='whsyhph/STD/F/F12PREV".
:IMHELP NAME='whsyhph/STD/F/ENTER" .
:IMHELP NAME='whsyhph/STD/F/HELP".
:IMHELP NAME='whsyhph/STD/F/HOME’ .
:IMHELP NAME='whsyhph/STD/F/PRINT".
:EHELP.

:HELP NAME='zsflctl/zzllvn’'. Help text for panel

Appendix C: Programming and Coding Examples C-59

UIM Help Text Example

SMSG(W1b0001) . &MSG(uisl005). fields
:xh3(Wlb0001) .

:P.The name of a

S&MSG(W1b0301). in the list.

:EHELP.

:HELP NAME='zsflctle/zztxvn'.

&MSG (Wtx0001) . &MSG(uisl005).

:xh3 (Wtx0001) .

:P.The user text, if any, used to briefly describe the
&MSG(W110301) .

EPNLGRP.

Search Index (‘wschidx’)

PNLGRP SUBMSGF="WPMTMSG"’ .
. *T: Library list Object - command help

. *H: SYSTEM : Widget Processing System

. *H: PROGRAMMER : J. Sloan

. *H: DATE 1 24/04/92

. *H: (C) COPYRIGHT 1992 WIDGET CORPORATION
>k===============================

IMPORT PNLGRP=WHSYHPH NAME='*". <== Standard definitions

:IMPORT PNLGRP='wlllcmH’ NAME='wcrtliblst/ALL". <== Commands

: IMPORT PNLGRP='WlllcmH’ NAME='wchgliblst/ALL’.
: IMPORT PNLGRP="WlllcmH’ NAME='wdspliblst/ALL’.
:IMPORT PNLGRP="Wl1llcmH’ NAME='wchglibl/ALL".

:IMPORT PNLGRP='wlllpnH’ NAME='Zsflctl1/PNL/INTRO".

:ISCHSYN ROOT='about’.about

:ISCHSYN ROOT='change’.change changes changing
:ISCHSYN ROOT='change’.CHG

:ISCHSYN ROOT='command’.command commands commanding
: ISCHSYN ROOT='command’.CL CMD

:ISCHSYN ROOT='create’.create creates creating CRT
:ISCHSYN ROOT='data’.library libraries

:ISCHSYN ROOT='display’.display displays displaying

C-60 Standards Guide

UIM Help Text Example

: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
:ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN
: ISCHSYN

ROOT="help’.help assist
ROOT="how' .how
ROOT="job'.job
ROOT='jobd’.description

ROOT='1index’
ROOT='index’
ROOT='index’

ROOT='index’
ROOT='index’
ROOT='index’

.index indexed indexing
.content contents

.list lists
ROOT="1index'.
.table tables
.list lists
.IDX

register registers

ROOT="1iblst’.liblst
ROOT='"1liblst’.library libraries
ROOT="1iblst’'.list lists
ROOT='library’.library libraries
ROOT='1library’.LIB

ROOT="1list’.
ROOT="1ist’.
ROOT="1list’.
ROOT="1ist’.
ROOT="1ist’.
ROOT="1list’.
ROOT="1ist’.
ROOT="1ist’.
ROOT="1ist’.
ROOT="1ist’.
ROOT="1ist’.
ROOT="1ist’.
ROOT="1ist’.

list lists

column columns
database databases
directory directories
field fields

file files

item items

directory directories
library libraries

log logs logging
record records

table tables

series

ROOT="LIBLST".LIBLST
ROOT='LIBLST’.library
ROOT="LIBLST’.list
ROOT='LIBLST’.object
ROOT='LIBLST’.library libraries
ROOT='LIBLST’.list lists
ROOT="objtyp’.LIBLST
ROOT='"search’.search searches searching
ROOT="search’.searching searched
ROOT="search’.SCH

ROOT="search’.find finding FND
ROOT="search’.seek seeking
ROOT='"search’.quest question
ROOT="search’.hunt hunting
ROOT="search’.get getting
ROOT='"search’.locate locating
ROOT="search’.look looking
ROOT="search’.retrieve retrieving RTV
ROOT="search’.review reviewing
ROOT="submit’.submit submits SBM

ROOT="topic’

.topic topics

Appendix C: Programming and Coding Examples C-61

UIM Help Text Example

:ISCHSYN ROOT='topic’.category categories
:ISCHSYN ROOT='what’.what

;ISCHSYN ROOT="wCHGLIBL' .wCHGLIBL

:ISCHSYN ROOT='wchgliblst’.wchgliblst
:ISCHSYN ROOT='wCRTLIBLST’.wCRTLIBLST

:HELP NAME='about index search opr’.
:ISCH ROOTS='about index search help’.
About index search

:IMHELP NAME='about index search’.
:EHELP.

LR ok ok ok ok sk ok ok sk sk sk sk sk ok ok ok ko ko ko ok ok ok ok ko ko ko ok ko ok ok

. * References to command help groups
.*****************************

:HELP NAME='change library list’.

:ISCH roots='change job liblst LIBLST how command wchglibl’.
&MSG(WL15011). (WCHGLIBL) &MSG(uisl002). (&MSG(uislE03).)
:IMHELP NAME='wchglibl/ALL".

:EHELP.

:HELP NAME='change library list object’.

:ISCH roots='change LIBLST liblst how command wchgliblst’.
&MSG(WL15002) . (WCHGLIBLST) &MSG(uisl002). (&MSG(uisl003).)
:IMHELP NAME='wchgliblst/ALL".

:EHELP.

:HELP NAME='create library list object’.

:ISCH roots='create LIBLST liblst how command wcrtliblst’.
SMSG(W115001). (WCRTLIBLST) &MSG(uisl002). (&MSG(uisl003).)
:IMHELP NAME='wcrtliblst/ALL".

:HELP NAME='display library list object’.

:ISCH roots='display LIBLST liblst how command wdspliblst’.
&MSG(WL15004) . (WDSPLIBLST) &MSG(uisl002). (&MSG(uisl003).)
:IMHELP NAME='wdspliblst/ALL".

:EHELP.

:EPNLGRP.

C-62 Standards Guide

UIM Help Text Example

Hypertext Definitions (‘willenh’)

PNLGRP SUBMSGF='WPMTMSG"’ .
. *T: Standard hypertext definitions

. *H: SYSTEM : Widget Processing System
. *H: PROGRAMMER : J. Sloan
. *H: DATE 1 24/04/92

. *H: (C) COPYRIGHT 1992 WIDGET CORPORATION

:HELP NAME='wl1lenH/WENT/LIBLST".
SMSG(wl10001) . &MSG(uisl005).
:ISCH roots='LIBLST novice what’.
<==Index entry

SMSG(wll10001) .

:xh3(wll10001).

:P.A 8MSG(wll10301). (LIBLST)

is a type of

:LINK perform='DSPHELP wlllenh/WENT/spcobj’. <==cross refe

&MSG (wSPO301) .

:ELINK.

containing a list of libraries. It may also contain the
name of a

&MSG(wlb0305) . and the name of a

&MSG(wJD0301) .

These stored values can be used to set the

&MSG(wlb0315). of a

&MSG(wjb0301). or

&MSG(wjde301) . &period.

The names of

&MSG(wll0301) .s

must be unique within a given

&MSG(wlb0301) . &period.

:imhelp name='whsyhph/STDTXT/RELTOPIC’. <== List of
related topics

:ul COMPACT.

:1i.:LINK PERFORM ='DSPHELP wlllenh/went/liblst/HOW’ .

How to create or change a &MSG(wll0301).:ELINK.

:1i.:LINK PERFORM ='DSPHELP wlsyenh/went/liblst/use’.

Using a &MSG(wll10301).:ELINK.

:1i.:LINK PERFORM ='DSPHELP wlllenh/went/liblst/xmp’.

Example of using a &MSG(wll10301).:ELINK.

Appendix C: Programming and Coding Examples C-63

UIM Help Text Example

reul.
:ehelp.

. etc

:EPNLGRP.

C-64 Standards Guide

Appendix D: Printer Form Sizes

This appendix contains the printer form standard options.

Printer Form Standard Options

Standard Print Forms Specifications

Print Standard A4 Short A4 Long A5
Forms
Options

CMP UNCMP CMP UNCMP CMP UNCMP CMP
1 print - - - - 3 3 3
line
Last print 80 60 64 64 64 60 62
line
Length of 88 66 70 66 72 64 64
form (lines)
Lines per 8 6 8 6 8 6 8
inch (468
9)
Line 1 1 1 1 1 1 1
spacing (1
23)
Forms type *STD *STD A4 A4 AL4 AL4 A5
Add. left O 0 6 6 9 6 9
margin
space
Char. per 15 10 15 10 15 10 15
inch (10
15)

Appendix D: Printer Form Sizes

D-1

Index

backup and recovery
catastrophic failure o 31
non-catastrophic failure ¢ 31

C

CL programs
field names ¢ 20

COBOL programs
naming standards e 44

coding principles o 1

coding standards
CL programs e 18
COBOL programs e 37
database files o 1
DDS o 7
display files ¢ 6
help text 81
HLL programs e 8, 17
iSeries o 14
messages ¢ 70
PL/1 programs e 49
printer files o 13
RPG III programs e 21
source files o 4

command coding e 64

command keys o 15

command processing programs e 66
copy books ¢ 53

copyrights ¢ 5

D

defining messages ¢ 75
design methods ¢ 1

design standards

commands e 32
database files ¢ 43
display files o 11

help text e 29
internationalization ¢ 65
iSeries o 1

menus e 25

printer files o 22
programs e 53

user interfaces ¢ 4

documentation

considerations e 1
documenting commands ¢ 4
standards o 1

text standards ¢ 5

examples

CL program source e 11
COBOL '85 program e 21
command diagram e 52
command source o 51
database file DDS o 4
display file DDS ¢ 5

ELB option runtime o 1

field reference file o 1
naming convention e 1
printer file DDS o 9
programming and coding e 1
RPG III program source e 12
UIM help text e 55

data dictionary ¢ 1

database files o 4

field reference file o 1

Index 2

H

N

help text for commands e 87
help text for menus ¢ 89
help text for panels ¢ 88
HLL programs e 17

naming conventions
constraints ¢ 9
recommendations ¢ 14

O

ideographic support ¢ 77

internationalization
MRI translation ¢ 66

Introduction ¢ 1

iSeries
coding standards » 14
database ¢ 44
naming conventions e 3
programming and documentation
standards ¢ 3

iSeries
design standards e 1

0S/400
objects ¢ 1
system values « 74

P

PL/1 programs
coding structure and logic 56
procedure and label names ¢ 62

print file direction e 6
printer files 13

printer form sizes ¢ 1

Q

job descriptions ¢ 5

queues ¢ 5

R

language support 76

libraries
naming conventions e 20

M

related information
General IBM Manuals o 2
iSeries Manuals ¢ 1

RPG III programs e 21

S

mnemonics ¢ 20

search indexes » 31, 90
security implementation ¢ 13
selection columns ¢ 17

source file names o 2

Index 3

testing standards o 1

U

user profile and security standards ¢ 7

\'

version control e 26

W

work management standards e 1

4 Standards Guide

	Standards Guide
	Contents
	1: Overview
	Purpose
	Related Information
	iSeries Guides
	General IBM Guides

	Conventions
	Terms Used in This Manual
	Introduction to iSeries Programming and Documentation Standards
	Importance of Standards
	iSeries Standards
	Enforcing Standards

	2: Naming Conventions
	Naming Conventions
	Natural Language
	Objects
	Object-Oriented Approach
	Planning a Naming Convention
	OS/400 Entity and Object Types

	Constraints on the Uniqueness of Names
	Constraints on Naming Conventions
	OS/400
	RPG III
	COBOL
	UIM
	Nature of Distinctions
	Number of Distinctions
	Object-action Naming
	Recommendations
	CA 2E Naming Convention
	For RPG III
	Naming Convention Variation
	For Objects
	For Formats
	For Fields
	HLLs Other Than RPG III

	Mnemonics
	CA 2E Mnemonic System
	Formulate New Mnemonics
	CA 2E and Mnemonics
	CA 2E Naming Convention Exceptions

	Advantages of CA 2E Naming Convention
	Enforcing A Naming Convention

	3: IBM i General Design Standards
	Design Methods
	Contents of a Specification
	Design Tools

	Design Standards for User Interfaces
	Ease of Use
	Interface Consistency
	Transfer of Learning
	Modal Behavior
	Exploring and Backing Out
	Recall Versus Recognition
	Novice and Expert Paths
	Contextual Information
	Shipped Systems
	iSeries User Interface Implementation Components

	Design Standards for Display Files
	For the IBM Midrange
	CUA Panel Components
	iSeries Panel Layout Standards
	Using Command Keys
	Using Selection Columns
	Subfile Design
	Basic Panel Display Styles On iSeries
	Common Panel Display Variants

	Design Standards for Printer Files
	Standard Report Design Layout
	Notes on Report Design

	Design Standards for Menus
	Menu Design Considerations
	Grouping Items On Menus
	Appearance of Menus
	Arranging Menus
	Tools for Creating Menus

	Design Standards for Help Text
	Help Text Design Considerations
	Designing Help Text
	Panel Help Text
	Command Help Text
	Menu Help Text
	Search Indexes

	Design Standards for Commands
	Why Use Commands?
	Naming Conventions
	Design Standards
	Required Parameters for Commands

	Design Standards for Database Files
	Design Goals
	The Database of iSeries
	Considerations for Database File Design

	Design Standards for Programs
	Design Goals
	Program Types
	Choosing Standard Programs
	Organizing Programs into Modules
	Program Modularization
	Error Recovery
	Error Handling
	Record Locking
	Subfile Processing
	Journaling for Audit Trail Purposes

	Design Standards for Internationalization
	General Principles
	MRI Translation
	Considerations for MRI (text) Translation
	Using System Values
	Writing Text for Translation
	Ideographic Support

	4: General Coding Standards
	Coding Principles
	Standard Source File Names
	Source File Member Names
	Standards for Text Descriptions and Titles

	Common Source File Coding Standards
	Standard Banners in Source
	Copyright Notice in Source
	Maintenance Comments in Source
	Formatting Source Code

	DDS Coding Standards for Files
	HLL Coding Standards for Programs
	Program Layout
	Coding for iSeries

	5: Coding Standards for Database Files
	Data Dictionary/Field Reference File
	Standard for Field Reference Files

	Physical and Logical Database Files
	Database File Coding Standards: File Level
	Format Level
	Field Level
	Arrays

	Coding Standards for Display Files
	Related Design Utilities

	Coding Standards for Printer Files
	Related Design Utilities
	General Considerations

	Coding Standards for HLL Programs
	General Principles

	Coding Standards for CL Programs
	Field Names in CL Programs

	Coding Standards for RPG III Programs
	Program Layout
	RPG III Coding Structures and Program Logic
	Format Names in RPG III
	RPG III Field Names
	RPG III Subroutine and Label Names
	RPG III Parameter and Key Lists
	RPG III Standard Indicators
	Techniques in RPG III Programs

	Coding Standards for COBOL Programs
	Language Standards
	Program Layout
	Naming Standards in COBOL
	Handling Dates in COBOL

	Coding Standards for PL/1 Programs
	Program Layout
	Copy Books

	PL/1 Coding Structures and Program Logic
	Standard Procedures
	Naming Standards
	PL/1 Procedure and Label Names

	Command Coding Conventions
	Layout of Command Definition Source
	Cross-reference Data
	Command processing programs (CPP)
	Command Validity Checking Programs
	Prompt Override Programs

	Coding Standards for Messages
	Prompt Messages
	Execution Messages

	Standards for Defining Messages
	Monitoring for Generic Message Groups
	Message Handling by Interactive Programs
	Message Handling by Batch Programs

	Coding Standards for Help Text
	General Considerations
	Help Text Modularization
	General Coding Techniques
	Coding Help Text for Commands
	Coding Help Text for Panels
	Coding Help Text for Menus
	Designing Search Indexes

	6: Work Management Standards
	Introduction
	General Principles

	Shipped Work Management Objects
	Work Management Objects in QGPL
	OS/400 Shipped Authorities
	Naming Work Management Objects

	Job Descriptions
	Queues
	Print File Direction
	Scheduling Print Output

	User Profile and Security Standards
	User Profiles

	Implementation of Security
	Operational Rights
	Generic Implementation of Security

	Using Libraries
	Organizing a Development Environment
	Operational Flow for Objects and Source
	Naming Convention for Libraries
	Use of Libraries

	Version Control
	Object Versions
	Upward Compatibility
	Version Numbers
	Version Installation Procedures

	Backup and Recovery
	Data Security
	Recovering from Non-Catastrophic Failure
	Recovering from Catastrophic Failure

	Backing-Up
	Organizing Objects for Backup
	Backing Up Live Application Systems
	Backing Up Development Systems
	Backup Methods

	7: Standards for Testing
	Types of Testing
	Program Testing
	System Testing
	Test Techniques

	8: Documentation Standards
	Considerations
	Documenting Commands
	Messages
	Standards For Preparing Text Documentation

	A: Naming Convention Examples
	Examples

	B: EJB Option Runtime Example
	Nouns, Adjectives, and Verbs

	C: Programming and Coding Examples
	Field Reference File Example
	Primary Reference Fields: “TYPE FIELDS”
	Secondary Reference Fields

	Database File DDS Example
	Sample Physical File DDS
	Sample Logical File DDS

	Display File DDS Example
	Printer File DDS Example
	CL Program Source Example
	RPG III Program Source Example
	COBOL ‘85 Program Example
	Command Source Example
	Command Diagram Example
	YEDTLIBLST (Edit Library List)
	General Rules for Preparing Command Diagrams
	Parameter Descriptions

	UIM Help Text Example
	Command Help (‘wlllcmH’)
	Panel Help (‘wlllpnh’)
	Search Index (‘wschidx’)
	Hypertext Definitions (‘wlllenh’)

	D: Printer Form Sizes
	Printer Form Standard Options

	Index

