
CA 2E

Defining a Data Model
r8.5

This documentation and any related computer software help programs (hereinafter referred to as the
“Documentation”) is for the end user’s informational purposes only and is subject to change or withdrawal by CA at
any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in
part, without the prior written consent of CA. This Documentation is confidential and proprietary information of CA
and protected by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of the documentation for
their own internal use, and may make one copy of the related software as reasonably required for back-up and
disaster recovery purposes, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the provisions of the license for
the product are permitted to have access to such copies.

The right to print copies of the documentation and to make a copy of the related software is limited to the period
during which the applicable license for the Product remains in full force and effect. Should the license terminate for
any reason, it shall be the user’s responsibility to certify in writing to CA that all copies and partial copies of the
Documentation have been returned to CA or destroyed.

EXCEPT AS OTHERWISE STATED IN THE APPLICABLE LICENSE AGREEMENT, TO THE EXTENT PERMITTED BY
APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING
WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY LOSS
OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT
LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY
ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in the Documentation is governed by the end user’s applicable license
agreement.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the
restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-
7014(b)(3), as applicable, or their successors.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Copyright © 2009 CA. All rights reserved.

Contact CA
Contact Technical Support

For your convenience, CA provides one site where you can access the
information you need for your Home Office, Small Business, and Enterprise CA
products. At http://ca.com/support, you can access the following:

 Online and telephone contact information for technical assistance and
customer services

 Information about user communities and forums

 Product and documentation downloads

 CA Support policies and guidelines

 Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about CA product documentation, you can
send a message to techpubs@ca.com.

If you would like to provide feedback about CA product documentation,
complete our short customer survey, which is also available on the CA support
website, found at http://ca.com/support.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.casurveys.com/wsb.dll/166/TIPO_2008_Survey.htm
http://www.ca.com/support
http://www.ca.com/support

Contents

Chapter 1: Introducing Data Modeling

Understanding Data Modeling ... 1-1
What is a Data Model? .. 1-1

The Life Cycle of Application Development .. 1-1
Advantages of a Data-Driven Approach .. 1-2
The CA 2E Approach to Data Modeling ... 1-3
Example of a CA 2E Data Model ... 1-4

Chapter 2: Developing a Conceptual Model
Before You Begin ... 2-1
Overview .. 2-1
Goals of Your Conceptual Model ... 2-2
Identifying Entities and Attributes ... 2-2

Step 1: Identifying Primary Entities .. 2-2
Generalization and Differentiation of Entities .. 2-4
Step 2: Identifying Entity Attributes .. 2-5

Domains ... 2-7
Identifying Relations .. 2-7

Data Relationship Connections ... 2-8
Step 1: Identifying Relations Between Entities .. 2-9
Step 2: Selecting Primary Key (Unique Identifier) for an Entity 2-11
Implementing Entity To Entity Relationships ... 2-12
One-to-One Relationship ... 2-12
One-to-Many Relationship .. 2-13
Many-to-Many Relationship ... 2-13

Normalizing Your Data Model ... 2-14
Functional Dependence ... 2-15
Full Functional Dependence ... 2-15
Step 1: Creating First Normal Form (1NF) .. 2-17
Step 2: Creating Second Normal Form (2NF) .. 2-18
Step 3: Creating Third Normal Form (3NF) .. 2-19
CA 2E Basic Relations .. 2-20
File-to-field Relationships ... 2-20
File-to-file Relationships .. 2-20
Considerations ... 2-21

Contents v

Performance .. 2-21
Existing Database ... 2-21
Using Design Tools .. 2-22

Chapter 3: Understanding Your Data Model
CA 2E Data Model .. 3-1

CA 2E Data Model Objects .. 3-1
From Your Conceptual Model to a CA 2E Data Model .. 3-2

Edit Database Relations Panel ... 3-2
Using Files ... 3-3

CA 2E Files ... 3-3
Properties of CA 2E Files .. 3-3
Default Functions for REF and CPT Files .. 3-5
CA 2E File versus i OS File .. 3-6

Using Fields.. 3-7
CA 2E Fields ... 3-7
Properties of CA 2E Fields ... 3-7
Overriding CA 2E Default Field Attributes .. 3-9
Field Usages ... 3-9
Defining a Field as a Data Area ... 3-11
Shipped CA 2E Field Types ... 3-11
Displaying Existing Field Types ... 3-11
Field Type Default Characteristics .. 3-13
Using Field Edit Codes ... 3-19
Description and Usage of Field Types ... 3-20
ISO Date ... 3-24
Ideographic Character Text .. 3-30
Defining Function Fields as REF Fields ... 3-37
Using Function Fields .. 3-47

Using Conditions .. 3-51
Properties of Conditions .. 3-51
Condition Types ... 3-51
Status Field Conditions .. 3-52
Non-Status Field Conditions .. 3-55

Using Relations ... 3-56
CA 2E Relations ... 3-56
Relation Types .. 3-57
Relation Usage Groups ... 3-57
CA 2E Relations ... 3-57
Specifying Relations ... 3-60
File-to-file Relationships ... 3-61

vi Defining a Data Model

File-to-field Relationships ... 3-61
Describing and Using CA 2E Relations ... 3-61
Owned by Relation ... 3-63
Known by Relation ... 3-65
Examples of Using Known by Relation ... 3-65
Qualified by Relation ... 3-66
Examples of Using Qualified by Relations .. 3-67
Extended by Relation .. 3-68
Example of Using Extended by Relations .. 3-69
Refers to Relation .. 3-70
Example of Using Refers to Relations .. 3-70
Has Relation ... 3-71
Example of Using Has Relations ... 3-71
Includes Relation .. 3-72
Examples of Using Includes Relations ... 3-72
Relation Sequencing ... 3-73
Using For Text and Sharing with Relations ... 3-73
For Text ... 3-74
Examples of Using For Text ... 3-75
Sharing ... 3-76
Example of Sharing .. 3-77
Use of For Text for a Parts Assembly .. 3-77
Adding Virtual Fields to File-to-file Relations ... 3-80
Circularity ... 3-82

Chapter 4: Creating/Defining Your Data Model
Before You Begin ... 4-1
Using CA 2E Model Management Facilities .. 4-1

Edit Database Relations Panel ... 4-2
Edit Model Object List Panel ... 4-3

Defining Your Data Model ... 4-4
Step 1: Defining Files ... 4-5
Object/Referenced Object File ... 4-5
File Name .. 4-5
File Type ... 4-5
Capture Files ... 4-6
Reference Files ... 4-6
Structure Files .. 4-6
Adding Files .. 4-7
Step 2: Defining Fields .. 4-8
Field Name ... 4-8

Contents vii

Field Types .. 4-9
Reference Field ... 4-9
Field Types for Referenced Objects .. 4-9
Specifying Field Types ... 4-10
Step 3: Entering Relations ... 4-12
Relation Sequencing ... 4-12
CA 2E Relation Types Charts ... 4-14
Levels of Entry .. 4-16
Entry Types ... 4-16
Key Field Entries .. 4-17
Attribute Field Entries ... 4-17
Virtual Field Entries .. 4-17
Overriding Entries ... 4-17
Replacing Entries .. 4-18
Sharing Entries .. 4-18
Redirection ... 4-19
Redirecting Entries .. 4-19
Redirection of Qualifier Fields .. 4-20
Example of Redirecting Qualifier Fields .. 4-20
Example of Redirecting a Reference to a Qualified File 4-21
Procedures for Working with Entries .. 4-22
Display File Entries .. 4-22
The Edit File Entries Panel ... 4-23
Replace File Entries .. 4-23
Display Referenced Field Details Panel .. 4-24
Display/Redirect Relation Entries ... 4-24
Display Relation Entries Panel .. 4-25
Edit Redirected Fields Panel .. 4-26
Modifying For Text and Sharing Entries ... 4-26

Chapter 5: Maintaining Your Data Model
Displaying File Entries .. 5-1

Edit File Entries Panel ... 5-1
Display File Entries ... 5-1

Adding/Modifying Field Information .. 5-2
Using the Edit Field Details Panel .. 5-3
Change Field Name and/or Type ... 5-5
Change Field Length .. 5-5
Add Narrative Text ... 5-5
Change Field Text and Headings ... 5-6
Change Valid System Name (VNM) .. 5-6

viii Defining a Data Model

Adding/Modifying Conditions .. 5-6
Condition Types .. 5-6
Using the Edit Field Conditions Panel ... 5-7
Add New Conditions ... 5-8
To Modify Existing Conditions: ... 5-9
Using VAL and LST Conditions .. 5-10
Validating Field Entries Using Check Condition ... 5-10
Changing Default Conditions .. 5-11
Changing Translate Condition Values .. 5-11
Converting Conditions to List of Values .. 5-12

Adding/Modifying Virtual Fields ... 5-13
Virtual Fields and Access Paths ... 5-13
Example of Using Virtual Fields ... 5-14
Virtualizing Virtual Fields ... 5-15

Related Procedures for Maintaining Your Model .. 5-16
Files .. 5-16
Add Narrative Text ... 5-16
Change a File Name .. 5-16
Delete a File ... 5-16
Fields ... 5-18
Delete a Field .. 5-18
Conditions ... 5-18
Delete a Condition ... 5-18
Relations .. 5-19
Add Narrative Text ... 5-19
Change a Relation ... 5-19
Override Default Relations Sequence .. 5-19
Delete a Relation .. 5-19

Creating User-Defined Field Types .. 5-20
Name and Text .. 5-21
Basic Attributes .. 5-21
Internal and External Length ... 5-21
Mapping Functions ... 5-22
Defining New Field Types ... 5-22
Edit Field Type Panel ... 5-24
Specifying Basic Attribute Values ... 5-24
Specifying Mapping Functions ... 5-27
Specifying Additional Attribute Values ... 5-28
Example: Defining a Century date Field Type (DTX) .. 5-30
Defining Parameters for the Mapping Functions .. 5-30
Defining the Mapping Functions ... 5-31
Supplying Parameters to Mapping Functions ... 5-31
Field Mapping Function Parameters Panel .. 5-33

Contents ix

x Defining a Data Model

Specifying Additional Parameters for Mapping Functions 5-34
Mapping Function Parameters: Panel/Report Entry Level 5-34
Screen Field Mapping Parameters Panel ... 5-34
Example: Defining a Currency Field Type (CUR) ... 5-35
Example: Defining a Real Percentage Field (PCX) .. 5-49
Ext/Int mapping function parameters: .. 5-53
Int/Ext mapping function parameters: .. 5-54

Chapter 6: Documenting Your Data Model
Related Information .. 6-1
Documenting Files, Fields, Relations, and Application Areas 6-1
CA 2E Documentation Commands ... 6-2

Using Documentation Commands via Display Services Menu 6-2
Using Documentation Commands from a Command Line 6-3

Viewing the Documentation ... 6-3
Documentation Commands Output Listings .. 6-4

Chapter 7: Assimilation

Understanding Assimilation ... 7-1
Degrees of Assimilation ... 7-1

Using the YRTVPFMDL Command .. 7-2
Parameters/Functions .. 7-2

Adding Extra Information to Assimilated Files .. 7-3
Editing i OS Physical File Format Entries ... 7-3
Considerations ... 7-4
Changing Field Name and Attribute Type .. 7-4

Prefix .. 7-4
Duplicate Field Names .. 7-5

Inconsistent Implicit Data Model .. 7-5
Examples of Inconsistency .. 7-5

Date Formats .. 7-5
Using Extended by Relations in Assimilated Files ... 7-6

Example of Using Extended by Relations ... 7-6
Assimilation Procedure ... 7-6

Index

Chapter 1: Introducing Data Modeling

This chapter provides an overview of basic concepts of data modeling and how
CA 2E (formerly known as Advantage 2E) handles data modeling. Its purpose
is to help you understand data modeling and to prepare you for building and
maintaining a data model with CA 2E.

Understanding Data Modeling
Data modeling is a method of representing the real world. To CA 2E, data
modeling is particularly important because a data model is the basis of
everything that is designed within CA 2E.

What is a Data Model?

A data model is a structured description of a set of data and its relationships,
which represent the business of an organization. A data model bears the same
relation to the organization it models as a map does to the terrain it
represents.

A data model does not comprise in itself the true structure of an organization's
business, but rather an acceptably simplified view of it. This structure may be
subjected to certain stringent tests to verify that it can be considered an
efficient, self-contained system.

Your data model should be comprehensive and consistent in order to
accurately reflect the data and data interconnections of the organization your
application supports.

A properly defined and structured data model helps you design a correct
database, which is essential to the successful implementation of your
application system.

The Life Cycle of Application Development
The life cycle of application development covers the tasks required to start,
complete, and maintain an application. The tasks start with planning and
conclude with maintenance activities.

Chapter 1: Introducing Data Modeling 1–1

Advantages of a Data-Driven Approach

To help eliminate errors and misunderstandings, you need a structured
language to depict the requirements. It must be something that everyone
understands and can be interpreted in only one manner. You use data
modeling to create this structure.

Data modeling shows how things (entities) are related and interact with each
other. Data modeling techniques are very structured and defined so that an
idea can be represented in only a single way. This approach enables you to
eliminate ambiguities.

CA 2E uses data modeling to capture and describe application specifications.
These specifications reflect the user's requirements. Once these requirements
are represented by the data model and agreed to by the users, the other tasks
in the application life cycle will use this information to develop the application.
With correct information in the data model, many errors and changes will be
eliminated in the later stages of the life cycle. This makes for a more efficiently
developed application.

Advantages of a Data-Driven Approach
With a process-driven approach, you define your functions and programs first
and try to fit the data required into the processes. With a data-driven
approach, you begin with defining the data first. Each data element is defined
once and only once.

A data-driven approach eliminates data redundancy and sets the stage for
normalizing the database, making it easier to be accessed and maintained.

Defining a data model helps insulate the data structure from the process logic.
That is, when process logic or flow changes, the data structure or model does
not need to change. Since process logic is more susceptible to change than the
data model, the structure is easier to maintain. Using an Order Entry example:
if the Order information is defined by the order entry transaction, the database
is likely to change when the transaction changes. On the other hand, if the
order information is defined based on all the information that users think of
regarding an order, the data structures are likely to accommodate any set of
transactions.

Your data model restricts the number of allowable operations and suggests
processes that can operate on the data. Some database functions are common
to all entities regardless of their structure. For example, editing a Customer
entity is the same process as editing a Supplier entity although they have
different entity attributes. Inquiry and reporting processes are possible for all
entities.

1–2 Defining a Data Model

The CA 2E Approach to Data Modeling

This set of processes leads to process structures that can become building
blocks for larger, more complex processes. By reducing or eliminating
redundancy, processes are easier to manage and maintain.

The CA 2E Approach to Data Modeling
There are several different methodologies for creating and analyzing data
models. These methodologies differ considerably in the degree of rigor and
formality of their approaches, and in the terminology used.

CA 2E takes a data-driven approach to data modeling: it uses the entity-
relation (E-R) modeling method. An E-R model lists the significant business
objects of an organization and the relationships between these objects.

The objects are called entities. Each entity has its own properties, called
attributes, that distinguish it from another entity. For example, a company,
person, or product is an entity; a company ID, a person's name, or a product
code is an attribute.

The company entity can be described and uniquely identified by its attribute;
for example, company ID. Other examples of unique identification might be a
person by the person's name, or a product by a product code.

In CA 2E, an entity means a file, and an attribute means a field on the file. The
associations between files or between a field and its file are called
relationships.

CA 2E uses the basic English verbs, Known by, Has, Refers to, and Owned by,
to represent these types of relationships. Relationships drive the CA 2E design
process. CA 2E is able to create the database for an application system
entirely and automatically from the types of relationships it recognizes in a
data model.

In addition, CA 2E uses what it knows about relationships and integrity rules
stored in a data model to automatically generate default programs to
implement an application.

For more information about entities, attributes, and relationships, see the
chapter “Developing a Conceptual Model.”

For more information about types of CA 2E relations and their use, see
Chapter 3, “Understanding Your Data Model.”

The following example illustrates a CA 2E data model for a simple Order Entry
application. The model identifies the entities, and their relationships, and the
types of the relationships using four basic relations.

Chapter 1: Introducing Data Modeling 1–3

Example of a CA 2E Data Model

1–4 Defining a Data Model

To describe data models, CA 2E uses a simple data modeling language
consisting of statements of the form:

<Subject Verb Object>

Example: A Customer has a Customer name

Example of a CA 2E Data Model
Following is an example of a data model used by CA 2E:

A Customer is Known by a Customer code

A Customer Has a Customer name

A Customer Has an Address

A Customer Has a Credit limit

A Product is Known by a Product number

A Product Has a Product price

An Order is Known by an Order number

An Order Refers to a Customer

An Order Has an Order status

An Order Has an Order date

An Order detail is Owned by an Order

An Order detail is Known by a Line number

An Order detail Refers to a Product

An Order detail Has an Order quantity

Chapter 2: Developing a Conceptual
Model

This chapter provides direction for developing a conceptual data model
based on the analysis of business information and requirements of
your application project.

Before You Begin
You should be familiar with entity relationship diagramming
conventions in order to present the relationships with an ERD.

Overview
You use the conceptual data model to identify and record the specific
data elements needed to store and retrieve information. The data and
data connections described by your model will be used to create files
in the database serving your application system. Your conceptual
model will be used to create a model later in CA 2E.

You can build a conceptual data model with pencil and paper. You can
also use a variety of design tools to develop your data model and bring
it into CA 2E. If you use design tools, see Considerations topic in this
chapter.

In this chapter, you will

 Identify the entities, attributes, and relations to represent the business
information you want to describe in your data model.

 Normalize your model to prepare for entering it into CA 2E.

When you have successfully completed these tasks, you are ready to
use CA 2E to create a data model or to maintain an existing one.

See the chapters “Understanding Your Data Model” and
“Creating/Defining Your Data Model” for more information.

See the chapter “Introducing Data Modeling” for more information
about basic concepts on data modeling and examples of a CA 2E data
model.

Chapter 2: Developing a Conceptual Model 2–1

Goals of Your Conceptual Model

Goals of Your Conceptual Model
Your conceptual data model should be built so that it can be effectively
used to produce a CA 2E data model. This model will then be
generated as a database for your application.

Your conceptual data model should be:

 Comprehensive

Every item of information that is relevant to the organization should be
recorded. Every item of information should appear once and only once.

 Consistent

There should be no mutually incompatible representations of information,
inconsistencies, or conflicting rules about what can be done with the data.

Identifying Entities and Attributes
This is the first task you perform to begin building a conceptual data
model. The purpose of this task is to produce a list of primary entities
and the attributes for those entities.

This task consists of two steps:

 Step 1 shows you how to identify the primary entities for your model. This
step also discusses generalization and differentiation of the entities.

 Step 2 shows you how to identify the attributes for your primary entities.

Although you can identify the entities, attributes, and their
relationships at the same time, it may be easier to follow the steps and
examples in the order they are listed.

To guide you through and give you a complete picture of the process,
a sample of an Order Entry application and examples will be used for
this task.

The same examples will be used again in the next task, Identifying Relations.

Step 1: Identifying Primary Entities

The first task in building your conceptual data model is to review the
data items from your analysis of business information. Determine
which are the most pertinent items and group them into primary
entities.

2–2 Defining a Data Model

Identifying Entities and Attributes

To determine primary entities, select the objects that are important to
your business. The end users of your application can be a good source
to help you identify primary entities. They know what the entities are
for their particular business because they physically handle them
everyday.

Customers place orders for products on order entry forms. The
company sells products. Your application needs data to process an
order entry form to meet the business requirements. The following
example shows a typical Order Entry form.

ABC Company Customer Copy
Customer Code:
 Phone:
Name
Address Order Number
 Date

Product Code Description Qty Price Total
___________ ___________ ___ _____ ______
___________ ___________ ___ _____ ______
___________ ___________ ___ _____ ______
___________ ___________ ___ _____ ______

For this Order Entry application, you would consider the following
primary entities. They are represented as independent boxes:

 Customer Company

 Order Product

The entities you have just selected (Customer, Company, Order, and
Product) represent information that is pertinent to this kind of
business.

However, you realize there will be situations when some products
being ordered may be out of stock. Those particular products must be
put on purchase orders, which will be placed with specific vendors or
suppliers who supply them to the company. Each vendor or supplier
supplies a particular type of product, and you want to be able to
distinguish between products.

You now want to add more entities to represent your requirements:

 Customer Company

 Order Product

Chapter 2: Developing a Conceptual Model 2–3

Identifying Entities and Attributes

 Vendor Purchase
 Order

 Supplier Supply
 Request

Note: Entities should be given precise and concrete names. For
example, use Customer instead of Person, or Country instead of Place.
Use singular instead of plural form, such as Customer, not Customers.

You have identified and listed some entities you think are important to
represent and describe the information needed for your business
application. At this point, the list of entities you produced is the first
version of your data model.

Your entities should be constantly re-evaluated, reorganized, and
redefined to ensure that they are really what you meant them to be,
and that they can be used as you intended.

Generalization and Differentiation of Entities

You can refine the information, represented as entities, in your data
model as often as needed to meet your data requirements while
designing the database for your application. This topic explains how
you use the two opposite processes called “generalization” and
“differentiation” to refine your identified primary entities.

Generalization and differentiation involve deleting or adding entities to your
model. At this early design phase, these processes affect the number of files
that will have to be created for your application. Generalization and
differentiation mean naming and renaming the entities and attributes, and
assigning and reassigning different attributes to different entities.

With generalization, you combine two entities representing different
types of the same thing into one entity. With differentiation, you divide
one entity into two separate ones because you decide the entity is
actually representing two different things, and should be divided.

Going back to the Order Entry example discussed earlier, you may
want to review the Purchase Order and Supply Request entities. Do
you really need both Purchase Order and Supply Request? Are they
both representing the same thing: a customer's request for a product
not in stock, which the company will have to purchase from a specific
vendor or supplier? If you decide they are, then they can be
generalized and combined into one entity:

2–4 Defining a Data Model

Identifying Entities and Attributes

 Purchase Order

 = Purchase Order

 Supply Request

The Vendor and Supplier can also be generalized and combined into
one entity, Vendor, in the same way. To discuss differentiation, use
the Order Entry example again and look at the Vendor entity.

Does Vendor represent all of the information about a vendor, or are
there special vendors with special information? In this case, a vendor
from a foreign country requires special import and duty information
that a native vendor does not require. Because of this special
information, you need to add a new entity:

 Vendor

 Vendor =

 Foreign Vendor

Step 2: Identifying Entity Attributes

Attributes supply informational detail to the entity. An entity can have
one or several attributes. Each instance of an entity must contain
values for all the attributes to define it. For possible values an attribute
can take, see the topic, Domains, at the end of this step.

Each attribute represents one characteristic of the entity.

Beginning with the Customer entity, you would consider the following its
potential “attributes”:

CUSTOMER

Customer Code

Customer Name

Customer Address

Customer Credit Limit

Customer Account Balance

Chapter 2: Developing a Conceptual Model 2–5

Identifying Entities and Attributes

For the Product entity, the attributes would be:

PRODUCT

Product code

Product Name

Product Type

Product Description

After identifying all the attributes for the primary entities of your Order
Entry application, you have a list that looks like this:

Entity Attributes

Customer Customer Code

Customer Name

Customer Address

Customer Credit Limit

Customer Account Balance

Product Product Code

Product Name

Product Type

Product Description

Order Order Code

Order Quantity

Order Line

Vendor ID

Customer Code

Product Code

Vendor Vendor ID

Vendor Name

Vendor Address

Foreign Vendor Foreign Vendor ID

Foreign Vendor Name

Foreign Vendor Address

Foreign Vendor Country

Foreign Vendor Duty Percentage

Purchase Order Purchase Order Code

2–6 Defining a Data Model

Domains

Chapter 2: Developing a Conceptual Model 2–7

Entity Attributes

Purchase Order Quantity

Purchase Order Line

Domains
The set of possible values an attribute can take is the domain of the
attribute. When modifying your data and describing attributes, it is
important to think of their domains. Each instance of an entity must
contain values for all attributes that define the entity.

If an entity contains the attribute City, each instance of the attribute
must draw its value from the domain of City. It cannot draw its value
from any other domain.

Two attributes may have common characteristics (the same length,
data type, and valid values) but not share the same domain. The
attributes Customer Number and Order Quantity both may be 6-digit
numeric fields. However, they draw their values from different
domains, a Customer Number domain and an Order Quantity domain.

Other attributes may have common characteristics and share the same
domain. For example, Order Quantity and Shipped Quantity are both
6-digit numeric fields. They share the same domain and draw from the
same set of possible values.

In relational modeling, you can compare attributes that share the
same domain. You cannot compare attributes that do not share a
domain.

Identifying Relations
When you finish identifying the entities and attributes of your
conceptual data model, you are ready to identify the relations. The
purpose of this task is to produce an Entity-Relationship diagram
(ERD) of your data model, showing the types of relationships that link
the entities. The diagram eventually will be translated into a data
model in CA 2E.

The following examples show how you can identify and represent
relations in a data model. You can use any diagramming methodology.

This task consists of these steps:

Identifying Relations

 Step 1 explains how to identify relationships between entities or between
an entity and an attribute.

 Step 2 describes how to select a primary key for an entity.

Data Relationship Connections

In your data model, a relationship establishes a connection between
one entity and another or between an entity and an attribute. In the
database, a relationship links a file to a file, or a file to a field (of the
file).

You can identify and categorize relationship types by studying the
connection to see whether it falls into the following categories, asking
yourself questions such as:

Optional—Is the connection mandatory or optional?

 Does an order require a customer?

 Does a product require a description?

 Does a product require a price?

Cardinality—Is the connection a one-to-one, one-to-many, or many-to-
many?

 How many customers can be on a single order?

 How many orders can a customer place?

 How many prices are there for a product?

 How many addresses can a customer have?

Involution—Does the connection exist between two different entities or from
the same entity to itself?

 Are components a product, or are they themselves products in their
own right?

 Is a manager an employee or is there a separate entity of just
managers?

 If Manager is an employee, then the relation “Employee Works for
Manager” connects to the same entity. This is called involution.

By answering those questions and using an ERD, you will be able to
determine the relation types of your data.

All relationships in CA 2E data model descriptions are mandatory. You
can make relationships optional at the process level.

2–8 Defining a Data Model

Identifying Relations

Chapter 2: Developing a Conceptual Model 2–9

Step 1: Identifying Relations Between Entities

This step details relation cardinality, which is the number of entity
instances for a relationship. This topic contains examples that illustrate
different types of data relationships.

Use these examples as guidelines to identify your entity-to-entity
connections and draw an ERD for your data model. Let us examine two
separate entities in your model, Customer and Order, and find out
what the significant connection between them is.

You can tell that a relationship exists between these two entities
because the customer places the order and the order is placed by the
customer, as illustrated in the following example of a common ERD.

 p lac es
p lac ed by

Order Customer

 assigned to

This relationship is viewed from both perspectives: from a customer
and from the order. Viewing a relationship from more than one
perspective is important because this gives you more information
about the nature of the relationship.

With CA 2E relations, the implementation of the data model is one-
way, except for the Extended by relation.

Examples of Relationships

The following examples show one-to-one, one-to-many, and many-to-
many relationships.

 One-to-One

 In a one-to-one relationship, each instance of one entity is related to one,
and only one, instance of another entity.

 For example, to facilitate quick service, each salesperson in the company
is assigned to one territory. Customers in a territory are serviced by the
salesperson assigned to that territory.

 The relationship between the two entities Salesperson and Territory is a
one-to-one relationship because each salesperson is assigned to one
territory and each territory has one, and only one, salesperson assigned to
it.

 The following ERD shows this one-to-one relationship.

Sa lesperson
has

Territory

Identifying Relations

2–10 Defining a Data Model

 The following instance diagram shows a one-to-one relationship.

 Sa lesperson Territory

 One-To-Many

 In a one-to-many relationship, one instance of an entity is connected with
several different instances of another entity.

 For example, a customer places more than one order with the company;
an order is placed by a customer. The relationship between the Customer
entity and Order entity is a one-to-many relationship because a customer
can place more than one order with the company; however, an order can
be associated with one, and only one, customer.

 The following ERD shows a one-to-many relationship.

 Customer p lac es

p lac ed by
Order

 The following instance diagram shows a one-to-many relationship.

 Customer Order

 Many-To-Many

 In a many-to-many relationship, an instance of one entity is related to
more than one instance of the other entity at a time and vice versa.

 For example, the relationship between the Order entity and Product entity
is a many-to-many relationship because:

n An order can be placed for more than one product at a time.

n More than one product can appear on a single order.

n A product can appear on more than one order at a time.

 The following ERD shows a many-to-many relationship.

 Order
orders

ordered
Prod uc t

 The following instance diagram shows a many-to-many relationship.

 Order Prod uc t

Identifying Relations

Step 2: Selecting Primary Key (Unique Identifier) for an Entity

This step provides information for selecting primary keys for an entity.

 Primary Key or Unique Identifier—An attribute or group of attributes
assigned to an entity to uniquely define an instance of the entity.

 Foreign Key—An attribute or group of attributes of an entity that
connects this instance with an instance of another entity. In this way it
defines the relationship between two entities. It consists of attributes
defining the primary key of the related entity.

A primary key can either be a single attribute, a relationship, or a
combination of attributes and relationships. Each entity must have a
single primary key. The entity can have several alternate keys.

For example, the Customer entity in your Order Entry model may have
several instances representing different customers (Customer A,
Customer B, Customer C). An instance is equivalent to a record among
other customer records in your Customer database file. The primary
key uniquely identifies each record.

You select Customer Code as the primary key for Customer entity:

ENTITY CUSTOMER

Attributes K Customer code
 Customer name
 Customer address
 Customer credit limit
 Customer account balance

Although you could have chosen Customer Name as a key instead, a
code is a better choice to ensure uniqueness. It also allows the
customer's name to change without having to create a new customer
record.

Note: Avoid using keys whose values can change.

A primary key can also be used to implement the relationship between
entities by forming a link between the entities.

For example, in the case of Customer and Order entities, the link is
Customer Places Order. The relationship between the two entities
Customer and Order is recognized by the presence of the Customer
Code in the list of attributes of the Order entity.

Example:

Chapter 2: Developing a Conceptual Model 2–11

Identifying Relations

2–12 Defining a Data Model

CUSTOMER ORDER

K Customer code K Order Code

Customer name Customer code
Customer address Order quantity
Customer credit limit Order line
Customer account balance Vendor ID
 Product Code

Customer Code is the primary key of the Customer entity; it does not
play a role in identifying orders. However, Customer Code is needed in
the Order entity to identify which customer placed the order.

In this case, the Customer Code is used to represent the relationship
between Order and Customer. It becomes a foreign key in the Order
entity file. The relationship means a single customer belongs to this
order.

Implementing Entity To Entity Relationships

You implement entity relationships by using foreign keys.

 The primary key of one entity, when used in another entity, provides the
link between the two entities.

To implement a one-to-one relationship:

 Make the primary key of one entity the primary key of the other entity.

One-to-One Relationship

Example:

 Person
purc hases form

sells to
Stoc kholder

 Person
K Person ID
 Person name
 Person address

 Stockholder
K Person ID
 Number of Shares

To implement a one-to-many relationship:

 Use the primary key of entity A as a foreign key in entity B.

Identifying Relations

Chapter 2: Developing a Conceptual Model 2–13

One-to-Many Relationship

Example 1:

 Company
has

pa rt of
Division

 Company

K Company code
 Company name
 Company president

 Division
K Company code
K Division code
 Division name
 Division president

Example 2:

 Customer
p lac es

p lac ed by
Order

 Company

K Customer code
 Customer name
 Customer type
 Customer credit limit
 Customer account balance

 Order

K Order code
 Customer code
 Order quantity
 Order line
 Vendor ID
 Product code

To implement a many-to-many relationship between A and B:

 Create new entity C to contain the primary keys of A and B.

 Remove the relationship between A and B.

 Add a one-to-many relationship from A to C and B to C, where the primary
keys of A and B compose the primary key for C.

Many-to-Many Relationship

Example:

Normalizing Your Data Model

2–14 Defining a Data Model

 Projec t
worked on b y

works on
Emp loyee

Change to:

 Projec t
worked on by

works on
Emp loyeeProjec t Team

Project Employee

K Project code K Employee code
 Project name Employee name
 Product release Employee hire date

 Project Team

 K Project code
 K Employee code

See the chapter “Understanding Your Data Model” for more
information about CA 2E relations.

Normalizing Your Data Model
Normalization is the process of removing data redundancy and
duplication from the entities and attributes of a model.

This process involves:

 Regrouping attributes

 Splitting entities

 Reassigning primary keys

Before starting the process you need to understand data relationships
and familiarize yourself with definitions of terms on key dependencies.

In order to understand the relationships among data items, you must
determine which attributes of an entity are dependent on the entity's
other attributes. Each entity must have a unique key by which it can
be uniquely identified. The key can be a single attribute or group of
attributes. A key must have two properties:

 In each instance of an entity, the value of the key must uniquely identify
that instance.

 If the key is composed of more than one attribute, each of the attributes
must be essential to the unique identification of the entity.

Normalizing Your Data Model

Functional Dependence

Functional dependence describes the relation between the key and
non-key attributes of an entity. An attribute of an entity is functionally
dependent on a key of that same entity if, for each value of the key,
there is one and only one value of the non-key attribute.

The non-key attributes are functionally dependent on Supplier Number
because there is only one precise corresponding value for Name, City
and Postal Code for a particular value of Supplier Number.

Full Functional Dependence

Full functional dependence further qualifies the relationship when the
entity key is composite; that is, composed of multiple attributes. Full
functional dependence occurs when non-key attributes are dependent
on all the key attributes, not just some of them.

The following is an example of functional dependence:

Supplier

K Supplier number
 Supplier name
 Supplier city
 Supplier postal code

Full functional dependence further qualifies this relationship. For
example, this term states that the attribute(s) N of entity T is fully
functionally dependent on the attribute(s) K of entity T, if N is
functionally dependent on every attribute of K but not on any subset of
K. This means that if an entity is uniquely identified by more than one
attribute (a composite key), each of its non-key attributes must be
functionally dependent on the entire key. If an attribute is dependent
on a subset of the key, then such dependency indicates that the
attribute belongs in an entity having that subset of the key as its
unique identifier.

In the following example, the non-key attributes are not fully
functionally dependent on a composite key:

Supplier

K Supplier number
K Supplier status
 Supplier name
 Supplier city
 Supplier postal code

Chapter 2: Developing a Conceptual Model 2–15

Normalizing Your Data Model

When the Supplier Status is introduced as part of the primary key, the
other non-key attributes are not fully functionally dependent on the
key. The non-key attributes can be functionally dependent on just the
Supplier Number. For example, the Supplier Name is the same
regardless of the Supplier Status value. The non-key attributes are
functionally dependent on the primary key but they are not fully
functionally dependent on the whole key.

If the non-key attributes are functionally dependent but not fully
functionally dependent, the primary key must be a composite.

A composite key can have fully functionally dependent attributes. For example,
you might want a composite key of Date and Time, where both are necessary
and required. All of the attributes will be fully functionally dependent on the
composite key:

Transaction

K Transaction date
K Transaction time
 Transaction quantity
 Transaction type
 Transaction product

Normalization is the last task you perform to finalize your conceptual
data model before entering it into CA 2E. Now that you have
completed an ERD for your data model, you can begin this task.

The purpose of this task is to help you refine your entities and
attributes to arrive at a third normal form by applying the three
normalization rules: first normal form (1NF), second normal form
(2NF), and third normal form (3NF).

During normalization, an unnormalized entity can be analyzed,
reorganized, and progressively transformed into new entities. The
process is reversible, therefore no information will be lost during
transformation.

This task consists of the following steps:

 Step 1 covers creating first normal form (1NF).

 Step 2 covers creating second normal form (2NF).

 Step 3 covers creating third normal form (3NF).

2–16 Defining a Data Model

Normalizing Your Data Model

Step 1: Creating First Normal Form (1NF)

First normal form (1NF) is the process of eliminating repeating data
groups. This is done by representing data in the form of more than one
entity. The remaining part of the normalization process analyzes
entities and attributes in terms of functional dependence.

The rule states that for a primary key, there will be only one value for
each non-key attribute.

Use the Order entity as an example. This is the Order entity before
normalization:

Order

K Order number
K Customer code
 Customer name
 Customer phone number
 Customer address
 Customer postal code
 Order date
 Product code }
 Product description } These attributes
 Product size } can have up to
 Product quantity } 4 sets of values.
 Product price }

Order detail total }
 Order total

Review the Order entity against the Order Entry Form, described under
Step 1: Identifying Primary Entities.

This entity contains a repeating group of attributes: Product Code,
Product Description, Product Size, Product Quantity, Product Price, and
Order Detail Total.

Remove this repeating group of attributes.

Your Order entity now contains only these attributes:

Order

K Order number
K Customer code
 Customer name
 Customer phone number
 Customer address
 Customer postal code
 Order date

Create a new entity and place the group of attributes you removed
from the Order entity into this new entity:

Chapter 2: Developing a Conceptual Model 2–17

Normalizing Your Data Model

Order Detail

K Order number
K Product code
 Product description
 Product size
 Product quantity
 Product price
 Order detail total

Step 2: Creating Second Normal Form (2NF)

An entity is in second normal form (2NF) if it is in first normal form
and every non-key attribute of this entity is fully functionally
dependent on its primary key.

The following entity is in 1NF but the non-key attributes are not fully
functionally dependent on the primary key.

Supplier’s Inventory

K Supplier number
K Part code
 Supplier name
 Supplier status
 Supplier status description
 Part Quantity

SNumber PNumber Name Status Sstatus Desc Part Qty

111

111

111

245

245

05

10

15

05

10

Computer
Store

Computer
Store

Computer
Store

Floppy Discount

Floppy Discount

105

105

105

100

100

Wholesale

Wholesale

Wholesale

Wholesale

Wholesale

100

210

534

498

021

You can see that the Supplier Name and Status are functionally
dependent on Supplier Number only and not the Part Number.
Therefore, the Supplier Name and Status are not fully functionally
dependent on the Supplier Number and Part Number. The entity is not
in 2NF.

The Supplier Status is functionally dependent on Supplier Number.
This dependency means that a value of Supplier Number requires a
specific value of Supplier Status. If the Supplier Number is 111, the
Supplier Status must be 105.

2–18 Defining a Data Model

Normalizing Your Data Model

Make the following changes to get the entity into 2NF:

Supplier

K Supplier number
 Supplier name
 Supplier status
 Supplier status description

 Supplier’s Inventory

K Supplier number
K Part number
 Part quantity

Both entities are now in at least 2NF. Supplier's Inventory is in 3NF.

Step 3: Creating Third Normal Form (3NF)

An entity is in third normal form (3NF) if it is in second normal form
(2NF) and each of its non-key attributes is not dependent on another
non-key attribute.

The Supplier entity is in 2NF and must be put into 3NF:

Supplier

K Supplier number
 Supplier name
 Supplier status
 Supplier status description

Supplier Status Description is functionally dependent on Supplier
Status. Third normal form requires that the entity Supplier be split into
two entities: Supplier and Supplier Status. You define the entity
Supplier as follows:

You then define Supplier Status, as follows:

Supplier Status

K Supplier status
 Supplier status description

You can now maintain Supplier Status information separately. A
change to a Supplier Status Description does not require an update to
the Supplier instance.

With third normal form, all attributes in an entity are fully functionally
dependent on only the entire key of the entity.

Chapter 2: Developing a Conceptual Model 2–19

Normalizing Your Data Model

CA 2E Basic Relations

CA 2E provides four basic relation types to describe data relationships:
Owned by, Refers to, Known by, and Has.

A relationship expresses an association between two files, or between
a file and a field. It constitutes the fundamental links in a CA 2E data
model. Such links enable you to explicitly assert the meaning of the
connections within your data. A file's list of relationships will be
automatically resolved into the fields needed to implement that file.

File-to-field Relationships

To describe a file-to-field relationship, you may use:

 Known by to declare a field to be present on a file as a key field.

 Known by to declare a field to be present on a file as a data field.

File-to-file Relationships

To describe a file-to-file relationship, you may use:

 Refers to specify an association between two mutually independent files. It
causes the key entries of the referenced file to be included as foreign key
entries on the referring file.

 For example, if Order Refers to Customer, then the keys of Customer are
included as foreign key entries in the Order file:

 Order Refers to Customer

K Order code K Customer code
 Order quantity Customer name
 Order line Customer address
 Vendor ID Customer credit limit
 Customer code Customer account balance
 Product code

In CA 2E, a Refers to relationship has a one-to-many cardinality.

 Owned by to cause the key entries of the owning file to be included among
the key entries of the owned file. It specifies that the high order keys of
the owned by file are the keys of the owning file.

2–20 Defining a Data Model

Normalizing Your Data Model

 For example, if Order is Owned by Company, then the key(s) of the
Company file appears as the major key(s) on the Order file:

 Order Owned by Company

K Company ID K Company ID
K Order code Company name
 Order quantity Company address
 Order line
 Vendor ID
 Product code

 In CA 2E, the Owned by relationship has a one-to-many cardinality: the
(Owned by) Order entity is the child of the parent (Company) entity.

Considerations

This topic covers some performance, assimilation, and design tool
considerations that may help you when developing a CA 2E data
model.

Performance

Since your data model's entities and attributes become files and fields
in the database, the way you design your model affects the number of
times your application system needs to access information to carry out
a business transaction.

A fully normalized database breaks the data down into more files than
a partially normalized one does. It, therefore, requires more
input/output activities to access several files during processing.

For performance reasons, you may consider violating 3NF. You may
define files that are frequently accessed as 2NF, such as files with
highly volatile records, inventory records, and work records. The 2NF
files contain a level of redundancy.

Existing Database

You can integrate your existing files or database into your CA 2E data
model through a process called assimilation. Existing files and field
names are maintained to ensure that both new and existing systems
can use the same files.

See the chapter “Assimilation” for more information on using existing i
OS files.

Chapter 2: Developing a Conceptual Model 2–21

Normalizing Your Data Model

2–22 Defining a Data Model

Using Design Tools

Instead of creating a conceptual data model with pencil and paper you
can also use a variety of design tools.

For example, CA Xtras Gateway (GWY) provides a bi-directional bridge
between SILVERRUN RDM and CA 2E data models that lets you import
and export design specifications. This includes full support for the
following CA 2E model objects: files, fields, relation, and narrative
text.

Chapter 3: Understanding Your Data
Model

This chapter introduces CA 2E files, fields, conditions, and relations, and how
these relate to your conceptual model. CA 2E files, fields, conditions, and
relations are the basic building blocks you will use to define and maintain your
data model.

The data model you define serves as a foundation for developing a correct
database for your entire application system. It describes the files, fields,
conditions, and their relations. The data model also includes the validation
rules and edit codes to be used by your application system.

CA 2E Data Model
A CA 2E data model is made up of a number of design elements, or CA 2E
model objects. These are building blocks that can be put together according to
certain rules to design your data model. For example:

 File—contains a list of relations that will be resolved into a list of file
entries. A file represents an entity in the model.

 Field—describes an item of data.

 Condition—describes the values or set of values (domains) that a field
may take.

 Relation—describes a connection between two files or between a file and
a field.

CA 2E Data Model Objects

CA 2E objects are not i OS objects. A CA 2E object exists only within a CA 2E
design model. CA 2E data model objects are classified into different types:
files, fields, conditions, and relations.

CA 2E objects are interrelated in a data model design as described below:

 A file can reference either another file or a field through a relation.

 Conditions are attached to fields to specify the values that a field may
take.

CA 2E objects are referred to by an object name. CA 2E object names must be
unique. Specifically:

Chapter 3: Understanding Your Data Model 3–1

Edit Database Relations Panel

 A file name must be unique within the entire model.

 A condition name must be unique within the based-on field.

 A field name must be unique within the design model.

CA 2E makes no distinction between upper and lowercase characters in an
object name. You can specify an object name in different ways and CA 2E will
treat them as being the same. For example:

 Order code

 ORDER CODE

 Order Code

 ORDer coDE

From Your Conceptual Model to a CA 2E Data Model

Your conceptual model contains the terms that have the following equivalents
in a CA 2E data model:

Conceptual Model CA 2E Data Model

Entity

Attribute

Relationship

Domain

File

Field

Relation

Field conditions;

Reference field types

Edit Database Relations Panel
You will use the Edit Database Relations panel, as shown below, to describe
your data model to CA 2E. See the chapter “Creating/Defining Your Data
Model” for more information about this panel.

3–2 Defining a Data Model

Using Files

The rest of this chapter describes CA 2E files, fields, conditions, and relations
in detail.

Using Files
This topic provides conceptual information about files and a full description of
the different file types, with examples of how they are used.

CA 2E Files

A CA 2E file represents an entity within a CA 2E model; for example, an Order
or a Customer. A CA 2E file is defined by CA 2E relations. CA 2E automatically
resolves the relations to determine which fields are to be present on a file. The
presence of a field on a file is called an entry.

Properties of CA 2E Files

Each CA 2E file has a name and a file type. It also contains other descriptive
details such as a documentation sequence and whether the file is retrieved
from an existing i OS file.

Chapter 3: Understanding Your Data Model 3–3

Using Files

In addition, each CA 2E file has two default messages associated with it.
Default messages are created for each type of CA 2E file. These messages
appear when you attempt either to access a record that cannot be found in the
file or to add a record to a file for a key value that already exists.

File Name

CA 2E file names must be valid CA 2E names and unique within the model. A
file name can contain up to 25 alphanumeric upper or lowercase characters
including embedded blanks.

File Type

A file type is determined by the intended use of the file. File types are listed in
the table below.

File Attribute Description Example

Database CPT

REF

Capture file

Reference file

Order entry file

Company file

Non-database STR Structure file Audit date and time
stamp

Capture (CPT) and reference (REF) files are database files; data structure files
are non-database files. Capture and reference files are resolved into i OS files
for implementation.

A structure file cannot stand by itself as an i OS file. It defines a structure of
fields that can be included in more than one file.

Reference (REF) Files

Reference (REF) files are master files that typically contain non-volatile
information.

Examples of REF files include:

 Customer

 Product

 Area code

 Location code

 Currency

3–4 Defining a Data Model

Using Files

Capture (CPT) Files

Capture (CPT) files typically contain transactional data that is recorded
regularly for use by your application.

The CPT file type is given to files that record high volumes of transactions and
require constant update. CPT files generally refer to reference entities for
supporting information.

Examples of CPT files include:

 Order

 Transaction

 Ledger Entry

Default Functions for REF and CPT Files

REF and CPT files have different default functions. CA 2E automatically defines
a number of standard functions for files that you create for each of these two
specific file types.

Chapter 3: Understanding Your Data Model 3–5

Using Files

Default Functions for REF Files

Function Associated Access Path

CRTOBJ - Create Object

DLTOBJ - Delete Object

CHGOBJ - Change Object

UPD

UPD

UPD

SELRCD - Select Record

EDTFIL - Edit File

RTV

RTV

Default Functions for CPT Files

Function Associated Access Path

CRTOBJ - Create Object

DLTOBJ - Delete Object

CHGOBJ - Change Object

UPD

UPD

UPD

STR Files

An STR file contains a group of fields. These fields can be incorporated into a
number of other files through the use of the Includes font relation. STR files
define data structures that are used in several places in your data model.
Because STR files are not database files, access paths cannot be specified for
them.

Example of an STR File: Audit Stamp

CA 2E File versus i OS File

A CA 2E file is similar to an i OS file in the sense that it is a list of fields. A CA
2E file is different from an i OS file because it has relations specified for it.
These relations specify referential integrity checks to be performed in the
functions that use the file. The i OS Database Manager does not perform
referential integrity checks between database files.

CA 2E creates the necessary source code to perform referential integrity
checking. This is validation of the relations between files. As an example, use
the entity Employee is Owned by the entity Company. When a Company Code
is associated with an Employee Code, CA 2E checks to ensure that the
Company Code exists in the Company file.

3–6 Defining a Data Model

Using Fields

CA 2E lets you specify whether or not these integrity checks should be
performed. This is done by specifying whether the relation is mandatory or
optional. If the relation is mandatory, the end user will have to enter a valid
value in the foreign key field. If the relation is optional, the end user has a
choice whether to enter a value; however, the value entered must be valid. CA
2E also lets you specify your own checking process if you desire.

See the chapter “Modifying Device Designs” in Building Applications for more
information on mandatory and optional checking.

Using Fields
This topic provides conceptual information, a full description of different field
types, and examples of how they are used within your model.

CA 2E Fields

A CA 2E field represents an attribute within a CA 2E model; for example,
Customer Code, Order Number, or Product Price.

Fields that are placed in a file from the resolution of CA 2E relations are called
entries.

See the chapter “Creating/Defining Your Data Model” for more information.

Properties of CA 2E Fields

A CA 2E field has a field name and field type.

Field Name

A field name must be unique within the data model. It can contain up to 25
alphabetic characters in upper or lowercase, and numeric characters, including
embedded blanks.

The field name is the title of the field and not the implementation name that
CA 2E assigns for each field.

Field Type

A field type indicates which specific types of values can be entered for a field.

Chapter 3: Understanding Your Data Model 3–7

Using Fields

CA 2E uses field types to:

 Determine default attribute values for the field such as length, validation,
edit code

 Prevent operations from working with mixed field types

 Impose integrity checking rules for data input validation

Default field types are defined in the CA 2E shipped file, *Field Attribute Types.
You can add your own field types. Following are the shipped default field
types.

 Alphanumeric Fields

– CDE (code)

– DT# (ISO date)

– IGC (ideographic text)

– NAR (narrative text)

– TM# (ISO time)

– TS# (ISO timestamp)

– TXT (descriptive text)

– VNM (system name)

 Numeric Fields

– NBR (number)

– VAL (value)

– QTY (quantity)

– PRC (price)

– PCT (percentage)

– DTE (date)

– TME (time)

– SGT (surrogate)

 Special Fields

– STS (status)

– REF (reference)

See the chapter “Maintaining Your Data Model” for more information on user-
defined field types.

3–8 Defining a Data Model

Using Fields

Field Attribute Values

CA 2E provides a number of default attribute values for fields based on the
field type given to that field:

 Basic attributes—Characteristics such as length and implementation
name. For example, by default, quantities (QTY) are numeric and seven
digits long.

 Text—Several different types of text can be associated with a field. The
text is used to document fields and title fields on device designs.

 Validation attributes—These attributes specify how data entered into the
field is to be validated. Validation can include attribute checking such as
upper/lowercase checking, Modulus checking, valid name checking, and
validation through a check condition.

Overriding CA 2E Default Field Attributes

Some of the default values of the field types may be overridden, both at the
field level and the device design level:

 Field values—Describe the attributes of each individual field in the data
model. They are used as the initial defaults when new fields are created.
You can change these values with the Edit Fields panel.

 Device field values—Describe the attributes of each individual instance
of the field on a device design. You can override some attribute values,
such as the field heading text and validation conditions, using the Edit
Device Field panel.

Field Usages

CA 2E fields may be categorized as database fields or function fields.

Database Fields

Database fields include:

 Key fields to identify files

 Attributes to represent non-key fields on a file

Chapter 3: Understanding Your Data Model 3–9

Using Fields

Database Field Usages

Type Description Example

CDE

ATR

Code (key)

Data attribute

Company code

Company name

Key database fields are given the usage type of CDE (code); attribute
database fields have the usage type of ATR (attribute). CA 2E automatically
supplies the usage type according to how the field is first used in a relation.
You can change the usage type using the Edit Field Details panel.

If the field has a usage of CDE and is being associated with a file that has an
attribute relation (Has), a warning message is issued that the usage is
different. This is also true if a field usage is defined as ATR, and the field is the
referenced object of a key relation (Known by, Qualified by).

Function Fields

A function field is only used in functions and does not reside in a database file.

You can add function fields directly to the field dictionary and then use them in
device designs and action diagrams.

Function fields have six different types of usages. A function field usage may
be one of the standard types or a user-defined function. Following are the
function field usage types:

 CNT (count)

 DRV (derived)

 MAX (maximum)

 MIN (minimum)

 SUM (sum)

 USR (user-defined)

The SUM, MIN, MAX, and CNT field usage types provide standard field level
functions. For example, SUM and CNT, for summing and counting; MIN and
MAX, for specifying a minimum or maximum numeric value.

The USR and DRV field usage types allow you to define your own function
field.

For more information, see Using Function Fields, later in this chapter.

3–10 Defining a Data Model

Using Fields

Defining a Field as a Data Area

Before entering your model, create a data area in the appropriate library by
using the IBM Create Data Area (CRTDTAARA) command. You can then add a
field defined as a data area to the *Standard header/footer file. On the Edit
Field Details panel, specify the Type as TXT and the Default Condition as
*DTAARA. Modify the four-character data area name in the DATAARA field to
match the name of your data area.

For the *Standard header/footer file, CA 2E automatically initializes the field
with the information from your data area. The data area must be in your
library list when you execute your application.

To use an existing data area within your CA 2E applications, define an
EXCUSRSRC function with an access path of *NONE. Define a BOTH parameter
using a USR work field. This USR field must have the same attributes and
length as the data area. In the EXCUSRSRC, add your own logic to access the
data area and place the contents of the data area into the parameter field.

Shipped CA 2E Field Types

The definitions for all CA 2E field types (shipped and user-defined) are
included in a shipped file called *Field Attribute Types. This file comes with the
shipped version of CA 2E, but each model has its own copy. You can access
this file from the Edit Database Relations panel. Changes made here apply to
the model, not to the product or other models.

Displaying Existing Field Types

To display the field types:

1. Zoom into the *Field Attribute Types file by placing a Z against one of the
file's relations on the Edit Database Relations panel. The Display Field
Types panel lists the field types.

2. Zoom into a specific field type by placing Z against the field type to view
the default values

3. Press F9 from the Display Field Types panel to add your own user-defined
field types.

See the chapter “Maintaining Your Data Model” for more information on
defining and adding your own field types.

Chapter 3: Understanding Your Data Model 3–11

Using Fields

The following table details the field types shipped with CA 2E.

Field
Type
Name

Description

Type

Internal
Length

Example

CDE

DT#

D8

DTE

IGC

NAR

NBR

PCT

PRC

QTY

REF

SGT

STS

TM#

TME

TS#

TXT

VAL

VNM

Code

ISO Date

8-digit Date

Date

Ideographic text

Narrative text

Number

Percentage

Price or tariff

Quantity

Reference

Surrogate

Status

ISO Time

Time

ISO Timestamp

Descriptive name

Monetary value

Valid system
name

A

A

P

P

A

A

P

P

P

P

–

P

A

A

P

A

A

P

A

6

10

8.0

7.0

20

30

5.0

5.2

7.2

5.0

–

7.0

1

10

6.0

26

25

11.2

10

Stock code

Order date

Order date

Date of birth

Kanji name

Comments

Number of employees

Profit margin

Unit price

Stock quantity

Field based on another

System key

Discontinued/Current

Time process starts

Transaction time

Transaction date/time

Product name

Stock value

File name

The following sections describe how to use the field types listed in this table.

3–12 Defining a Data Model

Using Fields

Field Type Default Characteristics

Each field type has its own default characteristics. For each individual type
listed in this topic, the default characteristics are specified. Following is an
example of default characteristics for a field of type DTE.

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxDT

Packed

6.0

7.0

N

–

N

N

N

N

Y

N

N

N

N

N

N

N

N

N

LHS text (Column headings)

RHS text

Field
name

Date

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

N

–

–

–

–

N

–

Y

–

Y

N

–

Y

–

Y

N

–

N

–

N

Check condition

Translate values

*NONE

–

N

–

Y

–

Y

–

Field exit option

Edit codes: Input

 Output

 Report

Blank

4

Y

Y

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

–

Implementation name

This field type is the suffix used to identify a field when generating
implementation names. CA 2E will generate default implementation names if
you have specified that you wish it to do so.

See the chapter “Using your Development Environment” in the Administration
Guide for more information.

The field implementation name must be unique within your data model. This
means that it can be used for only one field.

Chapter 3: Understanding Your Data Model 3–13

Using Fields

When the field name for each field is generated, the suffix specified here is
appended to the generated prefix for that field.

For a field of type DTE, the suffix is DT. If you specify a suffix of MY for a user-
defined field type, CA 2E generates an implementation name of AAMY.

System data type

This field type is the data type allowed for a field in the i OS file. It can be
alphanumeric or numeric.

System data type is the data type to be stored in a database file or displayed
on device files. It can have one of the following values:

A—Alphanumeric

P—Packed numeric

S—Signed numeric (Zoned)

B—Binary (not generated)

F—Floating

A and S are data types to be displayed on device files. These values default
according to the field type. For example, DTE is numeric, TXT is alphanumeric.
Values may only be changed for fields with numeric field types (DTE, NBR) or
for user-defined field types for which the programmer/designer is allowed to
change the data type.

External length

This field type is the length of the field displayed or printed on a report. This is
the number of characters or digits allowed for the field on display panels or
print files. Fields with decimal positions are entered as total number of digits,
number of decimal places. For example, for a field to contain 999.99, the
length would be 5.2.

If there are a large number of possible values for a STS field, you may specify
for this field an external length greater than its default length (one byte). This
allows the field to store a code to represent each valid condition value, such as
P = Paid; H = Held.

Internal length

This field type is the length of the field when it is stored in a file. This is the
number of bytes used to store a field in a file. Fields with decimal positions are
entered as total number of digits, number of decimal places. For example, for
a field to contain 999.99, the length would be 5.2.

3–14 Defining a Data Model

Using Fields

See the chapter “Maintaining Your Data Model” for more information on
defining a field type with differing lengths between external and internal fields.

Decimal places

This field type is the number of decimal places for numeric fields.

LHS text

This field type is the left hand side text used for the field heading. This is the
text to be placed before the field on the same line as its heading on a display
panel or print format.

Example:

 Size code—BBBBBB

 Quantity—BBBBBB

RHS text

This field type is the right hand side text used for the field heading. This is the
text to be placed after the field on the same line as its heading on a display
panel or print format.

Example:

 Size code—BBBBBB (SMALL/MEDIUM/LARGE)

Column headings

This field type is the column heading text to be placed above the field on a
display panel or print format.

Example:

Size code Quantity

BBBB 9999.99

BBBB 9999.99

Keyboard shift

This field type specifies which keyboard shift is allowed for the field on panel
files. It can have one of these values:

Chapter 3: Understanding Your Data Model 3–15

Using Fields

Blank—no keyboard shift

X, A, N, W, I, D, M—for alphanumeric fields

N, S, Y, I, or D—for numeric fields

O, J, E, W, G, or A—for ideographic fields

For more information on keyboard shift values, refer to the IBM DDS
Reference.

Allow lowercase

This field type specifies whether the field values may be in lowercase. It can
have one of these values:

Y—lowercase allowed

Blank—lowercase not allowed

Lowercase applies only to alphanumeric fields.

Mandatory fill

This field type specifies whether the field requires mandatory fill. This can
have one of these values:

Y—mandatory fill

Blank—no mandatory fill

Valid system name

This field type specifies whether the field requires the valid system name
check to be performed. Value entered for the field must be a valid i OS system
name.

A valid system name must start with a letter, no more than ten characters
long, and contain only letters, digits, or one of these characters “-”, “#”, “$”,
or “@”.

Modulus 10/11 check

This field type specifies whether the modulus 10 or 11 check is to be
performed. The value entered for the field must meet a modulus 10 or 11
check as specified by the DDS CHECK keyword. This can have one of these
values:

 10—apply modulus 10 check

3–16 Defining a Data Model

Using Fields

 11—apply modulus 11 check

 Blank—do not apply modulus check

Modulus check applies only to numeric fields.

Default condition

This field type is the default value to be used for the field when adding records
to the database if no value is supplied.

Note: The default condition does not specify a default value for fields on
display files or reports.

Default condition has these values:

 * NONE—no default condition

 condition name—condition that supplies the default value

 * DTAARA—indicates that the value of the field is to be retrieved from the
data area specified in the DTAARA field. This field will appear when you
type *DTAARA in the Default Condition field and press Enter.

The name of the data area must be a valid system name. The data area name
is used as an internal field name within CA 2E, in place of the generated code
name. In a program, the generated code name is used. The field is loaded
from the data area at the start of the program.

An example of using data area name is the CA 2E shipped field *Company
name. The value for this field is retrieved from a data area called YYCOTXA:

Default Condition = *DTAARA

Dtaara = YYCOTXA

Implementation name = CMP

Check condition

This field type is the name of the list condition used to specify check values for
the field. The value for Check condition is:

 *NONE—no check condition

 Condition name—used to check the input value of the field.

Chapter 3: Understanding Your Data Model 3–17

Using Fields

Translate values

This field type specifies whether value mapping is required to translate the
display value entered for a field into a different storage value, and vice-versa.
This applies only to STS fields or user-defined fields for which value mapping
has been specified. Allowable values are:

 Y—use value mapping

 Blank—do not use value mapping

Note: STS fields with translate values are implemented only in functions that
have interactive displays; they are not implemented in PRTFIL or CA 2E
internal functions.

Field exit option

This field type specifies whether there is a field exit value. Allowable values
are:

 Y—field exit is required

 Z—right adjust, zero fill

 B—right adjust, blank fill

 R—right to left support for non-numeric fields

Edit codes

This field type specifies the edit codes for the panel input field, the display
field, and the report field. The edit codes are specific to CA 2E, and may not
relate to DDS edit codes.

The following table lists edit codes and their allowable values.

Edit
Code

Description

– For date fields: mm-dd-yyyy or yyyy-mm-dd

For timestamp fields: mm-dd-yyyy-hh:mm:ss or

 yyyy-mm-dd-hh:mm:ss

/ For date fields: mm/dd/yyyy or yyyy/mm/dd

For timestamp fields: mm/dd/yyyy/hh:mm:ss or
yyyy/mm/dd/hh:mm:ss

yyyy Month dd for date fields

1 Commas, no sign, 0.0

3–18 Defining a Data Model

Using Fields

Chapter 3: Understanding Your Data Model 3–19

Edit
Code

Description

2 Commas, no sign, blank

3 No commas, no sign, 0.00

4 No commas, no sign, blank

5 Explicit, CR/DR

6 Commas, '*' as suffix

7 Commas, c as prefix, '-'

8 Commas, 'c' as prefix, '-'

9 Edit word for date field, '-' as separator

A Commas, CR, 0.00

B Commas, CR, blank

C No commas, CR, 0.00

D No commas, CR, blank

J Commas, '-', 0.00

K Commas, '-', blank

L No commas, '-', 0.00

M , '-', blank

P Edit word for phone number

R No commas, no sign, 0.00

S Edit word for U.S. social security number

T Edit word for time fields

W Edit word for long dates dd/mm/ccyy

Y Edit word for date fields

Z Zero suppression only

Using Field Edit Codes

Edit codes are used to alter or customize panel or report design. You use edit
codes to punctuate data fields for panel entry, panel display and report output.
CA 2E ships a number of edit codes that you can use. The shipped file is
YEDTCDERFP, residing in library Y2SY.

If you are using ENPTUI (enhanced NPT user interface) you can choose to
mask input edit codes.

Using Fields

Starting in Release 6.0, the CA 2E DDS generator follows these rules:

 When resolving the edit word, if ‘field length+1’ results in an edit word
with a zero in the left-most portion of the edit word, an EDTWRD with a
leading zero will be generated.

 If the above situation is not encountered, the edit word is generated
without any changes.

This satisfies Date, Time, and Social Security number requirements where all
leading zeros are needed. However, existing limitation in the DDS generation
of edit words still remain, including:

 Certain fields with long lengths and many decimal places fail at compile
time when combined with certain EDTWRD definitions.

 If the first character in an EDTWRD is a format character, as in a phone
number, that character will not display for NPT DDS. This limitation can be
corrected by allowing for an integer to the left of the left-most format
character and using an edit mask.

See the chapter “Modifying Device Designs” in Building Applications for more
information on ENPTUI input edit code masking.

To obtain a list of edit codes, type a ? in any of the Edit code fields on the Edit
Field Details panel. Depending on your selection (screen input, screen output,
or report output), the Display Edit Codes panel shows a list of codes available
for the selected field.

You can change the shipped edit code masks directly in the shipped file.

Description and Usage of Field Types

Code (CDE)

The following table describes the default characteristics of the CDE Field.

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxCD

Alpha

6

as external

-

-

Y

N

-

-

Y

N

Y

-

-

N

N

N

-

-

LHS text (Column headings) Field name N Y Y

3–20 Defining a Data Model

Using Fields

Chapter 3: Understanding Your Data Model 3–21

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

RHS text Code Y Y Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

XANWIDM

N

N

N

-

N

Y

Y

Y

-

Y

Y

Y

Y

-

N

N

N

N

-

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Required

-

-

-

Y

-

-

-

N

-

-

-

Y

-

-

-

The CDE type is used for fields that represent codes. Fields of CDE type are
alphanumeric and are typically keys to a file. The valid set of values for a CDE
field is controlled by their existence as the primary key to a database file.

Examples of CDE fields include:

 Product code

 Currency code

 Warehouse location code

Eight-digit Date

The following table describes the default characteristics of the D8# Field.

Field Type
Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device Field
Override

Implementation
name

System data type

External length

Internal length

Decimal places

xxDX

Packed

6.0

8.0

0

-

N

N

N

N

Y

N

N

N

N

N

N

N

N

N

Using Fields

LHS text (Column
headings)

RHS text

Field name

Date

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

DYN

-

N

-

N

N

-

Y

-

Y

N

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Y

4

/

/

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The D8# type is one of three field types used for fields that represent dates.
For compatibility with standards set by the International Standards
Organization (ISO), it is recommended that you use DT# for your date fields.
You can use the *MOVE built-in function to convert among date fields of type
DTE, DT#, and D8#.

Note: *MOVE converts the three date types to a field of type NBR differently.

Internal Format

D8# dates are stored internally in YYYYMMDD format in systems generated by
CA 2E.

The following table shows the internal format for April 5 for various years.

Date Internal D8# Format

April 5, 2106 21060405

April 5, 2006 20060405

April 5, 1906 19060405

April 5, 1806 18060405

The valid date range is January 1, 1801 to December 31, 2199. When no date
is entered, the internal representation is zero (0).

The internal format ensures that

3–22 Defining a Data Model

Using Fields

 An historical view can be obtained. In this format dates can be ordered
into ascending or descending order using the database.

 The stored internal format is independent of the displayed external format,
namely, independent of the date format used in a particular country.

External Format

The external format for D8# fields and the valid range for entering dates
depends on the input edit code you select for the field.

 If the edit code has a 4-digit-year format (YYYY), the range of dates you
can enter is the same as the internal format range, namely, January 1,
1801 to December 31, 2199.

 If the edit code has a 2-digit year format (YY), the range of dates you can
enter is restricted to a ‘floating’ hundred years (00-99) starting from the
year CA 2Especified by the YCUTOFF model value. The cut-off year can be
any year from within the range of 1900-1999 and its current value is
retrieved at run time. The shipped default is 1940. In this case a year
greater than or equal to 40 is assumed to be in the 20th century; a year
less than 40 is assumed to be in the 21st century.

The external format for D8# fields for both input and output also depends on
the setting of the Date Generation Validation (YDATGEN) and Date Format
(YDATFMT) model values. It can be *MDY, *DMY, or *YMD. Note that to enter,
display, or print date fields with a four-digit-year external format such as,
MM/DD/YYYY, you need to change the appropriate edit code to either / or –.

For more information on four-digit years and edit codes, refer to the table in
the description of the DT# field type in this chapter.

See the chapter “Modifying Action Diagrams” in Building Applications for more
information on *MOVE and the date built-in functions.

Validation

D8# fields are automatically validated by CA 2E. Dates are automatically
translated from external to internal format and vice-versa. Dates are validated
to be in the external format when entered on a panel and converted to internal
format when written to a file.

The date is not converted if its day, month, or year is out-of-range. Instead,
the message “Invalid date” is issued and the date is redisplayed in reverse
image according to the output edit code.

Examples of D8# fields include:

 Date of birth

Chapter 3: Understanding Your Data Model 3–23

Using Fields

 Order date

 Creation date

ISO Date

The following table describes default characteristics of the DT# field.

Field Type Attribute

Shipped Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxDZ

Alpha

6.0

10

N

-

N

N

N

N

Y

N

N

N

N

N

N

N

N

N

LHS text (Column
headings)

RHS text

Field name

Date

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

DYN

-

-

-

-

N

-

Y

-

Y

N

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

 Y

4

Y

Y

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The DT# type is one of three field types used for fields that represent dates.
You can use the *MOVE built-in function to convert among date fields of type
DTE, DT#, and D8#.

Note: *MOVE converts the three date types to a field of type NBR differently.

See the chapter “Modifying Action Diagrams” in Building Applications for more
information on this conversion and date built-in functions.

3–24 Defining a Data Model

Using Fields

For compatibility with standards set by the International Standards
Organization (ISO), it is recommended that you use DT# for your date fields.
Since the DT# field type meets ISO standards, date fields of this type are
interpreted correctly for SQL and Query Manager.

Internal Format

ISO dates are stored internally in YYYY-MM-DD format in systems generated
by CA 2E. The following table shows the internal representation for April 5 for
various years.

Date Internal DT# Format

April 5, 2106 2106-04-05

April 5, 2006 2006-04-05

April 5, 1906 1906-04-05

April 5, 1806 1806-04-05

The valid date range is January 1, 1801 to December 31, 2199. If no date is
entered, the internal representation is 0001-01-01.

The internal format ensures that

 ISO dates can be ordered into ascending or descending order using the
database.

 The stored internal format is independent of the displayed external format,
namely, independent of the date format used in a particular country.

External Format

The external format for DT# fields and the valid range for entering dates
depends on the input edit code you select for the field.

 If the edit code has a 4-digit-year format (YYYY), the range of dates you
can enter is the same as the internal format range, namely, January 1,
1801 to December 31, 2199.

 If the edit code has a 2-digit year format (YY), the range of dates you can
enter is restricted to a ‘floating’ hundred years (00-99) starting from the
year specified by the YCUTOFF model value. The cut-off year can be any
year from within the range of 1900-1999 and its current value is retrieved
at run time. The shipped default is 1940. In this case a year greater than
or equal to 40 is assumed to be in the 20th century; a year less than 40 is
assumed to be in the 21st century.

Chapter 3: Understanding Your Data Model 3–25

Using Fields

The external format for DT# fields for both input and output also depends on
the setting of the Date Generation Validation (YDATGEN) and Date Format
(YDATFMT) model values. It can be *MDY, *DMY, or *YMD. Note

Note: To enter, display, or print date fields with a four-digit-year external
format, such as MM/DD/YYYY, you need to change the edit codes to either
/ or – .

The following table shows how the edit codes and the settings of the YDATGEN
and YDATFMT model values affect the way that dates are displayed and
printed.

Note: This table also applies to user-defined 8-digit date fields that have field
type 'DT8'.

YDATGEN

YDATFMT
(Run time)

Input Edit
Code

Output Edit
Codes

Date Displayed or
Printed As:

*MDY — 4

/

–

Y

/

–

10/27/95

10/27/1995

10-27-1995

*DMY — 4

/

–

Y

/

–

27/10/95

27/10/1995

27-10-1995

*YMD — 4

/

–

Y

/

–

95/10/27

1995/10/27

1995-10-27

*VRY *MDY 4

/

–

Y

/

–

10/27/95

10/27/1995

10-27-1995

*VRY *DMY 4

/

–

Y

/

–

27/10/95

27/10/1995

27-10-1995

*VRY *YMD 4

/

–

Y

/

–

95/10/27

19/95/1027 (2)

19-95-1027 (2)

Note: Due to limitations within DDS, you cannot produce this result at run
time with YDATGEN set to *VRY and YDATFMT set to *YMD. To display or print
digit years in *YMD format you need to set YDATGEN to *YMD.

3–26 Defining a Data Model

Using Fields

Validation

DT# fields are automatically validated by CA 2E. ISO dates are automatically
translated from external to internal format and vice-versa. Dates are validated
to be in the external format when entered on a panel, and converted to the
internal format before being written to a file.

The date is not converted if its day, month, or year is out-of-range. Instead,
the message “Invalid date” is issued and the date is redisplayed in reverse
image according to the output edit code.

CA 2E generates ISO dates as the i OS Date type with DATFMT(*ISO) and
assimilates i OS Date fields as type DT#.

Examples of DT# fields include:

 Date of birth

 Order date

 Creation date

Date (DTE)

The following table describes the default characteristics of the DTE field

Field Type Attribute

Shipped Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxDT

Packed

6.0

7.0

0

-

N

N

N

N

Y

N

N

N

N

N

N

N

N

N

LHS text (Column
headings)

RHS text

Field name

Date

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

DYN

-

N

-

N

N

-

Y

-

Y

N

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Chapter 3: Understanding Your Data Model 3–27

Using Fields

3–28 Defining a Data Model

Field Type Attribute

Shipped Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Field exit option

Edit codes: Input

 Output

 Report

Blank

4

Y

Y

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The DTE type is one of three field types used for fields that represent dates.
For compatibility with standards set by the International Standards
Organization (ISO), it is recommended that you use DT# for your date fields.
Use the *MOVE built-in function to convert among date fields of type DTE,
DT#, and D8#.

Note: *MOVE converts the three date types to a field of type NBR differently.

Internal Format

DTE dates are stored on file by systems generated by CA 2E as follows.

 DTE dates greater than or equal to 1900 are stored on file in CYYMMDD
format.

 DTE dates earlier than 1900 are stored on file as a negative value.

The following table shows the internal format for April 5 for various years.

Date Internal DTE Format

April 5, 2106 2060405

April 5, 2006 1060405

April 5, 1906 60405

April 5, 1806 939595–

The valid date range is January 1, 1801 to December 31, 2199. When no date
is entered, the internal representation is zero (0).

The internal format ensures that

 An historical view can be obtained. In this format dates can be ordered
into ascending or descending order using the database.

 The stored internal format is independent of the displayed external format,
namely, independent of the date format used in a particular country.

Using Fields

External Format

The external format for DTE fields and the valid range for entering dates
depends on the input edit code you select for the field.

 If the edit code has a 4-digit-year format (YYYY), the range of dates you
can enter is the same as the internal format range, namely, January 1,
1801 to December 31, 2199.

 If the edit code has a 2-digit year format (YY), the range of dates you can
enter is restricted to a ‘floating’ hundred years (00-99) starting from the
year specified by the YCUTOFF model value. The cut-off year can be any
year from within the range of 1900-1999 and its current value is retrieved
at run time. The shipped default is 1940. In this case a year greater than
or equal to 40 is assumed to be in the 20th century; a year less than 40 is
assumed to be in the 21st century.

The external format for DTE fields for both input and output also depends on
the setting of the Date Generation Validation (YDATGEN) and Date Format
(YDATFMT) model values. It can be *MDY, *DMY, or *YMD. Note that to enter,
display, or print date fields with a four-digit-year external format such as,
MM/DD/YYYY, you need to change the appropriate edit code to either / or –.

For more information on four-digit years and edit codes, refer to the table in
the description of the DT# field type in this chapter.

See the chapter “Modifying Action Diagrams” in Building Applications for more
information on *MOVE and the date built-in functions.

Validation

DTE fields are automatically validated by CA 2E. Dates are automatically
translated from external to internal format and vice-versa. Dates are validated
to be in the external format when entered on a panel and converted to internal
format when written to a file.

A date cannot be converted if its day, month, or year portion has an out-of-
range value. If you enter an invalid date, the message, “Invalid date” is issued
and the date is redisplayed in reverse image according to the output edit code:

 If the edit code has a four-digit-year format (YYYY), the invalid day and
month portions are reproduced as they were entered. An invalid year is
replaced by the special value 9999 to indicate that the entered year is out
of range.

 If the edit code has a two-digit-year format (YY), all date portions are
reproduced with no change.

Examples of DTE fields include:

Chapter 3: Understanding Your Data Model 3–29

Using Fields

 Date of birth

 Order date

 Creation date

Ideographic Character Text

The following table describes the default characteristics of the IGC field.

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxIG

Alpha

20

as external

-

-

N

-

Y

-

Y

N

Y

-

-

N

N

-

N

-

LHS text (Column headings)

RHS text

Field name

IGC Text

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

O

-

N

N

-

N

N

Y

Y

-

Y

-

Y

-

-

N

-

N

-

-

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

N

-

-

-

Y

-

-

-

N

-

-

-

Y

-

-

-

The IGC type is used for fields that contain both ideographic and alphanumeric
data. Ideographic data consists of Japanese, Korean or Chinese characters.
The fields have the default keyboard shift O.

The source generated for files containing IGC fields automatically contains the
necessary keywords, such as IGCCNV. Examples of IGC fields include:

 Customer name

 Customer address

3–30 Defining a Data Model

Using Fields

For more information on keyboard shifts and ideographic enhancements, refer
to IBM i DDS Reference, Appendix I.

Narrative Text

The following table describes the default characteristics of the NAR field.

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxNA

Alpha

30

as external

-

-

N

Y

-

-

Y

N

Y

-

-

N

N

N

-

-

LHS text (Column headings)

RHS text

Field name

Text

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

XANWIDM

Y

N

N

-

N

Y

Y

Y

-

Y

Y

Y

Y

-

N

N

N

N

-

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

N

-

-

-

Y

-

-

-

N

-

-

-

Y

-

-

-

Multi-Line Entry N N Y Y

The NAR type is used for fields that represent narrative text. NAR field
attribute type should be used in contrast with the TXT field type, which
specifies a basic descriptive title for an (entity) file, such as Company name or
Product name. The NAR attribute type can be regarded as a catch-all to define
data fields not covered by any other field types.

Examples of NAR fields include:

 Order comments

 Address lines

Chapter 3: Understanding Your Data Model 3–31

Using Fields

3–32 Defining a Data Model

Number (NBR)

The following table contains Default characteristics of the NBR Field.

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxNB

Packed

5.0

as external

0

-

N

Y

-

Y

Y

N

Y

-

Y

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

Number

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

NSYDI

-

N

-

N

N

-

Y

-

Y

Y

-

Y

-

-

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Zero

4

3

3

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The NBR type is used for fields that contain purely numeric data values. By
default, NBR fields are for integers.

Numeric fields with characteristics such as VAL, QTY, PCT, PRC, should use
these field types since they provide a more precise specification. The NBR type
can be regarded as a catch-all for numeric data fields that are not covered by
other types.

Examples of NBR fields include:

Number of customers

Number of records in file

Note: When prompting on numeric fields, the ? cannot be used. The prompt
function key (F4) allows prompting. The YCUAPMT model value must be set to
Y to enable F4 for prompting.

Using Fields

Chapter 3: Understanding Your Data Model 3–33

See the YCHGMDLVAL command in CA 2E Command Reference Guide for more
information on changing model values.

Percentage (PCT)

The following table contains the Default characteristics of the PCT Field.

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxPC

Packed

5.2

as external

2

-

N

Y

-

Y

Y

N

Y

-

Y

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

Percent

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

NSIDY

-

N

-

N

N

-

Y

-

Y

Y

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Blank

4

3

3

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The PCT type is used for fields that represent a percentage or a part of a whole
expressed in hundredths.

Examples of PCT fields include:

Percentage purity

Percentage market share

Percentage usage

Profit margin

Market index

Using Fields

3–34 Defining a Data Model

Price (PRC)

The following table contains the Default characteristics of the PRC Field

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxPR

Packed

7.2

as external

2

-

N

Y

-

Y

Y

N

Y

-

Y

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

Price

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

NSIYD

-

N

-

N

N

-

Y

-

Y

Y

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Blank

4

3

3

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The PRC type is used for fields that represent a price such as a monetary rate
or value per unit.

Price fields are typically used to represent a value per unit. PRC field type
should be used in contrast with these field types:

Pure numeric value (NBR): if the number does not have a standard
characteristic, such as Line number, a pure numeric type should be used.

Numeric fields with other standard characteristics (VAL, PCT): ensure that
the field is a price and not a value.

Examples of PRC fields include:

Retail price

Manufacturing price

Discount price

Using Fields

Chapter 3: Understanding Your Data Model 3–35

 Customs tariff

Quantity (QTY)

The following table contains the Default characteristics of the QTY Field.

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxQT

Packed

5.0

as external

N

-

N

Y

-

Y

Y

N

Y

-

Y

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

Quantity

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

YNSID

-

N

-

N

N

-

Y

-

Y

Y

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Blank

4

3

3

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The QTY type is used for fields that represent quantities; that is, numbers of a
given characteristic in standard units. A clear specification of characteristics
facilitates verification and use of the data model.

The units measured by a quantity depend on your business. For property it
may be square feet, for garment retailing it may be meters of fabric, for
pharmaceuticals it may be milligrams. The criteria to be considered in
assigning the attribute QTY to a field is not what the actual quantity is but
whether it is a quantity.

QTY field type should be used in contrast with the following other field types:

Using Fields

3–36 Defining a Data Model

 Pure numeric value (NBR): if the number does not have a standard
characteristic such as Line number, a pure numeric type should be used.

 Numeric fields with other standard characteristics (VAL, PCT): you should
ensure that the field is a quantity and not a value.

Examples of QTY fields include:

Yards of fabric (m)

Floor space (sq.m)

Gross tonnage (T)

Reference Field (REF)

The REF field type is used to specify that the definition of a field is based on
the definition of another field. The name of the referenced field must be
specified in the definition. The referencing field is given the same attributes as
the referenced field but has a different field name.

The text, check and default conditions, and generation name are unique for
each field. You can override these attributes.

The field length, data type, usage, and edit codes are shared. A REF field can
inherit narrative (help text) from the referenced field.

You can specify different check and default conditions for the referenced and
referencing fields.

For example, an existing STS field called State has all of the state
abbreviations listed as conditions. If you need two states for an Order, two
fields can be created: Ship To State and Bill to State. Both of these new fields
would be REF fields, referencing the field State. They can now share the same
conditions of the field to which they refer, State.

Defining a group of similar fields as REF fields, based on one particular field,
ensures that all the fields in the group belong to the same domain as defined
in CA 2E.

CA 2E carries out domain checking to ensure that only a field of the right type
and size is passed as a parameter to a function.

REF fields do not share the same true domain. They do, however, share the
same set of conditions. Where CA 2E requires a field to be in the same
domain, the field must be the parent field or a REF field referencing the
parent.

Examples of REF fields include:

Delivery quantity (REF Order quantity)

Using Fields

Chapter 3: Understanding Your Data Model 3–37

Manager code (REF Employee code)

Sub-area code (REF Area code)

Array element 2 (REF Array element 1)

Defining Function Fields as REF Fields

If you define a function field with a usage type of SUM, CNT, MIN, or MAX as
REF field, the input parameter to the field function will be the referenced field.

See the chapter “Defining Functions” in Building Applications for more
information on specific function fields.

See the chapter “Modifying Device Designs” in Building Applications for more
information on adding, changing, or modifying function fields.

Surrogate (SGT)

The following table contains the default characteristics of the SGT field.

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxSG

Packed

7.0

as external

0

N

-

N

Y

-

Y

Y

N

Y

-

Y

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

Quantity

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

N

-

N

-

N

N

-

Y

-

Y

Y

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

N

3

Y

Y

N

Y

Y

Y

Using Fields

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

 Output

 Report

3

4

Y

Y

Y

Y

Y

-

The SGT field type should be used to designate a field that is a system-
assigned key. Surrogate is a numeric value.

Examples of SGT fields include:

 System key

 Alternate key

Status (STS)

The following table contains the default characteristics of the STS Field:

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxST

Alpha

1

1

-

-

N

Y

Y

-

Y

N

Y

Y

-

N

N

N

N

-

LHS text (Column headings)

RHS text

Field name

Values list

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

XANWID

N

N

N

-

N

Y

Y

Y

-

Y

Y

Y

Y

-

N

N

N

N

-

Check condition

Translate values

*NONE

N

N

N

Y

Y

Y

N

Field exit option

Edit codes: Input

 Output

 Report

N

-

-

-

Y

-

-

-

N

-

-

-

Y

-

-

-

3–38 Defining a Data Model

Using Fields

The STS field type is used for fields that are indicators or flags. Status fields
can take a limited number of discrete values, each of which has a meaning
assigned to it.

The values for a status field and their meanings are specified through the use
of specific field conditions allowed for status fields. If a check condition is
specified for a status field, it can only take the values specified by that
condition.

For value mapped status fields, you can specify that a status field has a
different internal length from its external length; the value field is then
mapped between the two values.

For more information on valued mapped status fields, refer to this topic, Field
Type Default Characteristics, the Translate values option.

A call to an inquiry program is automatically generated for status fields that
appear as input capable fields in CA 2E standard function panel displays. The
inquiry shows the allowed values for a status field if you press F4 (prompt) or
enter ? in the selection area of the panel.

Only conditions of type VAL or LST can be attached to status fields.

See the section Using Conditions for more information.

The following examples show fields of STS type and the conditions that can be
attached to them:

 Order status (Ordered, Paid, Held, and Canceled)

 Product Status (Active, Not active)

 Quality (Passed, Failed, Under test)

 Allow refund (Yes, No).

ISO Time (TM#)

The following table contains the default characteristics of the TM# field.

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxTA

Alpha

6.0

8

N

-

N

N

-

N

Y

N

N

-

N

N

N

N

-

N

Chapter 3: Understanding Your Data Model 3–39

Using Fields

3–40 Defining a Data Model

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

LHS text (Column headings)

RHS text

Field
name

Time

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

DYN

-

-

-

-

N

-

Y

-

Y

N

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Y

T

T

T

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The TM# type is one of two field types used for fields that represent times. For
compatibility with standards set by the International Standards Organization
(ISO), it is recommended that you use TM# for your time fields. Since the
TM# field type meets ISO standards, time fields of this type are interpreted
correctly for SQL and Query Manager.

CA 2E automatically generates code to validate TM# fields.

ISO time is stored internally in HH.MM.SS format and externally as HHMMSS.

Note: A value of 00.00.00 on the physical file represents zero, not a valid
time.

CA 2E generates ISO times as the i OS Time type with TIMFMT(*ISO) and
assimilates i OS Time fields as type TM#.

Examples of TM# fields include:

 Time of birth

 Time of order

 Time of creation

Time (TME)

The following table contains the default characteristics of the TME field.

Using Fields

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxTM

Packed

6.0

as external

0

-

N

N

-

N

Y

N

N

-

N

N

N

N

-

N

LHS text (Column headings)

RHS text

Field name

HH:MM:SS

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

NYID

-

-

-

-

N

-

Y

-

Y

N

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Blank

T

T

T

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The TME type is one of two field types used for fields that represent times. For
compatibility with standards set by the International Standards Organization
(ISO), it is recommended that you use TM# for your time fields. You can use
the *MOVE built-in function to convert between date fields of type TME and
TM#.

CA 2E automatically generates code to validate TME fields. TME times are
always stored on file in HHMMSS format.

Examples of TME fields include:

 Time of birth

 Time of order

ISO Timestamp (TS#)

The following table contains the default characteristics of TS# field.

Chapter 3: Understanding Your Data Model 3–41

Using Fields

Field Type Attribute

Shipped
Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxTS

Alpha

18.0

26

N

-

N

N

N

N

Y

N

N

N

N

N

N

N

N

N

LHS text (Column headings)

RHS text

Field name

Timestamp

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

DYN

-

-

-

-

N

-

Y

-

Y

N

-

Y

-

Y

N

-

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

blank

4

/

/

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The TS# type is used for fields that represent timestamps. Since the TS# field
type meets standards set by the International Standards Organization (ISO),
timestamp fields of this type are interpreted correctly for SQL and Query
Manager. CA 2E automatically generates code to validate TS# field.

ISO timestamp is stored internally in YYYY-MM-DD-HH.MM.SS.NNNNNN
format. External formats are:

External Format Valid Edit Codes

MM-DD-YYYY-HH:MM:SS or

YYYY-MM-DD-HH:MM:SS

MM/DD/YYYY/HH:MM:SS or

YYYY/MM/DD/HH:MM:SS

MM/DD/YY/HH:MM:SS:NNNNNN

 -

/

T and Y

Note: A value of 0001-01-01-00.00.00.000000 on the physical file represents
zero, not a valid timestamp.

3–42 Defining a Data Model

Using Fields

The external format for TS# fields for both input and output also depends on
the setting of the Date Generation Validation (YDATGEN) and Date Format
(YDATFMT) model values.

For more information on how edit codes and the settings of YDATGEN and
YDATFMT affect the way in which timestamps are displayed and printed, refer
to the table in the description of the DT# field type in this chapter.

You can use the *MOVE built-in function to convert between timestamp fields
and time and date fields.

CA 2E generates ISO timestamp as the i OS Timestamp type and assimilates i
OS Timestamp fields as type TS#.

Examples of TS# fields include:

 Process ending date and time

 Transaction audit date and time

 Date and time of creation

Text (TXT)

The following table contains the default characteristics of the TXT field

Field Type Attribute

Shipped Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxTX

Alpha

25

as external

-

-

N

Y

-

-

Y

N

Y

-

-

N

N

N

-

-

LHS text (Column
headings)

RHS text

Field name

Text

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

ANWID

Y

N

N

-

N

Y

Y

Y

-

Y

Y

Y

Y

-

N

N

N

N

-

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Chapter 3: Understanding Your Data Model 3–43

Using Fields

3–44 Defining a Data Model

Field Type Attribute

Shipped Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Field exit option

Edit codes: Input

 Output

 Report

N

-

-

-

Y

-

-

-

N

-

-

-

Y

-

-

-

Multi-Line Entry N N Y Y

The TXT type is used for fields that represent text description. It can be used
to define alphanumeric fields that are not appropriate for type CDE or STS.

The TXT field should be used to provide a title for an object, such as on
inquiries. The use of the TXT attribute should be contrasted with the narrative
text (NAR) type, which is used for additional descriptive comments.

Examples of TXT fields include:

 Customer name

 Currency name

 Member name

 Country name

Value (VAL)

The following table contains the default characteristics of the VAL field.

Field Type Attribute

Shipped
Default Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxVA

Packed

11.2

as external

2

-

N

Y

-

Y

Y

N

Y

-

Y

N

N

N

-

N

LHS text (Column
headings)

RHS text

Field name

Monetary value

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

NSYID

-

N

-

Y

-

N

-

Using Fields

Chapter 3: Understanding Your Data Model 3–45

Field Type Attribute

Shipped
Default Value

Default
Override

Field
Details
Override

Device
Field
Override

Mandatory fill

Valid system name

Mod10/11 check

N

-

N

Y

-

Y

Y

-

Y

N

-

N

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

Blank

4

C

C

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

-

The VAL type is used for fields that represent a monetary value, such as an
amount in units of a particular currency. The VAL type should be used in
contrast with the following field types:

 Pure numeric value (NBR): if the number does not have a standard
characteristic such as Line number, a pure numeric type should be used.

 Numeric fields with other standard characteristics (QTY, PCT): ensure that
the field is a value as opposed to a quantity.

Examples of VAL fields include:

 Value of order ($)

 Value of stock holding ($)

 Customer credit limit ($)

Valid System name

The following table contains the default characteristics of the VNM field.

Field Type Attribute

Shipped Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

Implementation name

System data type

External length

Internal length

Decimal places

xxVN

Alpha

10

as external

-

-

N

Y

-

-

Y

N

Y

-

-

N

N

N

-

-

Using Fields

3–46 Defining a Data Model

Field Type Attribute

Shipped Default
Value

Default
Override

Field
Details
Override

Device
Field
Override

LHS text (Column
headings)

RHS text

Field name

Name

N

Y

Y

Y

Y

Y

Keyboard shift

Allow lowercase

Mandatory fill

Valid system name

Mod10/11 check

XAI

N

N

Y

-

N

Y

Y

Y

-

Y

Y

Y

Y

-

N

N

N

N

-

Check condition

Translate values

*NONE

-

N

-

Y

-

Y

-

Field exit option

Edit codes: Input

 Output

 Report

N

-

-

-

Y

-

-

-

N

-

-

-

Y

-

-

-

The VNM type is used for fields that represent system entities including
objects, formats, and field names. A valid system name must

 Begin with a letter, $, # or @

 Contain no more than ten characters

 Contain only characters, digits, or the characters $, #, @, and underscore

 Contain no embedded blanks

 For i OS, must be uppercase

This type is used for defining fields that must conform to the operating
system's naming convention. For DDS, it is implemented by using the
CHECK(VN) keyword.

Examples of VNM fields include:

 Member name

 Job name

 User name

Using Fields

Using Function Fields

Function fields are used to hold data requiring calculated values such as order
quantity, location space, or population size. Function fields are given specific
usage types. The usage types determine the allowable values of a function
field.

Function fields specify work or calculation fields that can be used in CA 2E
functions. Function fields can be placed on device designs and defined to
represent special derivatives like summations, maximum and minimum values.

Function Field Usages

Type Description Data Type Example

DRV

USR

User defined logic

User-defined field

Any

Any

Value = Price + Quantity

Control total

CNT

MAX

MIN

SUM

Count of records

Maximum value

Minimum value

Sum of fields

Numeric

Numeric

Numeric

Numeric

Number of lines on order

Largest item on order

Smallest item on order

Order total

Usage types of function fields are listed and described in the pages that follow.

See the chapter “Defining Functions” in Building Applications for more
information.

Count (CNT)

The CNT usage type is given to those function fields that contain a count of the
number of records containing the field (to be counted) over a series of
records.

A function field of usage type CNT has two parameters:

 Result parameter, which is the derived field itself. This must be placed on
a total format of any function that calls the CNT function.

 Input parameter attribute to be counted. This must be present on the
detail format of the calling function.

The series of records are defined by the standard function within which the
field is defined. For instance, in a Print File function, the CNT field could
calculate the number of times a field occurs in the detail lines of the report, to
be displayed in the next total format.

Chapter 3: Understanding Your Data Model 3–47

Using Fields

Fields of type CNT must be numeric. If the function field is defined as a REF
field, based on another field, CA 2E assumes that the CNT field is a count of
the number of records containing the based-on field. This method of definition
cannot be used if the field to be counted is not itself a numeric field.

Examples of CNT fields include:

 Number of employees on employee file

 Number of customers in company file for a company

 Number of items within warehouse

Derived (DRV)

The DRV usage type is given to function fields that perform a user-defined
calculation specified by an action diagram. The field can then be used in any
function where the calculation is required. This method of definition cannot be
used if the field to be counted is not itself a numeric field.

A DRV function field has one output parameter: the derived field itself. Input
parameters may be specified for the function.

You can edit the action diagram and specify the parameters for the derived
field.

Examples of DRV fields include:

 Order line value

 Discounted order value

Maximum (MAX)

The MAX usage type is given to function fields that contain the highest value
found for a field over a series of records.

A function field of usage type MAX has two parameters:

 Result parameter—The derived field itself. This must be placed on a total
format of any function, which calls the MAX function.

 Input parameter—The field for which the highest value is to be
determined. This must be present on the detail format of the calling
function.

The series of records are defined by the standard function within which the
field is defined. For instance, within an Edit Transaction function, a MAX field
defined on the header could be used to calculate the maximum value of a field
on the subfile record.

3–48 Defining a Data Model

Using Fields

Fields of type MAX must always be numeric. If the function field is defined as a
REF field, based on another numeric field, CA 2E assumes that the based-on
field is the field whose highest value is to be calculated. This method of
definition cannot be used if the field to be calculated is not itself a numeric
field.

Examples of MAX fields include:

 Largest order item : maximum of order quantity

 Biggest warehouse location : maximum of location size

 Largest town : maximum of town size

 Highest line number : maximum of line number

Minimum (MIN)

The MIN usage type is given to function fields that contain the lowest value
found for a field over a series of records.

A function field of usage type MIN has two parameters:

 Result parameter—The derived field itself. This must be placed on a
header format of any function, which calls the MIN function.

 Input parameter—The field for which the lowest value is to be
determined. This must be present on the details format of the calling
function.

The series of records are defined by the standard function within which the
function field is defined.

For instance, within an Edit Transaction function, a MIN field defined on the
header could be used to calculate the minimum value of a field on the subfile
record.

Fields of usage type MIN must always be numeric. If the function field is
defined as a REF field, based on another numeric field, CA 2E assumes that
the based-on field is the field whose lowest value is to be calculated. This
method of definition cannot be used if the field to be calculated is not itself a
numeric field.

Examples of MIN fields include:

 Smallest order item : minimum of order quantity

 Smallest warehouse location : minimum of location size

 Smallest town : minimum of town size

Chapter 3: Understanding Your Data Model 3–49

Using Fields

Summation (SUM)

The SUM usage type is given to function fields, which contain the sum of the
values found for another field over a series of records.

A function field of usage type SUM has two parameters:

 Result parameter—The field containing the result of the summation.

This field must be placed on a total format of any function that calls the
SUM function.

 Input parameter—The field for which the sum is to be calculated. This
must be present on the detail format of the calling function.

The series of records are defined by the standard function within which the
field is defined. For instance, in a Print File function, the SUM field could
calculate the sum of the values in a field from the detail lines of the report,
which is to be displayed in the next total format.

Function fields of type SUM must always be numeric. If the function field is
defined as a REF field, based on another numeric field, CA 2E assumes that it
is the sum of the values in the based-on field that is to be calculated. This
method of definition cannot be used if the field to be calculated is not itself a
numeric field.

Examples of SUM fields include:

 Total order value : sum of order line value

 Total warehouse space : sum of location space

 Total population size : sum of area population size

User-Defined (USR)

The USR usage type is given to any field that you wish to add to a function
device design. You can make such a field input capable if you wish.

It is your responsibility to initialize and process the USR fields in the action
diagram. CA 2E performs basic field checking, such as date validation.

Examples of USR fields include:

 Order total check value

 Command request string

 Next menu option

3–50 Defining a Data Model

Using Conditions

Using Conditions
A CA 2E condition both specifies the values or set of values that a field may
take and indicates what those values mean.

Conditions are used to

 Validate the entry of data

 Specify the select/omit criteria for access paths

 Specify processing conditions in action diagrams

 Condition the appearance of fields on function device formats

 Specify function parameter values when calling functions in action
diagrams

 Specify default field values for adding records to a database

Properties of Conditions

Each condition has a name, a type, and an associated value. All the conditions
associated with a single field must be unique.

Condition Types

A condition type specifies the type of validation rule it imposes. CA 2E has four
types of conditions, divided into two categories: those that are used with
status fields and those used with non-status fields.

The condition types allowed for status fields are:

 VAL (Value)

 LST (Value List)

The condition types allowed for non-status fields are:

 CMP (Compare)

 RNG (Range)

This table lists the valid condition types and the field types to which they can
be attached. The use of the different types of field conditions is described in
the sections following the table.

Chapter 3: Understanding Your Data Model 3–51

Using Conditions

Condition
Type

Description

Example

Field
Type

CMP

RNG

VAL

LST

Compare using an operator

Valid range between two
values

Value

List of value conditions

Greater than 5

0–20

A

Held, Paid, Unpaid

All others

All others

STS

STS

See the chapter “Modifying Action Diagrams” in Building Applications for more
information on using conditions involving functions.

Status Field Conditions

The VAL (Value) and LST (Value List) are the two conditions allowed for use
with status fields. You can use these condition types to:

 Specify single (VAL) and multiple values (LST)

 Specify value mapping (VAL)

See the chapter “Maintaining Your Data Model” for more information on
specifying value mapping and converting conditions to values list for status
fields.

Value (VAL) Condition

This condition type is used to specify single values that a status field may
take.

Internal and External Values

You can specify two related values for a VAL condition:

 Internal value—The value held on the implemented database file to
represent the condition

 External value—The value entered by and displayed to the user in
functions

CA 2E automatically generates source to translate between the two values.
The internal and external values may have different lengths. This value
mapping facility may be used to facilitate translation into different national
languages. Value mapping only takes place if a value is specified for the
Translate condition (cnd) values field on the Edit Field Details panel and if a
Check condition value is specified for the field.

3–52 Defining a Data Model

Using Conditions

If you add or modify values within that LST condition, you will need to
recompile the functions that use the field. The validation check will then
include your changes.

The following table contains examples of VAL conditions.

Condition

File
Value

Translate
Condition
Value

Display / Input
Value

Full-time Employee

Part-time Employee

F

P

N

N

F

P

Invoice status is 'Held'

Invoice status is 'Paid'

Invoice status is 'Delivered'

H

P

D

Y

Y

Y

HLD

PAD

DLV

If no Translate cnd values is specified, this condition is implemented using the
VALUES keyword in the display file DDS.

If Translate cnd values is specified, this condition is implemented by HLL code
specifying that the condition is to be checked against a CA 2E-created
database file.

See the chapter “Maintaining Your Data Model” for more information on
conditions and converting condition values.

List (LST) Condition

This condition type is used for conditions that specify a list of values that a
status field may take. Each LST condition is made up of one or more VAL
conditions.

When you specify this condition type, a special LST condition, *ALL values, is
created as soon as a condition for the field is defined.

LST conditions have a special use in specifying field value checking in Display
Device type functions. If you specify a Check condition for a field using the
Edit Field Details panel or the Edit Screen Entry Details panel, CA 2E generates
the necessary code to ensure that any value entered is a valid condition in the
list for all interactive functions that use that field.

If you add or modify values within the LST condition, you will need to
recompile the functions that use the field. The validation check will then
include your changes.

Chapter 3: Understanding Your Data Model 3–53

Using Conditions

Condition List Inquiries

In generated functions, you can display the list of values available for a status
field in either of two ways: enter ? in the field, or place the cursor on the field
and press F4. The F4 to prompt only works if the YCUAPMT model value is set
to Y (Yes).

For more information on using the YCHGMDLVAL command to change the
value for YCUAPMT model value, refer to the CA 2E Command Reference
Guide.

Examples of LST Conditions

The following five value conditions are attached to an Invoice Status field:

 LST Condition—All Values

Value Condition File Value

Invoice not yet due

Invoice due

Invoice paid

Invoice held

Invoice canceled

U

D

P

H

C

You may then define and create two different LST conditions; for example,
Invoices Outstanding and Completed Invoices, using a combination of the
above VAL conditions:

 LST Condition—Outstanding Invoices

Value Condition File Value

Invoice not yet due

Invoice due

Invoice held

U

D

H

 LST Condition—Completed Invoices

Value Condition File Value

Invoice paid

Invoice canceled

P

C

3–54 Defining a Data Model

Using Conditions

Non-Status Field Conditions

The conditions that can be attached to non-status fields include the CMP
(Compare) and RNG (Range).

Compare (CMP) Condition

This condition type is used for conditions that specify values that a non-status
field may take, defined in terms of a fixed value and an operator.

Valid Operators

 EQ—Equal to

 NE—Not equal to

 GT—Greater than

 LT—Less than

 GE—Greater than or equal to

 LE—Less than or equal to

Examples of CMP Condition:

Field name Condition name Operation Value

Order quantity

Credit limit

License date

Greater than 10

Less than $100.00

Less than expire date

(Enter as YYMMDD)

GT (>)

LT (<)

LT (<)

10

100

991203

This condition is implemented using the COMP keyword in the display file DDS.

Range (RNG) Condition

This condition type is used for conditions that specify a range of values that a
non-status field may take, in terms of two fixed values between which the field
value must lie, end points included.

Examples of RNG Conditions:

Chapter 3: Understanding Your Data Model 3–55

Using Relations

Field name Condition Name From To

Stock quantity

Transaction value

Between 10 and 100

GT -250 and LT 250

10

250-

100

250

This condition is implemented using the RANGE keyword in the display DDS
file.

See the chapter “Maintaining Your Data Model” for more information on using
conditions.

Using Relations
This topic provides conceptual information and a full description of CA 2E
relations. It also explains and includes examples of how different types of
relations are used within your model.

CA 2E Relations

A CA 2E relation expresses an association between two files or between a file
and a field. Relations constitute the fundamental links in a data model. They
enable you to make assertions about the meaning of the connections within
your data.

CA 2E uses basic English verbs to describe relations as shown in these
examples:

 Customer Known by Customer code
 Customer Has Customer name
 Customer Refers to Salesperson

The Refers to relation indicates that a relationship exists between the two files
(Customer-Salesperson); Known by and Has indicate the relationship between
the file and the field (Customer-Customer code, or Customer-Customer name).

Several relations can be specified for a single file. CA 2E automatically resolves
the relations of a file into the fields that are needed to implement that file. The
fields that result from resolving a relation are called file entries.

3–56 Defining a Data Model

Using Relations

Relation Types

There are eight types of relations. An understanding of the purpose of these
relation types is central to understanding CA 2E.

 Defined as

 Extended by

 Has

 Includes

 Known by

 Owned by

 Qualified by

 Refers to

Relation Usage Groups

Depending on how they operate within a data model, CA 2E relations are
grouped under three different usage groups:

 Definition relations, which declare files to exist

 Key relations, which define the keys that identify a file by reference either
to the keys of another CA 2E file or to a field

 Attribute relations, which declare the non-key fields that are present in a
file by reference either to another file or to a field

The use of specific CA 2E relations allows for the physical arrangement,
selection, and retrieval of information based on the arrangement of key fields
in the database. The relations you choose determine which fields are to appear
on which file, whether a field is a key field or foreign key field, and whether
certain fields can be shared between files.

You must use the appropriate CA 2E relation types to describe a file-to-file or
file-to-field relation respectively.

CA 2E Relations

Usage Type Relation Used For

Definition Defined as File-to-file relationship

Key Owned by

Known by

Qualified by

File-to-file relationship

File-to-field relationship

File-to-field relationship

Chapter 3: Understanding Your Data Model 3–57

Using Relations

3–58 Defining a Data Model

Attribute Refers to

Includes

Has

File-to-file relationship

File-to-file relationship

File-to-field relationship

Other Extended by File-to-file relationship

Example of Relations Used in a Data Model

The following examples focus on the CA 2E relation types: Owned by, Known
by, Qualified by, Has, and Refers to.

Example 1: Simple Sales Ledger

You have a number of customers who order your products. Each order can
involve a number of different products but can be issued to only one customer.
Customer and Product are identified by Customer code and Product code
respectively; an order is identified by an Order number that is unique within
the business. Each Order is made up of an Order header and a variable
number of Order detail lines, each of which is for a particular quantity of a
particular Product.

The situation can be represented diagrammatically as follows:

 Customer Order

Order Deta il Prod uc t

We could model this situation by using the CA 2E relation statements
described below.

 A Customer could be described as follows:

FIL Customer REF Known by FLD Customer code CDE
FIL Customer REF Has FLD Customer name TXT

The key of the Customer file is the Customer code.

 A Product could be described as follows:

FIL Product REF Known by FLD Product code CDE
FIL Product REF Has FLD Product name TXT
FIL Product REF Has FLD Product size NBR

 An Order could be described as follows:

FIL Order CPT Known by 1 FLD Order code CDE
FIL Order CPT Has 2 FLD Order date DT#

Using Relations

Chapter 3: Understanding Your Data Model 3–59

FIL Order CPT Has 3 FLD Order status STS
FIL Order CPT Refers to 4 FIL Customer REF

FIL Order Detail CPT Owned by 1 FIL Order CPT
FIL Order Detail CPT Known by 2 FLD Order line no NBR
FIL Order Detail CPT Has 3 FLD Order quantity QTY
FIL Order Detail CPT Refers to 4 FIL Product REF

The previous relations result in the following entries in the files:

 Product Customer

 K Product code

Product name

Product size

 K Customer code

Customer name

 Order Order Detail

 K Order code

Order date

Order status

Customer code

 K

K

Order code

Order line no

Order quantity

Product code

Example 2: A More Complicated Product Structure

Your products have a more complicated structure than first imagined. Each
Product belongs to a Product group that serves as part of the product
identifier. Each Product also has a Product type that is not part of the product
identifier, but has some extra information associated with it. We can refine the
model to reflect this situation by adding a Product group and a Product type
file.

 Customer Order

Order Deta il Prod uc t

Prod uc t Group

Prod uc t Type

A Product group could be described as follows:

FIL Product group REF Known by FLD Product group code CDE
FIL Product group REF Has FLD Product group name TXT

Using Relations

A Product type could be described as follows:

FIL Product type REF Known by FLD Product type code CDE
FIL Product type REF Has FLD Product type name TXT
FIL Product type REF Has FLD Pack size QTY
FIL Product type REF Has FLD Freight charge VAL

The definition of a Product could then be amended by adding an Owned by
relation to associate each Product with Product Group and a Refers to relation
to associate a Product type with each Product.

FIL Product REF Owned by Product group FIL REF
FIL Product REF Known by Product code FLD CDE
FIL Product REF Has Product name FLD REF
FIL Product REF Has Product size FLD QTY
FIL Product REF Refers to Product type FIL REF

We now have entries on two new files, the Product group and the Product
type. A new entry for the Product group code has been added wherever the
Product file was referenced by other CA 2E files, in this case, on the Order
details:

 Product Group Product Type

 K Product group code

Product group name

 K Product type code

Product type name

Pack size

Freight charge

 Product Order Detail

 K

 K

Product group code

Product code

Product name

Product size

Product type code

 K

K

Order code

Order line no

Order quantity

Product group code

Product code

Specifying Relations

This topic provides information for using the eight CA 2E relation types and
includes examples that illustrate and explain how each individual type is used.

You specify a relation through the Edit Database Relations panel. Relations are
specified as relation statements that have the following format:

3–60 Defining a Data Model

Using Relations

Subject Relation Object
OBJ REL OBJ

Subject OBJ is the name of a file, REL is the name of a relation type, and
Object OBJ is the name of a file or field.

File-to-file Relationships

The most important aspects of your data model are described by the relations
that connect the files within the model.

To describe file-to-file relations you use:

 Owned by

 Extended by

 Refers to

 Includes

File-to-field Relationships

File-to-field relations are used to explicitly state that a field is to be present on
a file.

You can use these three types of CA 2E relations to describe a file-to-field
relationship:

 Known by

 Qualified by

 Has

Describing and Using CA 2E Relations

This section specifies how each relation type is used and provides examples.

Defined as Relation

The Defined as relation declares that a file exists. For example, to say a file
named “Product” exists:

Product Defined as Product

Chapter 3: Understanding Your Data Model 3–61

Using Relations

A Defined as relation is present for each file. CA 2E implicitly creates the
Defined as relation if the definition of the file was not done using the Defined
as relation in the first place.

The Defined as relation does not cause any field entries to be added to a file.

Examples of Using Defined as Relation

Example 1: Defining a Single Entity

Let us say that a rose is a rose, declared with the following relations:

FIL Rose REF Known by FLD Any other name CDE
FIL Rose REF Has FLD Petals TXT
FIL Rose REF Has FLD Thorns NBR
FIL Rose REF Has FLD Rose Type STS

This will automatically result in the following additional relation:

FIL Rose REF Defined as FIL Rose REF

Example 2: Defining Several Entities (Top-down)

The Defined as statement constitutes the most basic way of declaring an entity
to exist. If you are creating a new model working top down, you may first
declare all the entities that you think will be required to define your model.
Example:

FIL Company REF Defined as FIL Company REF
FIL Division REF Defined as FIL Division REF
FIL Product REF Defined as FIL Product REF
FIL Customer REF Defined as FIL Customer REF

There must be a Defined as relation for every CA 2E file. If you make a
reference to a non-existing file, a Defined as statement is created
automatically for the file.

In practice, you seldom need to enter a Defined as statement explicitly, unless
you choose to define the entities in your model before using them in any other
relation.

3–62 Defining a Data Model

Using Relations

Displaying Defined as Relations

Defined as relations are not normally shown on the Edit Database Relations
panel. You can display Defined as relations by entering DFN or ALL in the
relation level (Rel lvl) field on the positioner line at the top of the Edit
Database Relations panel.

Deleting Defined as Relations

A Defined as relation cannot be deleted until all references to the file are also
deleted.

Owned by Relation

The Owned by relation denotes a parent-child relationship. The primary key(s)
of the owning file become part of the primary key of the owned by file. For
instance, if Order Detail is Owned by Order, the key of Order, Order code, is
the high order key of Order Detail.

The file of an Owned by relation must be of type REF or CPT. All the key fields
of the owning file are incorporated as high order keys in the owned file.

A file can have more than one Owned by relation. A file can have only Owned
by relations to define its keys. It is not necessary to have other key relations,
such as Known by or Qualified by.

The Owned by relation allows you access to any of the fields on the owning
file. If a field is accessed on the owning file, it creates a virtual field on the
owned file. Virtual field values can be used but cannot be updated.

An Owned by relation can have its description clarified by using the For text
extension.

See the section Using for Text and Sharing with Relations for more information
on using text and Sharing with Owned by relations.

Examples of Using Owned by Relations

Example 1: Orders within Company

The Owned by relation may be used to specify the high order key of a file. Let
us say that you operate a multi-company sales ledger and that all orders are
within company.

Chapter 3: Understanding Your Data Model 3–63

Using Relations

A Company could be defined as follows:

FIL Company REF Known by FLD Company code CDE
FIL Company REF Has FLD Company name TXT

An Order could be defined as follows:

FIL Order REF Owned by FIL Company REF
FIL Order REF Known by FLD Order code CDE
FIL Order REF Has FLD Order date DT#

This specifies that the key of the Company file is the high order key of the
Order file, which results in the following entries:

 Company Order

 K Company code

Company name

 K

 K

Company code

Order code

Order date

Example 2: Orders within Company within Country

Owned by relations may be used to construct a hierarchy. In the example
given above, the Owned by statement asserts that the keys of Company are
the high order keys of Order. If you later decide that a Company is only unique
within Country, then adding Country to the Company file with an Owned by
relation will automatically add it to the Order file. The presence of the relation
stating Order is Owned by Company causes the automatic addition.

A Country could be defined as follows:

FIL Country REF Known by FLD Company code CDE
FIL Country REF Has FLD Company name TXT

Company could then be redefined as follows:

FIL Order REF Owned by FIL Company REF
FIL Order REF Known by FLD Company code CDE
FIL Order REF Has FLD Company name TXT

The definition of Order requires no change:

FIL Order REF Owned by FIL Company REF
FIL Order REF Known by FLD Order code CDE
FIL Order REF Has FLD Order date DT#

3–64 Defining a Data Model

Using Relations

This results in the following entries, where you can see the Country code has
been introduced automatically onto the Order file:

 Country File Company File Order File

 K Country code

Country name

 K

 K

Country code

Company code

Company name

 K

 K

 K

Country code

Company code

Order code

Order date

Known by Relation

The Known by relation specifies that a field is the key field, or one of the key
fields of a file. This means that records in the file can be uniquely identified by
the value of this field together with the values of any other key fields.

The field specified as the object of a Known by relation is added as a key field
entry to the file containing the relation.

Examples of Using Known by Relation

Example 1: A Single Known by Relation - Company

Suppose you wish to identify companies by a company code.

A Company could be defined as follows:

FIL Company REF Known by FLD Company code CDE
FIL Company REF Has FLD Company name TXT

This results in the following entries:

 Company file

K Company code

Company name

Example 2: Multiple Known by Relations - Manager

There may be more than one Known by relation on a file. For example:

FIL Event REF Known by FLD Date DT#
FIL Event REF Known by FLD Time TM#
FIL Event REF Has FLD Location TXT

Chapter 3: Understanding Your Data Model 3–65

Using Relations

Note that the presence of more than one Known by relation on a file may
indicate that an entity has been omitted from the model. For instance,
consider the following relations to define a Manager:

FIL Manager REF Known by FLD Manager type STS
FIL Manager REF Known by FLD Manager code CDE
FIL Manager REF Has FLD Manager name TXT
FIL Manager REF Has FLD Salary VAL

Neither Manager name nor Manager salary are properties of Manager type,
which suggests that Manager type should be an entity in its own right, and
that Manager should be Owned by Manager type.

Qualified by Relation

The Qualified by relation can be used to qualify a file identifier by one or more
variable factors such as the date, the time, or a sequence number.

The Qualified by relation would typically be used for entities that represent a
continuum of values. An example may be prices or currency rates that come
into effect on a given date and prevail for a while. The identification of such
entities may be qualified by a date.

Another common usage would be to describe step functions, such as volume
discount breaks or tax ranges, which similarly come into effect at a certain
threshold and prevail until the next threshold is reached.

Qualified by relations are further specified to tell whether the record retrieval
is to be *PREVIOUS, to retrieve the nearest record less than or equal to the
search value, or *NEXT, to retrieve the nearest record greater than or equal to
the search value.

Note: These values are mutually exclusive; you cannot specify both on the
same file.

To specify these values, enter + in the subfile selector of the Qualified by
relation, then press F5.

Qualified by relations are similar to Known by relations: they are resolved by
adding the named field as a key field to the file containing the relation. The
Qualified by relation, however, has a special property: a reference to a file
containing a Qualified by relation may be redirected.

The field usage required for the field of a Qualified by relation needs to be ATR
and not CDE.

3–66 Defining a Data Model

Using Relations

See the chapter “Creating/Defining Your Data Model” for more information on
redirection.

Examples of Using Qualified by Relations

Example 1: A Qualified File - Product Prices

Your company has a number of products:

FIL Product REF Known by FLD Product code CDE
FIL Product REF Has FLD Product description TXT

Your product prices change from time to time. You may then describe a
Product price file as follows:

FIL Product price REF Owned by FIL Product CDE
FIL Product price REF Qualified by FLD Effective date DT#
FIL Product price REF Has FLD Price PRC

Thus for each change of Product price you would have a separate record, a
state of affairs represented by the following entries:

Example 2: Using a Qualified File - Product Prices

If you now wish to use the Product price in an Order detail file, you could
define an Order file as follows:

FIL Order REF Known by FLD Order number CDE
FIL Order REF Has FLD Order date DT#
FIL Order REF Has FLD Order status STS
FIL Order REF Refers to FIL Customer REF

And, define an Order detail file as follows:

FIL Order detail REF Owned by FLD Order CPT
FIL Order detail REF Known by FLD Order line no NBR
FIL Order detail REF Has FLD Order quantity QTY
FIL Order detail REF Refers to FIL Product price REF

This would result in the following entries:

Chapter 3: Understanding Your Data Model 3–67

Using Relations

 Order detail file

 K

 K

Order number

Order line no

Order quantity

Product code

Effective date

The fields on the file are the same as if you had used a Known by relation
instead of a Qualified by relation for the Effective date. However, additional
processing logic is created for the Qualified by relation.

The difference in using a Known by instead of a Qualified by relation is that
you will have a code generated that refers to the correct product price. The
code is based not on an exact value match of the effective date but on the
closest previous value of the effective date.

Extended by Relation

The Extended by relation declares a file to be an extension of another file. The
relation records an association that is not expressed by any other relation, and
is, in particular, a one-to-one or one-to-none association between the
identifiers of two files.

When it is used with an existing Owned by relation, the Extended by relation
has no effect on the entries of the file being extended; it merely makes the
fields from the extended file available for selection as virtual fields on the file
being extended.

A virtual field is logically present in a view of a file, though it physically resides
in another file.

See the section Adding Virtual Fields to File to File Relations for more
information.

A one-to-none relation denotes a relation where an instance exists in one file
and the corresponding instance does not exist in another file. For example, the
Product file could be extended by the export details file. Some products may
be exported and some may not. This would mean that a product record may or
may not have an associated record in the export detail file.

Note: It is not recommended that you use the Extended by relation unless the
extending file is Owned by the extended file, as unpredictable results may
occur during source code generation.

3–68 Defining a Data Model

Using Relations

Example of Using Extended by Relations

Your basic Customer information consists of the following fields:

FIL Customer REF Known by FLD Customer code CDE
FIL Customer REF Has FLD Customer name TXT
FIL Customer REF Extended by FIL Customer detail REF

You may enter additional details about Customers in another file called
Customer detail:

FIL Customer detail REF Owned by FIL Customer CDE
FIL Customer detail REF Has FLD Credit limit VAL
FIL Customer detail REF Has FLD Managing Director TXT

This results in the following entries:

 Customer file Customer detail

 K Customer code

Customer name

 K Customer code

Credit limit

Managing Director

If you wish to create a function that brings both Customer and Customer detail
together, you need to build an access path that contains fields from both files.
If you were doing this on the Customer detail file, this would not present a
problem since you could specify virtual fields on the Owned by relation

FIL Customer detail REF Owned by FIL Customer CDE
 VRT Customer name TXT
FIL Customer detail REF Has FLD Credit limit VAL
FIL Customer detail REF Has FLD Managing Director TXT

However, if you wish to attach your function to the Customer file, you would
not be able to obtain the customer details unless you had an Extended by
relation. Using the Extended by relation, you can specify virtual fields as
follows:

FIL Customer detail REF Known by FLD Customer code CDE
FIL Customer detail REF Has FLD Customer name TXT
FIL Customer detail REF Extended by FIL Customer detail REF
 VRT Credit limit VAL
 VRT Managing Director TXT

Each Customer may have only one Customer detail record: there is a one-to-
one correspondence between files.

There are two implementation reasons why you may consider using the
Extended by relation rather than simply including the data from the extended
file in the basic file:

Chapter 3: Understanding Your Data Model 3–69

Using Relations

 To save space. If some data fields are only present on a minority of
records, then it may be desirable to place the rarely used fields into an
Extended by file.

 To avoid recompilation of an existing system. If you wish to add fields to
an existing file that is already used by a large number of programs, you
could avoid level check problems by placing the extra fields in another file
owned by the original file. An Extended by relation would make the new
file details available from the based-on file.

Note: An Extended by relation effectively constrains an Owned by relation,
which is normally one-to-many, to be a one-to-one relationship. It is only
appropriate to use the Extended by relation for cases where a one-to-one
or one-to-none relationship holds.

Refers to Relation

The Refers to relation specifies that a file references another file. A Refers to
relation is resolved by including the identifiers (keys) of the referenced file into
the referring file as foreign key fields.

The Refers to relation allows access to any of the fields on the referred to file
from the referring file. If a field is accessed on the referred to file, it creates a
virtual field on the referring file. Virtual field values can be used but cannot be
updated.

A virtual field is logically present in a view of a file, though it physically resides
in another file.

See the chapter “Maintaining Your Data Model” for more information on virtual
fields.

A Refers to relation can have a For text extension to further clarify its
description.

For more information on using For text and Sharing with Refers to relations,
see the section Using For text and Sharing with Relations.

The Refers to relation can be contrasted with the Includes relation, which
includes all fields from the referenced file, and with the Owned by relation,
which is resolved into key entries on the owned file.

Note: Up to 60 Refers to relations can be placed on a file.

Example of Using Refers to Relations

Where Order detail refers to Product, Product may be defined as follows:

3–70 Defining a Data Model

Using Relations

FIL Product REF Known by FLD Product code CDE
FIL Product REF Has FLD Product name TXT

The Product could then be referenced elsewhere, for instance by an Order
detail file:

FIL Order detail REF Owned by FIL Order CPT
FIL Order detail REF Known by FLD Order line no NBR
FIL Order detail REF Has FLD Order quantity QTY
FIL Order detail REF Refers to FIL Product REF

This results in the Product code being added to the Order detail file as a
foreign key field:

 Product file Order detail file

 K Product code

Product name

 K

 K

Order code

Order line no

Order quantity

Product code

Has Relation

The Has relation declares a field to be present in a file as an attribute. Each
field declared as a subject of a Has relation for a file is included in the file as a
non-key field.

Example of Using Has Relations

A company is defined as follows:

FIL Company REF Known by FLD Company code CDE
FIL Company REF Has 1 FLD Company name TXT
FIL Company REF Has 2 FLD Creation date DT#
FIL Company REF Has 3 FLD Profit last year VAL
FIL Company REF Has 4 FLD No of employees NBR

These relationships will result in the following entries:

 Company file

 K

Company code

Company name

Creation date

Profit last year

Chapter 3: Understanding Your Data Model 3–71

Using Relations

No of employees

For each CA 2E file, all the file-to-field relations must be unique. The same
field cannot be declared twice in the same file. A field can be declared in two
different files. Although it can be declared with two different usages, this is not
recommended. For example:

FIL Product REF Known by FLD Product code CDE
FIL Order Detail REF Has FLD Product code CDE

Using a field as an attribute in one file and as an identifier in another file
usually indicates that a relation is missing from your model.

Includes Relation

The Includes relation states that a file is to include fields that have already
been declared as being present in a structure file. The Includes relation allows
the use of a group of fields or “a data structure,” in several different files.

Specifying an Includes relation causes all of the fields in the included file to be
present as non-key fields in the including file.

See the section Using Files for more information on structure files.

Examples of Using Includes Relations

You have an Audit stamp structure file that is made up of three components:

FIL Audit stamp STR Has FLD Date DT#
FIL Audit stamp STR Has FLD Time TM#
FIL Audit stamp STR Has FLD User ID CDE

You may wish to refer to the Audit stamp in a number of files.

For instance, a product file:

FIL Product REF Known by FLD Product code CDE
FIL Product REF Has FLD Product name TXT
FIL Product REF Has FLD Product quality QTY
FIL Product REF Includes FIL Audit stamp STR

For instance, an order file:

FIL Order REF Known by FLD Order number CDE
FIL Order REF Has FLD Order status STS
FIL Order REF Includes FIL Audit stamp STR

3–72 Defining a Data Model

Using Relations

This would result in the following entries:

 Product Order

 K Product code

Produce name

Product quantity

Date

Time

User ID

 K Order number

Order status

Date

Time

User ID

Relation Sequencing

The relations that describe a file are resolved into entries in the order they are
specified on that file.

The following table contains the default sequence order for CA 2E relations.

Usage group Relation

Definition Defined as

Key Owned by

Known by

Qualified by

Attribute Extended by

Refers to

Has

Includes

You can change this default sequence. You can control the order in which CA
2E resolves relations by using the sequence field on the relation statements.

See the chapter “Creating/Defining Your Data Model” for more information on
changing the sequence order of relations.

Using For Text and Sharing with Relations

A CA 2E relation is specified in the form of a relation statement, consisting of
the referencing file, a referenced file or field, and the relationship between
them. The relationships can be further clarified using a For text clause.

Chapter 3: Understanding Your Data Model 3–73

Using Relations

For Text

You can add a For text clause to a relation statement to further clarify the
description of a relationship. Owned by and Refers to are the only relations
that can use For text.

To extend a relation, type a + in the selection field beside the Owned by or
Refers to relation and press F5.

The For text helps document the meaning of a relation. The For text is also
used to identify file entries that may be duplicates of existing file entries based
on a previously defined relationship.

If a given file refers to another file more than once, the For parameter can be
used to distinguish between each reference.

CA 2E files cannot contain duplicate fields. To prevent duplicate fields from
being added to a file from the resolution of the Owned by and Refers to
relations, CA 2E uses the following procedure:

 If the new entry arises from a relation that has For text, CA 2E uses the
For text and the entry name to define the new field.

 Example: If Company code is the entry that arises from a relation that has
Invoice in its For text, the new field will be Invoice Company code, with a
REF field type, referencing Company code.

 CA 2E then checks the field dictionary to determine whether Invoice
Company code exists. If it does, CA 2E uses the field. If it does not, CA 2E
creates the Invoice Company code as a new field to be added to the file,
referencing the existing field (Company code).

 If the new entry arises from a relation without For text, CA 2E uses the
entry name and a surrogate number to define the new field. The surrogate
number is added as part of the entry name.

Example: If Company code is the new entry, the new field may be Company
code 25642.

The new field has a field type of REF, referencing the existing field (Company
code).

You may override this processing and modify the names of fields by using the
Display Referenced Field Details panel.

3–74 Defining a Data Model

Using Relations

Chapter 3: Understanding Your Data Model 3–75

Examples of Using For Text

You have two entities defined, Customer and Order. The Order is placed by
one Customer but can be paid for by a different Customer. The Order needs to
have two references to the Customer entity to define the two Customers, one
for ordering and one for invoicing.

Order Deta il Prod uc t

To clarify which Refers to relation is for invoicing Customer and which is for
ordering Customer, use For text.

FIL Customer REF Known by FLD Customer code CDE
FIL Customer REF Has FLD Customer name TXT

FIL Order REF Known by FLD Order code CDE
FIL Order REF Refers to FIL Customer TXT

 For: Ordering Sharing: *ALL

FIL Order REF Refers to FIL Customer REF

 For: Invoicing Sharing: *ALL

The resolved entries for the two entities will be:

 Customer

 K Customer code

Customer name

 Order

 K Order code

Customer code

Invoicing Customer code

Note that when a file A Refers to a file B more than once, the For text is
applied only to the second and subsequent Refers to relations. To change the
first relation, type R (replace field) against the first relation on the Edit Field
Entries panel and define a new referenced field on the Display Referenced Field
Details panel with the For text appended; in our example, Ordering Customer
code. The resolved entries for the Order file would then be:

Using Relations

 Order

 K Order code

Ordering Customer code

Invoicing Customer code

Sharing

Sharing means you want to share or choose a specific instance or key value in
the chain of relationships. This is not just an implementation specification; it
relates business requirements as well.

Sharing only takes place if the referenced entity has more than one key field;
only the high order keys may be shared. The low order key will always require
a separate entry.

Take the following model for example:

Customer is Owned by Company

Order Refers to Customer For Ordering Customer

Order Refers to Customer For Invoicing Customer

An Order refers to the Customer twice, first for Ordering Customer and then
for Invoicing Customer. This requires two entries in Order of Customer Code,
one for Ordering and one for Invoicing.

For the Company Code entry, there is a choice. If the two customers (ordering
and invoicing) must be customers of the same company, then, to ensure this,
the Company Code is shared for the two Refers to relations. That means there
would be only one Company Code entry in the Order file. If the two customers
can be customers of different companies, then the Company Code is not
shared for the two Refers to relations. That is when two Company Code entries
in the Order file are needed, one for ordering and one for invoicing.

The Owned by and Refers to relations may imply that a key field should be
added to a file when that field already exists on the file because it was
resolved from a preceding relation, causing duplicate entries.

You can control whether separate entries are created for a field in a file-to-file
relation by checking the value specified for the Sharing parameter on the
relation statement. For example:

 If *NONE is specified for the Sharing parameter, a separate entry is added
to the file for all the fields.

3–76 Defining a Data Model

Using Relations

 If *ALL is specified for the Sharing parameter, the high order keys may be
shared. The low order key will always have a separate entry.

 If a file name is specified for the Sharing parameter, the entry is shared if
it is present in the specified file and in both the owned and owning files. A
separate entry is added if the file name or *ALL is not specified in either of
these files.

You can use the Default Sharing Type (YSHRDFT) model value to set the
default sharing to *NONE or *ALL.

Example of Sharing

A Product Bill of Materials requires two Owned by relations from the Product
file to the Assembly file. One relation represents the Parent Product; the other
represents the Component Product. The Product file is owned by the Division
file, which is owned by the Company file. You use Sharing to specify that the
Components of a Product must be from the same Company as the resulting or
Parent Product but that the components can be from different divisions.

The Sharing text specifies that the two Owned by relations share the Company
file record.

See the chapter “Creating/Defining Your Data Model” for more information on
sharing entries and redirection.

Use of For Text for a Parts Assembly

This example is intended to show the use of For text to distinguish between
different entries of the same field on a single file. This example includes the
use of Sharing.

A Company is defined as follows:

FIL Company REF Known by FLD Customer code CDE
FIL Company REF Has FLD Customer name TXT

FIL Division REF Owned by FIL Company REF
FIL Division REF Known by FLD Division code CDE
FIL Division REF Has FLD Division name TXT

And each Company is split into divisions, thus a Division is defined as follows:

FIL Division REF Owned by FIL Company REF
FIL Division REF Known by FLD Division code CDE
FIL Division REF Has FLD Division name TXT

Chapter 3: Understanding Your Data Model 3–77

Using Relations

Let us now introduce the products handled by the company and say that each
Division produces different products or parts. This means that a Part is to be
defined as follows:

FIL Part REF Owned by FIL Division REF
FIL Part REF Known by FLD Part code CDE
FIL Part REF Has FLD Part name TXT

The above relations result in the following entries. Note that Part has both
Company code and Division code in its key:

 Company file Division file

 K Company code

Company name

 K

 K

Company code

Division code

Division name

 Part file

 K

 K

 K

Company code

Division code

Part code

Part name

The basic description of an Assembly includes two separate references to a
Part, one as Resulting Part and one as Component Part. You can distinguish
between the two by use of the For text:

FIL Assembly REF Owned by FIL Part REF

 For: Resulting Sharing: *ALL

FIL Assembly REF Owned by FIL Part REF

 For: Component Sharing: *ALL

FIL Assembly REF Has FLD Assembly qty QTY

After the first instance of the Part code field on the Part file, the For text will
be prefixed to each additional instance to create a unique entry name.

As a further consideration, you need to decide whether the Resulting parts and
the Component parts belong to the same Division and Company. Whether they
do or not is indicated by the value specified for the Sharing field. As a default,
sharing is assumed. In this instance, it will be assumed that the Company and
Division for both Component and Resulting parts is the same. The Component
part must be from the same Company and Division as the resulting part. This
means any fields that would be duplicated by the resolution of both Owned by
relations will not actually be repeated.

3–78 Defining a Data Model

Using Relations

The following entries would result:

 Assembly file

 K

 K

 K

 K

Company code

Division code

Part code

Component Part code

Assembly qty

Thus, the additional instances of Company code and Division code that may
arise from the second Owned by relation have been suppressed.

If the Component belongs to different divisions and companies than the
“Resulting” part, we would specify that there is no sharing of common keys;
that is, specify a value of *NONE for the Sharing field. This causes any fields,
whose presence would be duplicated on the generated file by the resolution of
both of the Owned by relations, to be repeated with different names.

FIL Assembly REF Owned by FIL Part REF

 For: Resulting Sharing: *NONE

FIL Assembly REF Owned by FIL Part REF

 For: Component Sharing: *NONE

FIL Assembly REF Has FLD Assembly qty QTY

This would result in the separate entries for the Resulting Company code, the
Resulting Division code, and Resulting Part code, as follows:

 Assembly file

 K

 K

 K

 K

 K

 K

Company code

Division code

Part code

Component Company code

Component Division code

Component Part code

Assembly quantity

A third variation may be the case where components can be from divisions
different than those of the resulting assembly but the resulting assembly and
component must be for the same company. In this case you would specify that
there is sharing only of Company. This causes the duplicate reference to the
Company code to be dropped.

Chapter 3: Understanding Your Data Model 3–79

Using Relations

FIL Assembly REF Owned by FIL Part REF

 For: Resulting Sharing: Company

FIL Assembly REF Owned by FIL Part REF

 For: Component Sharing: Company

FIL Assembly REF Has FIL Assembly qty QTY

This would result in the following entries:

 Assembly file

 K

 K

 K

 K

 K

Company code

Division code

Part code

Component Division code

Component Part code

Assembly qty

Adding Virtual Fields to File-to-file Relations

The fact that a relation exists between two files means that, given a record
from one file, it is possible to look for a corresponding record on the other file
in order to obtain related data items. CA 2E allows you to specify which data
items are to be obtained through a file-to-file relation by allowing you to
specify virtual fields. A virtual field is a field that is present logically in a view
of a file although it physically resides in another file.

Virtual fields can be specified on the following relations:

 Owned by

 Refers to

 Extended by

FIL Order line REF Refers to FIL Product REFT
 VRT Product name XT

where:

Refers to—Represents a File to file relation

Product—Represents a CA 2E file containing field

Product name—Represents a virtual field name

3–80 Defining a Data Model

Using Relations

Virtual fields can be defined only in one direction on the relation. In CA 2E, the
file that can contain virtual fields is the file where the relation is defined. For
example, Division is Owned by Company. Fields from the Company (owning
file) can be virtualized to the Division (owned file). Fields from Division cannot
be virtualized to Company. Division contains the virtual fields. Division is
where the Owned by relation is defined.

A virtual field may itself be a virtual field on the referenced file.

You can specify virtual fields for relations using the Virtual Field Entries panel.

The example below shows how virtual fields are added to a relation:

 On the Order file we could have the Customer name as a virtual field:

FIL Order CPT Known by 1 FLD Order code REF
FIL Order CPT Has 2 FLD Order date CDE
FIL Order CPT Has 3 FLD Order status TXT
FIL Order CPT Refers to 4 FIL Customer
 VRT Customer name

 On the Order Detail file we could have both the Order information,
including the Customer name and the Product name as virtual fields:

FIL Order detail CPT Owned by 1 FLD Order REF
 VRT Order date DT#
 VRT Order status STS
 VRT Customer code CDE
 VRT Customer name TXT
FIL Order detail CPT Known by 2 FLD Order line no CDE
FIL Order detail CPT Has 3 FLD Order quantity QTY
FIL Order detail CPT Refers to 4 FIL Product REF
 VRT Product name TXT

 This would result in the following entries on the files:

 Order Order detail

 K

 V

Order code

Order date

Order status

Customer code

Customer name

 K

 V

 V

 V

 V

 K

V

Order code

Order date

Order status

Customer code

Customer name

Order line no

Order quantity

Product code

Product name

See the chapter “Maintaining Your Data Model” for more information on how to
add virtual fields to a relation.

Chapter 3: Understanding Your Data Model 3–81

Using Relations

3–82 Defining a Data Model

Circularity

This topic addresses how circularity manifests itself and how to avoid
virtualizing a field back onto the originating file.

If you can follow the path of relations from a file and end up returning to that
file, you have an instance of circularity within the model. This does not
necessarily mean that the series of relations is invalid, but that you must
check the sequence of relations to ensure that the sequence will allow you to
pass the virtual fields that you require. Circularity manifests itself in the
disappearance and duplication of virtual fields.

Although the following three relations are acceptable, they can lead to
circularity:

 Parent Refers to child

A Refers to B, B Owned by A

File A File B
Refers to

Owned by

File A

 Use of the Extended by relation

 A Extended by B, B Owned by A

File B
Extended by

Owned by

 Self-referral

 Example: A Refers to A

File A

Refers to

Here is an example of a model containing these relations:

 Account details Owned by Customer
 Account details Has Account opened date

 Customer Known by Customer code
 Customer Extended by Account details
 Customer Has Customer type

Virtualizing against the Owned by relation would allow you to declare
Customer type as a virtual field on the Account details file, and you could
declare Account opened date as a virtual field on the Customer file over the
Extended by relation. The file entries would now look like this:

Using Relations

 Account details Customer code Key
 Customer type Virtual
 Account opened date Attributes

 Customer Customer code Key
 Account opened date Virtual
 Customer type Attributes

If you then resynchronize the model, the virtual entry Account opened date no
longer appears on the Customer file. During resynchronization, the relations
are expanded into file entries. When expansion occurs, the Account details file
relations will be expanded into entries before the Customer relations.

The expansion of relations would occur in this sequence:

1. Expand the relation, Account details Owned by Customer. The Customer
file is still to be expanded, which you must do now before any virtual can
be defined.

2. Expand the relation, Customer Known by Customer code. This results in
the key entry Customer code on the Customer file.

3. Expand the relation, Customer Extended by Account details. The Account
details file is not to be expanded, as the expansion started in step 1.

 No entries that exist on Account details can be virtual fields on the
Customer file, since the relation, Account details Has Account opened date,
has not been expanded.

4. Expand the relation, Customer Has Customer type. This results in the
attribute entry, Customer type, on the Customer file.

 The expansion of Customer has finished, so it returns to Account details.

5. One entry exists on Customer that can be a virtual field on Account
details: Customer type. This results in the field Customer type becoming a
virtual entry on the Account details file.

6. Expand the relation, Account details Has Opened date. This results in the
attribute entry, Account opened date, on the Account details file.

Expansion ends here. Two further steps are needed:

7. The Customer file must be expanded before the Account details file. You
could do this by renaming the Customer file so that it comes before
Account details alphabetically. This is not always satisfactory or easy. It
would be better to add a file to the model that Refers to Customer, and
itself has a name alphabetically lower than Account details. For example, a
file name beginning with an asterisk (*) would serve this purpose. This file
does not need to exist physically, because its sole purpose is to alter the
expansion sequence within the model.

8. The Extended by relationship must be the last relation in the Customer
file. You could do this simply by giving the Extended by relation a
sequence number.

Chapter 3: Understanding Your Data Model 3–83

Using Relations

3–84 Defining a Data Model

The model relations would now look like this:

 *Force Sequence Refers to Customer

 Account details Owned by Customer
 Account details Has Account opened date

 Customer Known by Customer code
 Customer Has Customer type
 Customer Extended by 99 Account details

The expansion of relations would happen in this sequence:

1. Expand the relation, *Force sequence Refers to Customer. The Customer
needs to be expanded now before any virtual fields can be defined.

2. Expand the relation, Customer Known by Customer code. This results in
the key entry, Customer code, on the Customer file.

3. Expand the relation, Customer Has Customer type. This results in the
attribute entry, Customer type, on the Customer file.

4. Expand the relation, Customer Extended by Account details. The Account
details file needs to be expanded now before any virtual fields can be
defined.

5. Expand the relation, Account details Owned by Customer. The Customer
file expansion started in step 1. One entry exists on Customer that can be
virtualized on Account details: Customer type. This results in the virtual
entry, Customer type, on the Account details file.

6. Expand the relation, Account details Has Account opened date. This results
in the attribute entry, Account opened date, on the Account details file.

The expansion of Account details has finished, so it returns to *Force
sequence. No virtuals will have been specified on the *Force sequence Refers
to Customer relation. Expansion ends here.

If you find that virtuals have disappeared due to circularity in your model, you
will also find that if you try to put them on again they will appear twice in the
file entries. If this happens, repeatedly remove the virtuals until they do not
appear in the file entries. Follow the steps above before adding them again.

Chapter 4: Creating/Defining Your Data Model 4–1

Chapter 4: Creating/Defining Your Data
Model

This chapter shows you:

How to create a data model in CA 2E based on the conceptual model you
developed earlier. You may have an ERD of your conceptual model ready
to enter into CA 2E.

How to work with file entries that are resolved from the CA 2E relations
that you use to describe file relationships in your model.

See the chapter “Developing a Conceptual Model” for more information on how
to produce an ERD.

Before You Begin
You should have created a design model, using the Create Model Library
(YCRTMDLLIB) command, so that you can add information to it before using
this module.

See the following:

The chapter “Creating and Managing Your Model” in the Administration
Guide for more information about preparing to use CA 2E

Administration Guide for information on how to set up model values

Building Access Paths for information on how to build access paths

Building Applications for information on how to build functions

Using CA 2E Model Management Facilities
CA 2E provides facilities to help you manage your model, including the Edit
Database Relations panel and the Edit Model Object List panel.

You can access a model as one of three different user types: designer,
programmer, or user.

See the Administration Guide for more information on how to use CA 2E
facilities. See the chapter “Using Your Development Environment” in the
Administration Guide for more information on types of users.

Using CA 2E Model Management Facilities

4–2 Defining a Data Model

Edit Database Relations Panel

The Edit Database Relations panel allows you to describe your data model to
CA 2E. This is your starting point when creating a new data model. From here
you can branch off to other areas in CA 2E.

Note: Although you need to use the Edit Database Relations panel to define
files and relations, you can also use the Edit Model Object List panel to handle
many of the other functions provided by the Edit Database Relations panel.

At the Edit Database Relations panel, you can edit your data model, access
information, or navigate through CA 2E by using:

 Line selection values to perform model-related activities:

– Add narrative text to describe your model at file, field, or relation
level.

N0, N, N1—narrative for model object

N2—narrative for referenced object; field or file

N3—narrative for Refers to with Sharing Relations. Available only on
relations if sharing by an access path (not *None or *All)

– Display all relations beginning with the “object” (S1) and relations that
include the “referenced object” (S2).

– Display all relations referring to the “object” or all relations beginning
with the next file (T1, T2).

– Virtualize (V).

Using CA 2E Model Management Facilities

Chapter 4: Creating/Defining Your Data Model 4–3

– Clarify a relation with For text (+ and F5)

– Delete a relation (D).

– Specify redirection (E0).

– Go to the Edit File Entries panel (E); to the Edit Database Functions
panel (F); to the Edit File Details panel (Z1 or Z); to the Edit Field
Details panel (Z2).

Function keys to define objects (F10), access online Help (Help key), the
Data Dictionary (F7), CA 2E online map (F14) or CA 2E Display Services
Menu (F17).

Application areas to group your model files into specific categories under
specific areas defined by a unique identification code. By specifying an
application area code, you can choose to display or view only the part of
the model (files) you wish, or use with documentation commands.

Note: Alternatively, you can use model object lists to group together any
combination of model object types; you are not restricted to grouping files.
In addition, CA 2E provides many powerful tools and commands to operate
on model object lists.

Edit Model Object List Panel

The Edit Model Object List panel is an interactive utility for working with lists of
model objects. This panel serves as an alternate entry point into your model
where you can perform most functions available from the Edit Database
Relations panel other than editing relations and creating model objects. You
can temporarily transfer to the Edit Database Relations panel from the Edit
Model Object List panel by entering YEDTMDL or Y2 on the command line.
When you finish your editing, press F3 to return to the Edit Model Object List
panel.

The Edit Model Object List panel has a PDM-like interface and has the following
main features.

Multiple views of current model object list

– Object identification - object name, owner, type, and attribute

– Audit information - change date, time, user, and type, and impact
processed indicator

– Implementation details - implementation name and date and time of
last generation

– Impact analysis information - date, time, and action required

Defining Your Data Model

4–4 Defining a Data Model

Choice of displaying model object list entries sorted by

– Object name within object type

– Object name within object type within owner

– Implementation name within object type

Command line

Function key to repeat a subfile select option

Access to model profile

Options to work with model objects

Capability of switching between model object lists

View of detailed description of any model object

Options and function keys for impact analysis (usages and references)

Use of user-defined options

For more information:

On the Edit Model Object Lists panel, see the chapter “Managing Model
Objects” in Generating and Implementing Applications.

On model object lists, see the chapter “Managing Model Objects” in
Generating and Implementing Applications

On application areas, see the chapter “Using Your Model” in the
Administration Guide

Defining Your Data Model
The purpose of this chapter is to define and create files, fields, and relations
based on the entities, attributes, and relationships from your conceptual
model. The files, fields, conditions, and relations are the CA 2E basic model
design objects that must be defined and created before you can build access
paths and functions to operate on your model.

See the chapter “Understanding Your Data Model” for more information on
files, fields, conditions, and relations.

This task consists of three steps:

1. Defining Files

2. Defining Fields

3. Entering Relations

Defining Your Data Model

You can choose to do one step at a time or to combine all three steps by
entering CA 2E relation statements first.

Step 1: Defining Files

You define a file to CA 2E by describing its name and type and its relationship
with other files and fields.

Object/Referenced Object File

A file represents an entity within your model; for example, Order. It is referred
to as an object in a CA 2E data model.

All of your entity objects must be defined to CA 2E by a file name and file
type. For each of the objects you define, CA 2E creates a file. A file can be
linked either to another file or to a field through a CA 2E relation. The file or
field to which it connects is called a referenced object. Referenced objects
must also be defined to CA 2E as either a file or field.

A CA 2E file is defined by several different CA 2E relations. Each database (REF
and CPT) file must have at least one key relation. The relations are
automatically resolved by CA 2E to determine which fields are to be placed on
a file.

File Name

You define a file to CA 2E by describing its name and type. The file name must
be unique within your data model. It can contain up to 25 alphanumeric upper
or lowercase characters including embedded blanks.

File Type

The file type must be one of the CA 2E valid file types. Depending on how it is
intended to be used, a file can have a type of capture (CPT), reference (REF),
or structure (STR).

Capture and reference files are database files; structure files are non-database
files. Whether a file is capture or reference depends on the role of the fields
that make up that file.

See the chapter “Understanding Your Data Model” for more information on
using file types.

Chapter 4: Creating/Defining Your Data Model 4–5

Defining Your Data Model

Capture Files

Capture files should contain regularly recorded transactional data that your
application uses.

You should select a CPT file type for files that have a high volume of
transactions and require constant update. An example of a CPT type file is an
Order file. An order file has many orders that are processed daily.

CA 2E provides three types of default functions for capture files. When you
specify a file as a CPT type file, three internal functions are created to allow
you to create, change, or delete the records in the file. They are Create Object
(CRTOBJ), Change Object (CHGOBJ), and Delete Object (DLTOBJ).

Reference Files

Reference files are master files containing basic data that your application
uses.

You should select a REF file type for files that contain non-volatile information;
for example, a Customer file. A customer file contains detailed information
about a customer such as name, address, telephone.

In addition to the three default functions created for a capture file, a reference
file has two other functions that allow you to maintain a file or select a record
from a list. They are Select Record (SELRCD) and Edit File (EDTFIL).

Structure Files

A structure file contains a group of fields. These fields can be incorporated into
other files by the use of the Includes relation.

For example, you would give the STR type to the Audit Stamp file.

Audit Stamp Has Update date
 Has Update time
 Has User
 Has Update program

Any file within the system that needs the field definitions of the Audit Stamp
file can obtain them simply with an Includes relation.

Order Known by Order number
 Has Order date
 Refers to Customer
 Includes Audit Stamp

Structure file types can use the Has, Refers to, and Includes relations.

4–6 Defining a Data Model

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 4–7

CA 2E lets you virtualize fields to an STR file on a Refers to relation. The
virtual field in the STR file will not be available as part of the structure when it
is included in another file.

The Refers to relation is not moved to the file that includes the structure.
There are no referential integrity checks performed for this Refers to relation.
The file entry resolved from the Refers to relation is available in the structure.

Structure files are also used to group fields from various files for passing
parameters when building functions. When using structure files, all fields of
the structure are verified for required and optional checking on device designs.

For more information:

On parameters, see the chapter “Modifying Function Parameters” in
Building Applications

On using arrays as parameters, see the chapter “Defining Arrays” in
Building Access Paths

Adding Files

Follow these instructions to add files:

1. At the Edit Database Relations panel, press F10.

 The Define Objects panel displays. This panel allows you to create objects.
You can define more than one object on the subfile panel for a single Enter
key.

Note: If you entered information on the Edit Database Relations panel,
some information may appear on the Define Objects panel.

Defining Your Data Model

4–8 Defining a Data Model

2. Define a file:

a. Define the object as a file. In the Object type column, enter FIL.

b. In the Object name column, enter a name for the file.

c. In the Object attr column, specify the file type by doing one of the
following:

Enter CPT (capture), REF (reference), or STR (structure).

Select the file type from a list of default attributes. In the Object
attr column, enter ? and press Enter. From the list that appears,
select the desired file type.

This procedure automatically creates the Defined as relationship to declare the
existence of the file.

Note: The two-character identifying mnemonic lets you define a maximum of
684 files. If you exceed this number CA 2E displays a message instructing you
to reset the Last Used File Prefix (YFILPFX) model value and to supply a new
object prefix for your model.

To do so run the following commands:

YCHGMDLVAL MDLVAL(YOBJPFX)

 VALUE(new-object-prefix)

YCHGMDLVAL MDLVAL(YFILPFX)

 VALUE(*RESET)

Note: The first of these commands causes all new objects to begin with the
new object prefix. The second command reinitializes the identifying mnemonic
for files to AA. As a result, all subsequent file names will be unique

For more information on the YCHGMDLVAL command and model values, see
the CA 2E Command Reference Guide.

Step 2: Defining Fields

A CA 2E field represents an attribute within a CA 2E data model. A field is the
attribute that describes the characteristic of an entity in your conceptual
model; for example, Customer Code for Customer, Order Number for Order, or
Product Price for Product.

Field Name

A field name must be unique within the data model. It can contain up to 25
alphabetic characters in upper or lowercase, and numeric characters, including
embedded blanks.

Defining Your Data Model

Field Types

CA 2E provides a number of pre-defined field types that are suitable for
different purposes such as values, prices, quantities, and text. You can
override the defaults later at the field level and again at the device level. In
addition, you can change the supplied defaults or add additional field types of
your own.

You define a field to CA 2E by giving it a field name and field type. See the
table of CA 2E Field Types that follows for a description of the field types and
how you can use them.

Reference Field

The Reference (REF) field type allows you to define one field in terms of
another. Reference fields share the same domain, which means that one field
takes the same set of values of another field.

Field Types for Referenced Objects

The field type specifies all of the default characteristics for a field.

CA 2E uses field types to make default assumptions about properties of a field.
It also uses field types to validate entries.

To describe fields, select one of the field types from the following table.

Chapter 4: Creating/Defining Your Data Model 4–9

Defining Your Data Model

The following table contains CA 2E field types.

Field Type
Name

Description

Type

Length

Example

CDE

DT#

DTE

IGC

NAR

NBR

PCT

PRC

QTY

REF

SGT

STS

TM#

TME

TS#

TXT

VAL

VNM

Code

ISO Date

Date

Ideographic text

Narrative text

Number

Percentage

Price or tariff

Quantity

Reference

Surrogate

Status

ISO Time

Time

ISO Timestamp

Descriptive name

Monetary value

Valid system
name

A

A

P

A

A

P

P

P

P

-

P

A

A

P

A

A

P

A

6

10

7.0

20

30

5.0

5.2

7.2

5.0

-

7.0

1

10

6.0

26

Stock code

Order date

Date of birth

Kanji name

Comments

Number of employees

Profit margin

Unit price

Stock quantity

Field based on another

System key

Discontinued/Current

Time process starts

Transaction time

Transaction date/time

25 Product name

11.2

10

Stock value

File name

Specifying Field Types

Follow these instructions to specify field types to newly defined fields.

4–10 Defining a Data Model

Defining Your Data Model

1. At the Edit Database Relations panel, access the Define Object panel.
Press F10.

 The Define Objects panel displays. This panel allows you to create objects.
You can define more than one object on the subfile panel for a single Enter
key.

Note: If you entered information on the Edit Database Relations panel,
some information may appear on the Define Objects panel.

2. Define a field:

a. Define the object as a field. In the Object attr column, enter FLD.

b. In the Object name column, enter a name for the field.

c. In the Object attr column, specify the field type by doing one of the
following:

In the Object attr column, enter the code for the field type; for
example, CDE or TXT.

Select the field type from a list of default field types. In the Object
attr column, enter ? and press Enter. From the list that appears,
select a field type.

d. In the Field usage column, enter the field usage. The usage defines
whether the field can be used as a key (CDE), an attribute (ATR), or a
function field.

See the chapter “Understanding Your Data Model” for more information about
fields.

Chapter 4: Creating/Defining Your Data Model 4–11

Defining Your Data Model

Step 3: Entering Relations

CA 2E has two types of relations, file-to-file relations and file-to-field relations,
which together consist of eight relation types. To define a relation you must
use one of these eight relation types, described later in this topic.

You use CA 2E relations to declare the existence of a file and to describe the
connection between files or between a file and a field. The relations you enter
for a file are resolved into the fields that are needed to implement that file.
Because a file consists of a list of relations, to completely define a file, you
must enter all the relations that describe that file.

The Has, Known by, Owned by, and Refers to are CA 2E basic relations that
cover most data modeling cases. CA 2E automatically creates Defined as
relations for each of the files you define.

CA 2E also resolves a primary key based on the relation types that you enter
for a file. It requires a unique key for all database files, which should be the
smallest set of fields needed.

Relation Sequencing

CA 2E uses default sequence order for relations. You can override the default
sequence by entering different sequence numbers into the Seq column of the
Edit Database Relations panel.

The default order and sequence of relations is as follows:

 Order/Level Sequence Relation

 Key 1

2

3

Owned by

Known by

Qualified by

 Attribute 4

5

6

7

Extended by

Refers to

Has

Includes

The two levels of sequencing are key level and attribute level. You cannot
sequence key relations after attribute relations. If you use the same sequence
number on different relations within the same level, the order of these
relations follows the default ordering.

Sequence numbering follows the collating sequence order of importance. Blank
is first, followed by 1, 2, 3, and so on.

4–12 Defining a Data Model

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 4–13

Note: You can add sequence numbers after all relations for the file have been
entered. Blank sequence numbers come before numbered sequence numbers.

The Refers to relation for involuted relations should appear after all other
relations on the file if virtual fields are to be specified for the relation.

The sequence number you use may have some consequence when you later
add virtual fields to a file that references itself.

CA 2E expands the relationship based on which file entries are known at the
time the relation is resolved. If a field is to be virtualized but has not been
expanded or is not known to the file, the field cannot be virtualized.

For example, Employee Refers to Department and Employee Refers to
Employee For Manager. If Department Name is virtualized from Department
and Department Name is also desired for Manager's Department, the
Employee Refers to Department relationship must be sequenced before the
Employee Refers to Employee For Manager relationship.

 Emp loyee Department
has

works for manages

works for

A file-to-file relationship is expanded to place the fields that are the key of the
related file on that file. In the above example, if Department is keyed by
Department Code, the relationship Employee Refers to Department is
expanded to show the Department Code as a foreign key on the Employee file.
Department also has an attribute of Department Name that is to be virtualized
onto the Employee file. Upon expansion of the relationships, the virtual fields
create file entries. As a result, when the Employee Refers to Department
relationship is expanded, the virtual field Department Name also becomes a
file entry for Employee.

When the relationship Employee Refers to Employee For Manager is expanded,
the key of Employee is another file entry such as Employee Code. For this
relationship, you want to virtualize the field Department Name of the
manager. Expanding the relationship Employee Refers to Employee For
Manager will also include another field: Department Name for Manager.

If the Employee Refers to Employee For Manager relationship is expanded
before the Employee Refers to Department relationship, the virtual field
Department Name for Manager is not known as a file entry and will not be
expanded as a virtual field.

For more information about:

Procedures, see the chapter on Relation Sequencing.

Virtual fields, see the chapter “Maintaining Your Data Model.”

Defining Your Data Model

CA 2E Relation Types Charts

Use your conceptual model's ERD as a guide to determine the types of
relations needed for your model's files, or consult the CA 2E Relation Types
charts that follow. The first chart describes the file-to-file relation types and
the second chart describes the file-to-field relation types.

The following table contains file-to-file relations.

Relation Description

Defined as Declares that the file exists

Owned by Specifies that the keys of the owning file are to become major
key fields of the owned by file

Extended by Declares the file to have a one-to-one or one-to-none
relationship with another file

Refers to Causes the key fields of the referenced file to be included as
non-key fields on the referring file

Includes Causes fields from the referenced file or included structures to
be included as attributes in the referencing file

The following table contains file-to-field relations.

Relation Description

Known by Declares the field to be present as a key field on the file

Qualified by Declares a field to be present on a file as a key field; is used
with continuous variables

Has Declares the field as a data field on the file

To enter relationships, use the Edit Database Relations panel:

4–14 Defining a Data Model

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 4–15

1. Enter the object name. The object name is always a file name.

2. In the relation column, enter the relationship.

3. Enter the referenced object name:

For a file-to-file relation, enter a file name.

For a file-to-field relation, you must enter a field name.

WARNING! Do not use CA 2E shipped fields, those beginning with '*', for
defining file-to-field relations.

Define all objects and referenced objects. If you do not define an object or
referenced object, CA 2E highlights the name and sends a message letting you
know that it needs to be defined.

To define these objects, access the Define Objects panel by pressing F10. The
Define Objects panel displays with some information already entered.

For undefined objects, the object type is FIL and the file name is the object
name. In the Object attr column, enter the file type (CPT, REF, STR).

For undefined referenced objects:

The object type is based on the relation. If the relation is file-to-file,
the type is FIL. If the relation is file-to-field, the type is FIL or FLD.

The object name is the referenced object name.

If the object type is FLD and the relation is a Known by relation, the
field usage is CDE. If the relation is a Qualified by or Has relation, the
field usage is ATR.

Defining Your Data Model

4–16 Defining a Data Model

For the object attribute:

 If the object type is FLD, enter the field type in the Object attr column.

 If the object type is FIL, enter the file type (CPT, REF, STR) in the Object
attr column.

You can use this method for defining files, fields, and relations in combination
with other described methods. If you enter all information on the Edit
Database Relations panel, CA 2E defaults the values to the Define Objects
panel. Complete the definition for the objects on the Define Objects panel.

See the chapter “Understanding Your Data Model” for more information on CA
2E relations and examples.

This topic provides detailed information for working with file entries.

File entries are resolved from CA 2E relations that you use to describe file
relationships in your model. An entry indicates the presence of a field on a file.
A relation may imply that one or more fields are to be created for your file.

The entries, excluding virtual field entries, indicate the fields to be present in a
physical file.

Levels of Entry

The entries of a file arise from three different levels at which you specify
relations for the file:

 Access path level—all those fields resulting from the resolution of access
path relations. They must be either inclusive of or be a subset of the
entries from the file relations level.

 Device file level—those fields resulting from the resolution of device file
relations. Entries resolved at this level are a subset of the access path
level entries, which may not include every relation of the file.

 You can add additional entries to device designs for function fields.

Entry Types

Entries are classified into three categories depending on the types of relation
from which they are resolved:

File level—all those fields resulting from the resolution of file relations.

Key field entries

Attribute entries

Virtual field entries

Defining Your Data Model

There are no entries resolved from definition, or Defined as, relations. A
Defined as relation is used simply to define a file.

Key Field Entries

These entries arise from the resolution of CA 2E key relations, such as Owned
by, Known by, and Qualified by.

For example, if you specify:

Customer is Known by Customer code

the Customer code field will be present as a key field on the Customer file.

Attribute Field Entries

These entries arise from the resolution of CA 2E attribute relations, which are
Refers to, Has, and Includes.

For example, if you specify:

Customer Has Customer name

the Customer name field will be present as an attribute field on the Customer
file.

Virtual Field Entries

These entries arise from the specification of virtual fields on file-to-file
relationships expressed by the Refers to, Owned by, or Extended by relations.

For example, if you have the relation:

Order Refers to Product

where Product name is specified as a virtual, Product name will appear on the
Order file as a virtual field.

See the chapters “Understanding Your Data Model,” and “Maintaining Your
Data Model” for more information on how to specify virtual fields at file
relations level.

Overriding Entries

You can override CA 2E default entries of a file with replacing, sharing, and
redirection.

Chapter 4: Creating/Defining Your Data Model 4–17

Defining Your Data Model

You can override default entries for those entries arising from certain
relations: Owned by, Refers to, Extended by, and Qualified by relations.

Replacing Entries

When more than one instance of a field is defined for a file, separate fields and
names are created by default. CA 2E automatically defines and creates the
necessary additional field based on the existing field.

You can specify an alternative field to replace the one CA 2E supplies. The new
field must have the same domain as the one it replaces. It must be defined as
a field of REF type, with a definition based on the replaced field.

If you already have a field defined that you would rather use, you can specify
it on the Display Referenced Field Details panel (Replace field). This panel
shows all the eligible fields for an entry. From here, you can transfer to the
Define Objects panel to define new fields, based on the field to replace.

Sharing Entries

Key fields (identifiers) can be shared between file entries arising from the
resolution of the Owned by and Refers to relations.

All files that you use as targets of sharing must always be defined as relations
above the relation you are defining. Never share relations that are lower, and
do not move shared relations lower.

Sharing is performed by matching the keys of the file named in the sharing
parameter to the fields that already exist in the file. Thus you can control the
fields shared by proper sequencing of the relations. When you name a file in
the sharing parameter that is defined as a prior relation in the file, sharing
uses the keys defined for that relation in preference.

For example:

Order Detail Refers to Item Master

 For: Ordered

 where Item No. (ordered) is the key

Order Detail Refers to Item Balance

 For: Shipped, Sharing: *NONE

 where Item No. (shipped) and Warehouse No.

 are the keys

Order Detail Refers to Shipping Instructions

 Sharing: Item Balance

4–18 Defining a Data Model

Defining Your Data Model

Chapter 4: Creating/Defining Your Data Model 4–19

 where Item No. (shipped) and State Code

 are the keys

The explicit reference of Sharing Item Balance ensures that the Item No. of
the item being shipped is used as the key to the Shipping Instructions, rather
than that of an item ordered even though the Ordered Item No occurs higher
in the entries.

See the chapter “Understanding Your Data Model” for more information on
sharing entries between relations.

Redirection

Normal resolution of a CA 2E relation causes one or more fields to be added as
entries to a file. You can override this resolution by redirecting a relation
entry. Redirecting means that you specify that the source of a field value,
needed to implement an instance of the relation, is to be supplied from
another field of the same type already present on the file.

A source field may itself be either a virtual or non-virtual field. Advantages are
as follows:

There is less need to carry redundant fields on a record purely for the
purpose of supplying keys to access another file.

You can specify redirection of key fields to other instances of the same
(base) field on a record.

Redirecting Entries

You can redirect entries resolved from a Qualified by relation or a Refers to
relation.

Redirection of key fields resolved from a Qualified by relation provides a
central mechanism for indicating to functions that when records are to be
retrieved from a file to satisfy a relation, the retrieval is to be done on the
basis of a nearest match rather than an exact match. For instance, you would
use the prices in effect on a given date to price an order on that date for each
product.

Retrieval may be done on a basis of nearest less than or nearest greater than
depending on the value specified for the Sharing field.

The entry to be redirected must be sequenced after the relation entry that
provides the source field for the redirection. You can specify sequence
numbers on the Edit Database Relations panel to override the default order of
relations.

Defining Your Data Model

Never redirect relations that are lower or move these relations so they are
lower. If relations are not sequenced properly and you select a field for
redirection, the selection will not take effect.

For more information on relation sequencing, see the chapter
Creating/Defining Your Data Model.

The following discussion covers the two types of redirection: redirection of
qualifier fields and redirection of key fields.

Redirection of Qualifier Fields

A qualifier field is resolved from a Qualified by relation. Redirection of qualifier
fields allows you to specify that a relation between two files is satisfied not by
an exact match of values, but by the nearest match. The redirected field gives
the search value.

This redirection is particularly useful when you deal with variables such as
prices and discounts.

You can redirect entries arising from qualified fields to any other fields of the
same attribute type that are present in the referencing file. For example, dates
can be redirected to other dates, numbers to other numbers, and values to
other values.

If the length of the overriding field is not the same as the redirected field, a
truncated value is used.

For qualified redirection, a field that has been redirected is not dropped from
the model file entry list or from the generated physical file.

You can use qualified redirection only on fields defined as qualified keys on the
referenced file by means of a Qualified by relation.

Example of Redirecting Qualifier Fields

A Product price could be defined as follows:

FIL Product price REF Owned by FIL Product REF
FIL Product price REF Qualified by FLD Effective date DT#
FIL Product price REF Has FLD Product price PRC

When referring to the Product price in relations that describe other files, you
may redirect the source of the Effective date as follows:

FIL Order detail CPT Refers to 4 FIL Product price REF
 Order date RDR Effective date DT#

4–20 Defining a Data Model

Defining Your Data Model

Example of Redirecting a Reference to a Qualified File

When pricing orders, you always want the current price to be used. If product
prices do not change every day, each product price record represents not an
individual price on a particular day, but a price that is current over a period.
When retrieving a price record you do not necessarily retrieve a record exactly
matching the date; instead, you want the nearest record. To achieve this,
redirect the qualifier reference, using the Display Relation Entries panel. To
access this panel, place E0 against the Refers to relation on the Edit Database
Relations panel. The following is a sample Display Relations Entries panel.

Fields may only be redirected to other fields on the access path that are of the
same field type; for instance, both DT# fields.

If Order date is redirected to Effective date, at execution time:

Chapter 4: Creating/Defining Your Data Model 4–21

Defining Your Data Model

4–22 Defining a Data Model

 The Order date is used to look for the price currently in effect. The price
record found is that with the nearest date previous to the Order date. Thus
if an Order date of 11/29/93 is used to look for the price for Product 00002
in the following table of prices, the price record in effect from the
11/15/93 would be found:

The date of the price is placed on the Order record.

 Note that if new price records are added, such as 11/18/93, 22.75, pricing
of the existing order is not affected unless it is specifically repriced.
However, new orders are priced at the new rate automatically.

 Note also that, if product prices change every day, you would not need to
redirect the reference since there would be a record present for each
product for each date. Each product price would then represent a discrete
value rather than a continuum of values.

Procedures for Working with Entries

This section includes step-by-step instructions for

Displaying file entries

Replacing file entries

Displaying and redirecting relation entries

Modifying For Text and Sharing entries

Display File Entries

Displaying the entries for a CA 2E file gives you a means of examining the
fields that will be present in the physical file. The physical file is used to
implement your CA 2E file. To display file entries:

1. On the Edit Database Relations panel, enter E next to the file for which you
want to display entries (for example, Customer) and press Enter.

 The Edit File Entries panel displays the entries for the file you selected. A
sample panel appears below.

Defining Your Data Model

2. To exit, press F3 and return to the Edit Database Relations panel.

The Edit File Entries Panel

Replace File Entries
1. On the Edit File Entries panel, enter R next to the field you want to

replace.

 The Display Referenced Field Details panel appears. This display lists all
the fields with the same definition that are eligible fields for an entry. You
may select one of them. A sample panel appears below.

2. Select the field you want by typing X next to it. This field replaces the field
you indicated in step 1.

Chapter 4: Creating/Defining Your Data Model 4–23

Defining Your Data Model

4–24 Defining a Data Model

Display Referenced Field Details Panel

From this panel you can transfer to the Define Objects panel to define new
fields. The Define Objects panel will have transferred to it all the required
information. You have only to enter the field name.

Display/Redirect Relation Entries

You can display and redirect entries resolved from Refers to relations only.
Follow these steps to display and specify redirection of relation entries.

1. From the Edit Database Relations panel, enter E0 next to the Refers to
relation and press Enter.

 CA 2E displays the Display Relation Entries panel. A sample panel appears
below.

2. Enter R next to the desired field to access the Edit Redirected Fields panel.

 The Edit Redirected Fields panel shows, for a given relation entry, all the
possible other entries to which the relation entry can be redirected. You
can select any one of the indicated fields to specify redirection to that
entry. A sample appears on the next page.

Defining Your Data Model

Display Relation Entries Panel

3. Enter X next to the field that you want to use to supply the value for
redirection and press Enter.

Chapter 4: Creating/Defining Your Data Model 4–25

Defining Your Data Model

Edit Redirected Fields Panel

Modifying For Text and Sharing Entries

Follow these steps to modify For Text and Sharing entries.

1. Position the Edit Database Relations panel by entering the file name in the
Object positioner field at the top of the panel and press Enter.

2. Place a plus sign (+) in the subfile select field next to the relation and
press F5. You are allowed to expand Owned by, Refers to and Qualified by
relations.

3. The panel will be expanded to allow you to modify the For Text and
Sharing entries.

4–26 Defining a Data Model

Chapter 5: Maintaining Your Data Model

This chapter provides detailed instructions for you on the various tasks needed
to maintain a data model in CA 2E.

You perform the tasks described in this chapter to add more information to a
newly created model or to modify an existing one. If you are in the process of
building a model, complete the tasks in the order they are listed.

Displaying File Entries
In the previous chapter “Creating/Defining Your Data Model,” you entered the
definitions of your files, fields, and their relations.

Based on the relations you entered, CA 2E creates entries for your files. File
entries are fields that are resolved from CA 2E relations for a file and used to
implement that file. A relation may imply more than one entry on a file.

You may want to view those entries now so that you can modify the fields or
add new information to suit your model's needs.

See the chapter “Creating/Defining Your Data Model” for more information
about entries.

Edit File Entries Panel

You can view the entries of a selected file using the Edit File Entries panel. This
panel shows the field names, field type, the CA 2E implementation name for
the field, the default CA 2E field length, and whether the field is a key field or
an attribute. It also shows the key sequence (Ksq). This sequence dictates the
order in which the fields compose the primary key. You cannot change any of
this information while you are at this panel.

For more information on adding or changing fields, see the Adding/Modifying
Field Information section in this chapter.

Display File Entries

To display file entries follow these steps.

Chapter 5: Maintaining Your Data Model 5–1

Adding/Modifying Field Information

1. On the Edit Database Relations panel, type E next to the file for which you
want to display entries and press Enter.

 The Edit File Entries panel displays.

Note: CA 2E has created these entries for your Employee file as shown on
the panel and indicated which entry is a key field (K), an attribute field
(A), or a virtual field (V).

 A key field entry is resolved from the Owned by, Known by, and
Qualified by relations. An attribute field entry is resolved from a Has,
Refers to , or Includes relation. The key order is indicated under the Ksq
column.

 CA 2E also gives each entry an implementation name and a default length
according to the field type you entered for these fields.

2. Press F3 to return to the Edit Database Relations panel.

You can document and obtain hard copy printouts of the files, fields, and
relations that you entered for your model by using CA 2E documentation
commands.

See the chapter “Documenting Your Data Model” for more information on
documenting your data model.

Adding/Modifying Field Information
This section lists the tasks to add new information or to modify existing
information for the fields that CA 2E creates for your model's files.

5–2 Defining a Data Model

Adding/Modifying Field Information

Using the Edit Field Details Panel

You can access the Edit Field Details panel in the following ways:

From the Edit Database Relations panel, type Z2 on the relation with the
field as the referenced object and press Enter.

 The Edit Field Details panel displays.

From the Edit Database Relations panel, do the following:

a. Press F7 to display all of the fields on the Edit Fields panel.

b. From this panel, select the desired field and access the details by
typing Z next to the field, and pressing Enter.

From the Edit Model Object List panel, enter option 2 for the selected field.

The Edit Field Details panel displays.

The Edit Field Details panel allows you to modify field information. The values
for the field were originated from default values of the field type. These values
can be modified to change the characteristics of the field. The changes you
make to a particular field will be available throughout the model.

Press F10 to view the appearance fields instead of the field control
information.

Chapter 5: Maintaining Your Data Model 5–3

Adding/Modifying Field Information

5–4 Defining a Data Model

The following table lists the overrides for CA 2E default field values for field
types.

Data Attribute Default Model
Level

Field Level Device
Level

Field length

System data type

Keyboard shift

By type

By type

By type

Y

N

Y

Y

-

N

N

-

N

Implementation name

Text headings

Left hand side text

Right hand side text

Column headings

By type

By type

Field name

Field type

Field name

-

-

-

Y

-

Y

Y

Y

Y

Y

N

Y

Y

Y

Y

Allow lowercase

Mandatory fill

Valid system name

Mod 10/11 check

Field exit option

By type

N

VNM only

N

By type

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

Y

Check condition

Translate values

By type

STS only

-

N

Y

Y

Y

N

Edit codes: Input

 Output

 Report

By type

By type

By type

Y

Y

Y

Y

Y

Y

Y

Y

Y

Adding/Modifying Field Information

Chapter 5: Maintaining Your Data Model 5–5

Change Field Name and/or Type

Keep these points in mind when you rename fields:

The text and column headings automatically change.

You cannot rename two fields with the same name.

To change the type and/or name of a field:

1. From the Edit Database Relations panel, press F7 to display the Edit Fields
panel.

2. Zoom into the details of the field by entering Z next to the field and
pressing Enter. The Edit Field Details panel displays.

3. Press F8 to change the name or type. The cursor will be on the name entry
area.

a. To change the field name, type a new name over the current one and
press Enter.

b. To change the field type, key a new field type over the current one and
press Enter. You may also place a ? to select from the list of field
types.

4. Press F3 to return to the Display Fields screen. The new field name and/or
type you entered is shown on the panel.

5. Press F3 to return to the Edit Database Relations panel.

Change Field Length

You can change the length of a field from the Edit Field Details panel. Type the
new length over the existing one and press Enter.

Note: You cannot change field length for DTE fields.

Add Narrative Text

To add narrative text to a field:

1. Access the Edit Narrative Text panel in any of the following ways:

On the Edit Field Details panel, press F20.

Type N2 next to a relation, with the field from the Edit Database
Relations panel as the referenced object.

Use selection options 21 or 22 from the Edit Model Object List panel.

2. Add any text, notes, or descriptive information you want to include for the
field at this panel.

Adding/Modifying Conditions

5–6 Defining a Data Model

This becomes the generated help text or design documentation.

For more information:

About narrative text, see the chapter “Using Your Model” in the
Administration Guide

On including narrative text in documentation listings, see the chapter
“Documenting Your Data Model” in this guide

Change Field Text and Headings

You can modify the text and headings of a field from the Edit Field Details
panel. The headings are used on reports and panels as prompts for the field.
They have initial values of the field name.

To change field text and headings from the Edit Field Details panel, type the
new text over the existing text and press Enter.

Change Valid System Name (VNM)

The Valid System Name value for fields of VNM type is modifiable. To change
field Valid System Name (VNM), on the Edit Field Details panel, enter one of
the allowable values (Y or Blank).

See the chapter “Understanding Your Data Model” for more information on
field types and how to modify field type values.

Adding/Modifying Conditions
A condition specifies the value or list of values a CA 2E field may take. You can
add, change, or delete conditions using the Edit Field Conditions and the Edit
Field Condition Details panels.

Condition Types

A condition type specifies the type of validation rule it imposes.

Field conditions can be used to

Validate the entry of data

Select or omit data in access paths

Specify processing conditions in a function that operates on the data

Adding/Modifying Conditions

Chapter 5: Maintaining Your Data Model 5–7

For more information about using conditions with access paths and functions,
see the Building Applications chapter “Modifying Action Diagrams”

Select one of the following four types of conditions:

VAL to specify single values

LST to specify a list of values

CMP to specify an arithmetic comparison for a field

RNG to specify the range of valid values for a field

VAL and LST are used for status fields; CMP and RNG are used with non-status
fields.

For this task, you will use conditions to

Validate the entry of data

Specify default values when adding records to a file

Using the Edit Field Conditions Panel

The Edit Field Conditions panel shows all the conditions that exist for a
selected field. Use this panel to add or modify conditions.

1. From the Edit Database Relations panel, do either of the following:

Type Z2 next to the relation with the field you want to add conditions.

Press F7 to get a list of fields, then type Z next to the field to which
you want to add conditions, then press Enter.

 The Edit Field Details panel displays.

2. Press F9 to obtain the Edit Field Conditions panel.

 The Edit Field Conditions panel displays the conditions for the selected
field.

Adding/Modifying Conditions

Add New Conditions

When adding a condition, you must add the condition type, the meaning of the
condition, and the value used to describe the condition in the file.

1. From the Edit Field Conditions panel:

 Type a name and a condition type (VAL, LST, CMP, or RNG) and press
Enter.

 The Edit Field Conditions Details panel displays.

 For STS fields:

5–8 Defining a Data Model

Adding/Modifying Conditions

Chapter 5: Maintaining Your Data Model 5–9

 If type is VAL, and Translate condition value is Yes, enter the display
and file (storage) values for the condition.

 If type is VAL, and Translate condition value is No, enter the file
(storage) and mnemonic values for the condition.

 If type is LST, select the existing conditions for the list by typing +
next to each selection. Deselect conditions that are currently attached
to the list but no longer required by typing - next to each selection.

 For non-STS fields:

 If type is CMP, enter the compare operator and the compare value.

 If type is RNG, enter the From compare value and the To compare
value.

Note: You can add additional VAL, CMP, and RNG conditions while on the Edit
Field Details panel.

2. Press F3 to return to the Edit Field Conditions panel.

If type is LST, specify one of the following prompt functions. These
functions provide a method to display and select the allowed values list
when F4 or ? is used for the field.

Condition Values Displayer

Drop Down List

The conditions you have added are shown on the panel.

To Modify Existing Conditions:
1. From the Edit Field Conditions panel, select a condition by typing Z next to

the condition you want to modify and press Enter. The Edit Field
Conditions Details panel displays.

2. Change the name of the condition using F8 to make the field name
modifiable.

3. Change the existing condition information and press Enter.

 The Edit Field Conditions panel displays.

For VAL conditions, the value listed under File/From Value is stored in the file;
the value under Display/To Value is what appears on all panels and reports.
For example:

Text Description: Open Order

File/From Value: O - stored in file

Display/To Value: OPN - shown on panel

Mnemonic - shown on panel

Adding/Modifying Conditions

File/From Value and Display/To Value are often the same.

Note: CA 2E automatically adds a special condition for the *ALL values LST
condition of a STS field.

Using VAL and LST Conditions

VAL conditions on status fields describe a single condition for that field, such
as Open or Invoiced. It is often desirable to describe a set of these conditions
and address them as a single condition. For example, Open, Picked and
Shipped conditions might constitute the condition Active. To do this, CA 2E
provides the ability for a set of VAL conditions to be grouped under a single
LST condition.

By default, all VAL conditions are included in the special LST condition *ALL
values. You may create other LST conditions from any combination of VAL
conditions.

LST conditions also permit the same VAL to be relabeled as a different
condition. In this case, the LST has only one entry, that of the VAL. This is
particularly useful with subfile selectors and function keys where a single VAL
(such as “A” or “F8”) may define different conditions on different panels.

To accomplish this you may consider changing all your VALs on the Subfile
selector field SFLSEL to condition such as:

VAL

VAL

Condition

A

B

Value

A

B

and to then use a single entry list to define the actual condition. For example:

LST

LST

LST

Condition

Add

Activate

Allocate

Entry

A

A

A

Validating Field Entries Using Check Condition

To validate data entry for a field, CA 2E uses a check condition which initially
defaults to *NONE. The default indicates that any value is allowed for the field,
even if conditions have been defined for it.

5–10 Defining a Data Model

Adding/Modifying Conditions

Chapter 5: Maintaining Your Data Model 5–11

You can override this default with one of the conditions you have added to a
field to impose specific validation. The field value will be validated against the
condition for the field. If the value does not meet the criteria of the condition,
an error message will be displayed.

Note: Although you have defined conditions, if you leave check condition to
*NONE, checking will not occur at this level. It can still take place at the
device level.

For STS fields, the check condition must be a LST condition. As an example,
follow these instructions to specify the *ALL values condition to validate a
status field.

On the Edit Field Details panel, type *ALL values in the Check condition
field and press Enter.

You can also select a condition from a list of existing conditions by typing ?
in the Check Condition field on this panel.

Changing Default Conditions

You use a default condition to provide a value to a field when there is no value
entered for the field. The default condition specifies the value to store for the
field.

The allowable types for the Default condition are

VAL for STS fields

CMP with an *EQ operation for all other fields

The Default condition has a value of *NONE, defaulted by CA 2E. You can
change the condition to any valid condition available for the field.

1. On the Edit Field Details panel, you can either:

Type the name of the condition to be used for the Default condition.

Or select a condition from a list of conditions for that field with ? and
press Enter.

2. Press Enter.

Changing Translate Condition Values

The Translate Condition values field is available only for STS fields. This is
used to specify that the field has a display value that can be different than the
stored value. To give this capability to a STS field:

You must provide a Check condition of LST for the field. Even if the Check
condition is not correct at this time, you must provide a dummy.

Adding/Modifying Conditions

 You can then change the Translate Condition value from blank to Y.

To access the Edit Field Conditions panel and change Translate Condition
values field:

1. From the Edit Database Relations panel:

a. Press F7 to access the Display Fields panel.

b. Type Z against the desired field to access the Edit Field Details panel.

2. From the Edit Field Details panel, type ? for the Check Conditions field and
Y for the Translate Cnd Values field.

 Placing a ? displays the Edit Field Conditions panel. If there have not been
any conditions defined for the field, the panel will not show any conditions.
In this case, you need to define a condition of type VAL for the field.

 This condition will be a single value condition since the translation of
values has not yet been defined for the field. After you create the
condition, a new condition should appear, the *ALL values condition. It
was created automatically by CA 2E.

3. Select the desired condition by typing X next to a LST Condition field on
the Edit Field Conditions panel and press Enter.

4. Press F9 from the Edit Field Details panel to display the Edit Field
Conditions panel.

5. Create the desired condition by typing the name and type of the condition
and press Enter.

 The condition of type VAL must have an internal and an external value.

6. On the Edit Field Conditions Details panel, enter the values and press
Enter.

Note: If an initial condition was created to form the *ALL values condition,
this initial condition has the same internal and external value. You can change
or delete this condition if desired.

Converting Conditions to List of Values

CA 2E generates source code to call a select facility for any status fields that
appear as input-capable fields on a function device design. If you prompt a
status field that requires data input, the select facility displays the allowed
external values.

CA 2E provides the Display Values List panel.

For example, to display a list of values for the Credit Status field, press F4
while positioning your cursor on the Credit Status field on the device file of a
CA 2E generated program.

5–12 Defining a Data Model

Adding/Modifying Virtual Fields

You will see the following panel:

Place 1 to select a value.

You can create the values list file from a CA 2E model using the Convert
Condition Values (YCVTCNDVAL) command.

For more information on using the YCVTCNDVAL command see the CA 2E
Command Reference Guide.

Adding/Modifying Virtual Fields
You add virtual fields to a file-to-file relation, such as Refers to, to indicate
which item of data can be obtained through the relation. Virtual fields provide
a way to view information from another related file without having the
information physically exist in the related file.

Virtual Fields and Access Paths

Virtual fields are defined through relations to a file. These virtual fields are
available to access paths built over the file. However, additional virtual fields
cannot be added at the access path level.

For more information on access path virtual fields, see the Building Access
Paths chapters “Modifying Access Paths” and “Tailoring For Performance.”

Chapter 5: Maintaining Your Data Model 5–13

Adding/Modifying Virtual Fields

5–14 Defining a Data Model

Example of Using Virtual Fields

Because the Order detail file Refers to the Product file, you can specify any
Product detail, such as Product name or Pack size, as a virtual field on the
Order detail file. For example:

REF

If you define a Product as follows:

FIL

FIL

FIL

Product

Product

Product

REF

REF

Known
by

Has

Has

FLD

FLD

FLD

Product
code

Product
name

Pack size

CDE

TXT

QTY

Any file that has a Refers to relationship with a relation that refers to Product
can include any non-key field of Product as a virtual field. For example, an
order detail line can include Product name and Pack size as virtuals:

FIL Order
detail

CPT Refers
to

FIL

VRT

VRT

Product

Product name

Pack size

REF

TXT

QTY

By indicating a field on the Product file (referenced file) as a virtual field, you
allow the system to make the data contained in this particular field of the
Product file available for functions that operate on the Order Detail file
(referencing file).

In this case, the Order Detail file may include any of the non-key fields of the
Product file as virtual fields.

When you specify virtual fields for a relation, CA 2E generates the necessary
source to join the files that actually contain the virtual field to the related file.
For DDS, this process is usually implemented through the use of an i OS join
logical file. For SQL, a view over multiple tables is used. Because of i OS
limitations, CA 2E generates special logic to support virtual fields in SPN
access paths.

You can only add virtual fields to relations that connect a pair of files through
the relation types Owned by, Refers to, and Extended by.

When you specify virtual fields for a file that references itself, sequence the
Refers to as the last relation.

Adding/Modifying Virtual Fields

Virtualizing Virtual Fields

The fields you have chosen as virtual fields may themselves be virtual fields on
the referenced file.

For more information see the chapter “Creating/Defining Your Data Model.”

For instance, if in the above example Product Refers to Quality, with Quality
name specified as a virtual field, then Quality name may be a virtual field for
Order detail as well.

FIL

FIL

Quality

Quality

REF

REF

Known by

Has

FLD

FLD

Quality code

Quality name

CDE

TXT

FIL Product REF Refers to FIL

VRT

Quality

Quality name

CDE

TXT

FIL Order
detail

REF Refers to FIL

VRT

VRT

VRT

VRT

Product

Product name

Pack size

Quality code

Quality name

CDE

TXT

QTY

CDE

TXT

You can specify as many levels of virtual fields as allowed by i OS for levels of
database join. Depths of three or more are not recommended.

Follow these instructions to add virtual fields to a file relation or modify
existing virtual fields.

1. On the Edit Database Relations panel, type V next to the file relation for
which you want to add virtual fields and press Enter.

 The Edit Virtual Field Entries panel displays. This panel shows a list of
fields of the referenced file.

2. Type + next to the field that you want to be a virtual field and press
Enter .

 You can add one or many virtual fields for a relation.

 Pressing Enter confirms your selection. Note that an * (asterisk) has been
placed in the selection column, indicating the field is now a virtual field.

 To remove a virtual field, type a – next to the selected field.

Chapter 5: Maintaining Your Data Model 5–15

Related Procedures for Maintaining Your Model

Related Procedures for Maintaining Your Model
Use the following procedures to perform maintenance tasks involving files,
fields, conditions, and relations.

Note that the maintenance described in this subtopic can also be accomplished
using options on the Edit Model Object List panel.

For more information on the Edit Model Object List panel, see the Generating
and Implementing Applications chapter “Managing Model Objects.”

Files

Add Narrative Text
1. On the Edit Database Relations panel, type N next to the file. The Edit

Narrative Text panel displays.

2. Fill this panel with the text, notes or any descriptive information you want
to include.

For more information:

 On narrative text, see the Administration Guide

 On how to include narrative text in documentation, see the chapter
“Documenting Your Data Model”

Change a File Name
1. On the Edit Database Relations panel, zoom into the file details by typing Z

against any of the relations of the file.

2. On the Edit File Details panel, press F8, type the file name, and press
Enter.

Delete a File

To delete a file, you must delete the Defined as relation for that file. Before
you can delete a Defined as relation, you must first delete all other references
to the file. Use the positioning option to view all references.

1. Delete all relations, except a Defined as relation.

 This includes all Owned by, Known by, Refers to, Has, Extended by,
Qualified by, and Includes relations.

5–16 Defining a Data Model

Related Procedures for Maintaining Your Model

 On the Edit Database Relations panel, type a D next to each of the
relations of the file and press Enter.

2. Delete the Defined as relation (DFN).

 When you delete the Defined as relation, CA 2E removes all the access
paths and functions associated with this file.

 On the Edit Database Relations panel, enter DFN for the Rel lvl and
press Enter.

 Type a D next to the Defined as relation and press Enter.

3. Optionally delete all fields that are now unreferenced.

 From the Edit Database Relations panel:

 Press F7 to display the Display Fields panel.

 Press F11 to display unreferenced fields.

 Enter a D next to each of the fields to be deleted and press Enter.

4. Delete all messages for this file. This includes all user-created messages in
addition to the default messages.

 There are two default messages:

 “File name” EX (record already exists)

 “File name” NF (record not found)

 On the Edit Database Relations panel, type an *m above the Object
field to position to the *Messages file. Press Enter.

 Type F against any Message field and press Enter.

 On the Edit Message Functions panel, type D next to the message to
be deleted and press Enter.

Chapter 5: Maintaining Your Data Model 5–17

Related Procedures for Maintaining Your Model

Fields

Delete a Field
1. From the Edit Database Relations panel, press F7 to display the Display

Fields panel.

2. A field can be deleted only if it is not referenced by any other field, file, or
relation. Press F11 from the Display Fields panel to display a list of
unreferenced fields in your model.

3. Type D next to each of the fields to be deleted and press Enter.

Conditions

Delete a Condition

A condition cannot be deleted if it is referenced. You must first remove all the
references where the condition is used before you can delete a condition. A
condition may have been used in other places such as in an access path or
action diagram.

On the Edit Field Conditions panel, type D next to the condition you want to
delete and press Enter.

5–18 Defining a Data Model

Related Procedures for Maintaining Your Model

Relations

Add Narrative Text
1. On the Edit Database Relations panel, type N0 next to a relation. The Edit

Narrative Text panel displays.

2. Fill this panel with the text, notes, or any description you want to include.
Press Enter, F3 to exit.

For more information:

 On using narrative text, see the Administration Guide.

 On how to include narrative in documentation, see the chapter
“Documenting Your Data Model”

Change a Relation

You can change a relation by typing over that relation's statement on the Edit
Database Relations panel. The file (object), the relation, and the related file or
field (referenced object) on the statement can be changed. CA 2E provides
automatic relation syntax checking to prevent entry of invalid statements.

1. On the Edit Database Relations panel, type a new object, relation, or
referenced object (file or field) over the existing name and press Enter.

2. Press F10 to define objects if the referenced object is not yet defined.

Note: To change the file or field name, do not type over the name and define
a new object. Zoom into the file or field details and change the name.

Override Default Relations Sequence

You can change the sequence order of relations by entering a new sequence
number using the Sequence field on the relation statements.

For more information on sequencing redirected or shared relations, see the
chapter “Creating/Defining Your Data Model.”

On the Edit Database Relations panel, type the new sequence number(s) in
the Relation Seq column and press Enter.

Delete a Relation

To delete a relation, type D next to the relation to be deleted and press Enter.

Chapter 5: Maintaining Your Data Model 5–19

Creating User-Defined Field Types

Note: Defined as relations can only be deleted if there are no references by
other relations to the file it defines.

Example: File B cannot be deleted, that is the Defined as relation cannot be
deleted, until the other relations have been deleted. This includes relations
that reference that file. If A refers to B, the file B cannot be deleted until the
relation A Refers to B is removed.

FIL

FIL

B

B

REF

REF

Defined as

Known by

FIL

FLD

B

b1

REF

REF

and also,

FIL A REF Refers to FIL B REF

Deleting the Defined as relation removes all functions and access paths built
over this file, including default functions and access paths.

Creating User-Defined Field Types
CA 2E provides a wide range of default field types that cover many data
requirements. If you need a field type that is not defined within the CA 2E
product, you can create your own. This topic provides instructions on defining
and creating your own field types in addition to the ones supplied by CA 2E's
shipped file *Field Attribute Types.

Included in this topic are examples for creating the following user-defined field
types.

 Century Date Field Type

 Currency Field Type

 Real Percentage Field Type

Each specific CA 2E user-defined field type has a number of attribute values
that will be assigned to any new fields given that type. You can specify which
of those values cannot be changed and which can be overridden at the
individual field level. You may also specify value mapping and validation
routines centrally to the data model for your new field type.

Note: Only a user of type *DSNR may define new field types.

5–20 Defining a Data Model

Creating User-Defined Field Types

Name and Text

You must specify a 3-character mnemonic for the field type you define. You
cannot duplicate existing field type mnemonics.

You can also add explanatory text to a field. The text will appear next to the
field name shown on the Display Object Attribute panel.

You should define a unique 2-character mnemonic code, which will be used to
generate field names for fields of the same field type. The field name
mnemonic will be defaulted to the first two letters of the 3-character field
type.

Basic Attributes

You can specify default values for all basic field attributes. These are

 i OS data type

 Internal and external length

 Keyboard shift character

 Allow lowercase

 Check valid system name

 Mandatory fill required

 Modulus 10/11 check

 Values mapping

For more information refer to the Edit Field Type panel and the description of
attributes that follows.

Internal and External Length

You can specify default values for both the internal and the external length of
the field; these lengths may be different. You can either specify fixed values or
allow the user to supply both internal and external values. You can also
calculate the external length from the supplied internal length with a length
conversion function.

For more information on field length calculation, see the examples following.

Chapter 5: Maintaining Your Data Model 5–21

Creating User-Defined Field Types

Mapping Functions

If a field is to be stored internally in a form different from the one in which it is
displayed externally, then you can specify mapping functions to describe how
the values are to be translated.

These functions can be any CA 2E functions. They must be attached to the CA
2E shipped file *Field attribute types. The functions must have at least one
parameter. There are restrictions about how other parameters can be
specified.

For each field, you can use mapping functions in each direction as described
below.

 External-to-Internal function: to specify how the entered value for the field
is to be mapped to the internal value. Validation may be included in this
function.

 Internal-to-External function: to specify how the stored value is to be
converted to the displayed value. You must specify value mapping for the
field type if you specify an internal-to-external function. To specify value
mapping, enter a Y in the Initial value column for Allow value mapping.

Note: If you use an EXCUSRSRC function, only define your work variables
once, in the Internal-to- External function.

For more information on mapping functions, see Specifying Mapping Functions.

Defining New Field Types

You use the Edit Field Type panel to define new field types. This panel enables
you to update the attributes for CA 2E field user-defined types. This panel is
display only for CA 2E system field types.

Follow these instructions to define your own field type:

1. On the Edit Database Relations panel, type *F in the Object positioner
area to display the *Field attribute types file.

2. Type Z against one of the relations for the *Field attribute types file to
access the field types. The Display Field Types panel displays.

5–22 Defining a Data Model

Creating User-Defined Field Types

This panel shows a list and the description of all the existing field types
contained in the shipped file.

3. Press F9 to display the Edit Field Type panel, which is where you define a
new field type. Enter all of the necessary information to specify the
characteristics of the field type. The options are explained following the
panel.

Chapter 5: Maintaining Your Data Model 5–23

Creating User-Defined Field Types

Edit Field Type Panel

Specifying Basic Attribute Values

This panel shows the attributes of the field type (DTX, as used for the first
example) and highlights the two main columns where you can change its
values.

The first column, Allow user entry, indicates how the field type attributes will
be displayed when a field of this type is shown for editing on the Edit Field
Details panel; the second column, Initial values, is for specifying the initial
default values allowed for that field type.

For example, you would select and change the values for the Internal data
type of the DTX attribute as follows:

Attribute

Internal data
type

Allowed user
entry

O (I,O,H)

Initial value

P

5–24 Defining a Data Model

Creating User-Defined Field Types

For Allow user entry, O means the Internal data type attribute is to be
displayed with a fixed value; I means it can be modified; and H means it is to
be hidden altogether.

For Initial value, P means you want Internal data type to have the value of
Packed numeric.

The following description of the attributes and default values shown for a field
type on the Edit Field Type panel will explain further how you define a new
field type.

 Field type—The field type for which the attribute values are to be
specified.

 Text—A short description of the field type, for example, “8-character date
field.”

 Right hand side text—the default right hand side text for fields of this
type.

 Internal data type—The system data type of the field to be stored on a
database file. It can have one of these values:

A: Alphanumeric

P: Packed numeric

S: Signed numeric (zoned)

B: Binary (does not get generated)

F: Floating (does not get generated)

 Internal length—The number of bytes used to store a field in files. Fields
with decimal positions are entered as: total number of digits, number of
decimal places. For example, for a field to contain 999.99, the length
would be 5.2.

 External data type—System data type of field to be displayed on device
files. It can have one of these values:

A: Alphanumeric

S: Signed numeric (zoned)

 External length—The number of characters or digits in a field on a panel
or print file. Fields with decimal positions are entered as: total number of
digits, number of decimal places. For example, for a field to contain
999.99, the length would be 5.2.

Chapter 5: Maintaining Your Data Model 5–25

Creating User-Defined Field Types

 Keyboard shift—Specifies which keyboard shift is allowed for the field on
panel files. It can have one of these values:

Blank: no keyboard shift

X, A, N, W, I, D, or M: alphanumeric fields

N, S, Y, I, or D: numeric fields

O, J, E, W, G, or A: ideographic fields

For more information on keyboard shift values, refer to the IBM DDS
Reference manual.

 Lowercase—specifies whether the field values may be in lowercase.
Lowercase applies only to alphanumeric fields. It can have one of these
values:

Y: lowercase allowed

Blank: lowercase not allowed

 Check valid system name—specifies whether any value entered for the
field must be a valid i OS system name. A valid system name must start
with a letter, no more than 10 characters long, and must contain only
letters, digits or one of these characters: “-”, “#”, “$”, or “@”.

 Mandatory fill—specifies whether an entry if any must be made for every
character of the field. This can have one of these values:

Y: mandatory fill

Blank: no mandatory fill

n Modulus check 10/11—specifies whether any value entered for the field
must meet a modulus 10 or 11 check as specified by the DDS CHECK
keyword. Modulus check applies only to numeric fields. This can have one
of these values:

10: apply modulus 10 check

11: apply modulus 11 check

Blank: do not apply modulus check

 Allow value mapping—specifies whether value mapping will be
implemented for the field. If value mapping is 'Y', you must specify an
Int/ext function and an Ext/int function. If no value mapping is required,
you can still specify an Ext/int function to perform other validation.

5–26 Defining a Data Model

Creating User-Defined Field Types

This can have one of these values:

Y: field is to be value mapped

Blank: field is not to be value mapped

 Int/ext len conv—specifies how external length is to be determined. This
can have one of these values:

I: use internal length. This will force the External length value to
equal the Internal length value on the Edit Field Type screen.

C: invoke user program. The calculation will be performed by a field
length calculation program named YxxxLENR1C where “xxx” is
the 3-character name of the data type. You must supply this
program yourself.

V: if the field is valued mapped, allow user entry of the external
length. If it is not value mapped, use internal length.

Blank: allow user entry of the external length.

 Int/ext function—This is the function that is to convert the internal value
to external value for the field. It must be a function attached to the *Field
attribute types file.

 Ext/int function—This is the function that is to convert the external
value to internal value for the field and validate it if required. It must be a
function attached to the *Field attribute types file.

Specifying Mapping Functions

You can examine and change the value mapping functions in a model using
the Edit Functions panel for the *Field attribute types file. This panel shows
the mapping functions attached to the field types file.

You can obtain the Edit Functions panel in two ways:

 Type ? for the Ext/int function or the Int/ext function fields on the Edit
Field Type panel.

 This will show you a list of functions for the *Field attribute types.
Functions can be added on the Edit Functions panel.

 Type F next to a relation of the *Field attribute types on the Edit Database
Relations panel.

Chapter 5: Maintaining Your Data Model 5–27

Creating User-Defined Field Types

When you define a function that is based on an access path containing fields of
a user-defined field type, CA 2E automatically does the following in the
function definition:

 Include fields of the external field type on the device designs of the
function.

 Include the field mapping functions at the appropriate points in the action
diagrams.

 Pass the internal and external fields to the mapping function parameters.

 Specify that the internal fields are to be used to update the database.

If value mapping is specified for a field type (in other words, Y is specified in
the Initial value column of Allow value mapping), both internal/external and
external/internal functions must be defined and both must have two
parameters. This is to supply and return the internal and external values as
appropriate.

If the external/internal function is being used for validation only, only one
parameter needs be supplied: the external value.

Function type

First
parameter

Parameter
Usage

Second
Parameter

Parameter
Usage

External/Internal

Internal/External

EXT FLD

EXT FLD

I

O

INT FLD

INT FLD

O

I

The order in which you specify the parameters is important. Ensure the
following:

 The external version of the field must always be the first parameter,
regardless of usage. The field used to define the external parameter
should have a field type of NBR, CDE or TXT.

 The field used to define the internal parameter should always be the
second parameter. You can specify additional parameters after these two
fields.

Specifying Additional Attribute Values

Use the Edit Field Type Defaults to specify the default initial values for some
additional basic attributes of the field; for instance, field exit options and edit
codes. You can obtain this panel in either of two ways:

5–28 Defining a Data Model

Creating User-Defined Field Types

 For existing field types, enter Z next to the field type on the Display Field
Types panel

 Press Enter when defining a new attribute type from the Edit Field Type
panel.

The Edit Field Type Defaults panel allows you to enter and change the
following attributes of the field type:

 Internal length

 External length

 Data type

 Mnemonic code

 Keyboard shift

 Lowercase

 Mandatory fill

 Modulus 10/11

 Valid System Name (VNM)

 Field Exit options

 Edit codes

Chapter 5: Maintaining Your Data Model 5–29

Creating User-Defined Field Types

Example: Defining a Century date Field Type (DTX)

This example shows how to define a century date field data type (DTX). Since
the shipped DT# field type has the capabilities defined here, use this example
only to understand the steps needed to define your own field type. The DTX
field type is to have the following characteristics.

 Internal format packed numeric: CCYYMMDD, fixed length

 External display format numeric: DD/MM/CCYY, fixed length

 Value mapping to convert between the internal and external values

 Validation to check that entered dates are valid

The first step is to define the mapping functions needed for the DTX field type.

Type P next to the Check DTX and Convert DTX to display their parameters.
Press Enter.

Defining Parameters for the Mapping Functions

You use the Edit Function Parameter and Edit Function Parameter Detail panels
to specify the parameters for mapping functions.

The two mapping functions for the DTX field data type, Check DTX and
Convert DTX, should have parameters defined for them as follows:

5–30 Defining a Data Model

Creating User-Defined Field Types

 FIRST
PARAMETER

 SECOND
PARAMETER

Function
Name

Function
Type

Name Usage Data
Type

Name Usage Data
Type

Check DTX Ext/Int Century

external

I NBR

8.0

Century

internal

O DTX

8.0

Convert DTX Int/Ext Century

external

O NBR

8.0

Century

internal

I DTX

8.0

The fields Century internal and Century external are used only to define the
parameters on the century data type mapping functions. They can be defined
with the Define Objects panel and should be of the same data type (packed,
zoned, alphanumeric, etc.) and size as the respective internal and external
formats of the field data type. For the DTX field, both internal and external
formats are numeric. The Century internal field could itself be a field of type
DTX.

If necessary, use the Define Objects panel to define fields of appropriate data
types to use as parameter fields on the mapping functions.

Defining the Mapping Functions

Having specified the parameters for the Check DTX and Convert DTX
functions, you can describe the internal processing of the functions
themselves, using an action diagram of type Execute Internal Function. The
Check DTX function would do the following:

1. Check that the date entered is a valid date of the form DDMMCCYY.

2. Convert the external value of the DTX field, in DDMMCCYY format, into the
internal value, in CCYYMMDD format.

The Convert DTX function has only to convert the internal value of the field, in
CCYYMMDD format, to the external value, in DDMMCCYY format.

Supplying Parameters to Mapping Functions

When a function uses a field with a mapped user-defined field type, calls to the
mapping functions are included automatically. The internal and external values
are automatically supplied to the required parameters of the mapping
functions.

Chapter 5: Maintaining Your Data Model 5–31

Creating User-Defined Field Types

If you specify additional parameters on a mapping function, you must also
decide from where the values for those parameters are to be obtained in the
functions, which use the field type.

For each parameter you can specify:

 The name of another field present in the same format as the field of the
data type (FIL).

 A condition value of a field in the same format as the field of the data type
(CND).

 The name of a field in the JOB context.

 A constant value (CON).

The source of field mapping function parameters can be specified at two
levels:

 File entry

 Function screen/report entry

 You can also specify whether the values specified at file level may be
overridden at a device design level.

To specify the context of the values for any additional parameters on the
mapping functions, you use the Field Mapping Function Parameters and the
Screen Field Mapping Function Parameters panels.

The Field Mapping Function Parameters panel allows you to specify a default
context for the mapping parameters.

The example of the Field Mapping Function Parameters panel below shows how
to define the No. of decimals parameter for mapping fields of data type CUR
described earlier under “Specifying Additional Parameters for Mapping
Functions.” Note that you can override the source of the parameter at a lower
level.

5–32 Defining a Data Model

Creating User-Defined Field Types

Field Mapping Function Parameters Panel

To access this panel from the Edit Database Relations panel, use an E to
obtain the Edit File Entries panel to display the entries of the file that has a
function containing the mapped user-defined field. Use an M against the entry
to set up the additional parameter to the mapped user-defined field type
function.

For more information see Displaying File Entries at the beginning of this
chapter.

For each mapping function parameter you can enter the context and the name
of the field which is to supply the value to the mapping function parameters.
This value will be used in all functions based on the file unless it is overridden
at the device level.

A special context is available on this panel: FIL. This context indicates that the
parameter field is to be found in the same context as the mapped field,
wherever it is being used, such as DTL or RCD on a screen, CUR on a report.

You can also specify whether the source of the mapping function parameter is
fixed or whether it can be overridden at the panel or report level. The third
alternative is to specify that an override is always required.

Chapter 5: Maintaining Your Data Model 5–33

Creating User-Defined Field Types

Specifying Additional Parameters for Mapping Functions

You can specify additional parameters on the mapping functions if you wish.
For example, for the currency amount data type you might specify that the
number of decimal places was an additional input parameter to the mapping
functions. This parameter could then be used to control the positioning of the
decimal place.

Mapping Function Parameters: Panel/Report Entry Level

To override the parameters to a mapping function at panel or report level, you
use the Screen Field Mapping Parameters panel.

1. From the Edit Screen Entry Details panel, press F9 to obtain the Screen
Field Mapping Parameters panel.

2. From the device design editor for a function panel, use F5 to get to the
Edit Device Format panel. From here, Z (Zoom) into the panel entry.

This will take you to the Edit Screen Entry Details panel.

For a field of the currency data type, the No. of decimals parameter could be
overridden since the parameter value was not protected at the file level. Note
that the context FIL, specified at the file entry level, is resolved into an
appropriate screen context; for example, for an EDTFIL function, RCD is the
screen context.

Screen Field Mapping Parameters Panel

5–34 Defining a Data Model

Creating User-Defined Field Types

Example: Defining a Currency Field Type (CUR)

User-defined field types are useful where data requires some conversion
before being displayed, or where a standard conversion is required prior to
storage.

The conversion process does not have to be two-way. For example, a user-
defined type could be used to allow an automobile registration number to be
processed to convert all zeros to the letter O and all ones to the letter I to
ensure against confusion on inquiry screens. The original data could be stored
in another field if necessary.

In the automobile registration number example there is no conversion from
internal to external format since they are both the same. The only parameter
to the external to internal conversion function is the field to be converted.

The following example is somewhat more complicated to illustrate the power
of user-defined field types. In it we will define a currency field type. A
company dealing with international customers who are charged and who pay
in their own currency would want to define a value field only once for a
particular data item, rather than various fields or even separate files to store
the data.

The solution is to store the data in a neutral format and then convert it before
display with the correct number of decimal places and any other desired
editing. Rather than require the developers to remember to call these
conversion routines, a user-defined data type allows the definition to be made
once and is then automatically generated by CA 2E when required.

The following panels describe the definition process step by step.

Chapter 5: Maintaining Your Data Model 5–35

Creating User-Defined Field Types

1. First define the functions used for the field type on the *Field attribute
types file. From the Edit Database Relations panel, enter *F in the object
positioner field to position on the CA 2E *Field attribute types file. Enter F
next to the *Field attribute types file name to display the functions that
have been defined for this file.

2. Create the four following mapping functions that will be used by the
currency field type as shown below. The access path for each function type
should be *NONE.

5–36 Defining a Data Model

Creating User-Defined Field Types

3. For the purposes of this example, the following new fields are required.
You can create them as part of the function creation process.

4. Press Enter to define the fields and return to the Display Fields panel.
Zoom into each field to display the Edit Field Details panel.

 Enter details for the *external currency field as follows.

Chapter 5: Maintaining Your Data Model 5–37

Creating User-Defined Field Types

 Enter details for the *internal currency field as follows.

 Enter details for the no. of decimals field as follows.

 Note the assigned DDS field names for the fields you just defined. In this
case, XBCD, ZZNB, and QHNB. You will need these when you define the
user source for the ext –> int src and the int –> ext src functions.

5–38 Defining a Data Model

Creating User-Defined Field Types

5. Define parameters to the Currency ext –> int EXCINTFUN function as
shown below using the fields you just defined. Be sure to define the
*external currency field first. You can use a sequence number to ensure
this.

Zoom into each parameter to display the Edit Function Parameter Details
panel. Assign the usage and role for the Currency ext –> int function
parameters as follows.

Parameter Usage Role

*external currency I MAP

*internal currency O MAP

6. Define parameters to the Currency ext –> int src EXCUSRSRC function as
shown below. Be sure to define the *external currency field first. You can
use a sequence number to ensure this.

Chapter 5: Maintaining Your Data Model 5–39

Creating User-Defined Field Types

 Zoom into each parameter to display the Edit Function Parameter Details
panel. Assign the usage and role for the Currency ext –> int src function
parameters as follows.

Parameter Usage Role

*external currency I MAP

*internal currency O MAP

7. Define parameters to the Currency int –> ext EXCINTFUN function as
shown below. Be sure to define the *external currency field first. You can
use a sequence number to ensure this.

 Zoom into each parameter to display the Edit Function Parameter Details
panel. Assign the usage and role for the Currency int –> ext function
parameters as follows.

Parameter Usage Role

*external currency O MAP

*internal currency I MAP

no. of decimals I MAP

5–40 Defining a Data Model

Creating User-Defined Field Types

8. Define parameters to the Currency int –> ext src EXCUSRSRC function as
shown. Be sure to define the *external currency field first. You can use a
sequence number to ensure this.

 Zoom into each parameter to display the Edit Function Parameter Details
panel. Assign the usage and role for the Currency int –> ext src function
parameters as follows.

Parameter Usage Role

*external currency O MAP

*internal currency I MAP

no. of decimals I MAP

Chapter 5: Maintaining Your Data Model 5–41

Creating User-Defined Field Types

9. Edit the action diagram for the Currency ext –> int EXCINTFUN to call the
EXCUSRSRC function for the external to internal conversion.

10. Specify the details of the parameter interface.

5–42 Defining a Data Model

Creating User-Defined Field Types

11. The RPG source for the Currency ext –> int src EXCUSRSRC function is as
follows. The process involves the removal of any decimal point found in
the data. Note that to reduce the complexity of the example no validation
has been included.

*CURRENCY EXT –> INT SRC

*CONVERT TO INTERNAL FORMAT

 C

C

C

*

*

Z-ADD15

Z-ADD14

MOVEA

#IXBCD X

Y

OUT

20

20

 *STRIP
OUT
DECIMAL
POINT

 C

C

C

C

C

C

C

C

C

 X

 OUT,X

*

DOUEQ1

IFNE

MOVE

SUB

END

SUB

END

MOVEA

MOV

’.’

OUT,X

1

1

INP

WRK14

INP,Y

Y

X

WRK14

#OZZNB

14

12. Edit the action diagram for the Currency int –> ext EXCINTFUN to call the
EXCUSRSRC function for the internal to external conversion.

Chapter 5: Maintaining Your Data Model 5–43

Creating User-Defined Field Types

13. Specify the details of the parameter interface.

14. Following is the RPG source for the Currency int –> ext src EXCUSRSRC
function.

*CURRENCY INT –> EXT SRC

 E

E

C

C

C

C

C

C

C

C

C

C

C

C

C

C

*

*

#IQHNB

*

#IQHNB

INP

OUT

MOVE

MOVE

Z-ADD

MOVEA

MOVEA

IFEQ

MOVE

MOVEA

ELSE

IFEQ

MOVE

MOVEA

MOVEA

ELSE

 14

 15

’ ’

#IZZNB

#IQHNB

WRK14

INP

1

’.’

INP,14

2

’.’

INP,13

INP,14

1

1

OUT

WRK14

WRK2N

INP

OUT

OUT,14

OUT,15

OUT,13

OUT,14

OUT,15

14

20

5–44 Defining a Data Model

Creating User-Defined Field Types

 C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

#IQHNB

#IQHNB

IFEQ

MOVE

MOVEA

MOVEA

MOVEA

ELSE

IFEQ

MOVE

MOVEA

MOVEA

MOVEA

MOVEA

END

END

END

END

3

’.’

INP,12

INP,13

INP,14

4

’.’

INP,11

INP,12

INP,13

INP,14

OUT,12

OUT,13

OUT,14

OUT,15

OUT,11

OUT,12

OUT,13

OUT,14

OUT,15

 *CHANGE
LEADING
ZEROES TO
BLANKS

 C

C

C

C

C

C

 OUT,X

*

*

Z-ADD1

DOUNE

MOVE

ADD

END

MOVEA

’0’

’ ’

1

OUT

X

OUT,X

X

#OXBCD

20

Chapter 5: Maintaining Your Data Model 5–45

Creating User-Defined Field Types

15. Zoom into the *Field attribute types file from the Edit Database Relations
panel to display a list of the currently defined field types.

16. Press F9 from the Display Field Types panel to add the new field type CUR.
Specify attributes for the CUR field type on the Edit Field Type panel as
follows. Be sure to enter Y for the initial Allow value mapping value.

5–46 Defining a Data Model

Creating User-Defined Field Types

17. Press Enter to confirm the values you entered. Press F3 to specify
additional attributes for the CUR field type on the Edit Field Type Defaults
panel as follows.

18. In order to use the CUR field type, you need a Currency file as shown
below. The records on this file will reflect the number of decimal places
required by the various currency types.

 Any files that actually use the CUR field type must reference the Currency
file. The no. of decimals field must be virtualized across the Refers to
relation.

Chapter 5: Maintaining Your Data Model 5–47

Creating User-Defined Field Types

19. In order to map the value of the no. of decimals to the field type, display
the entries on the file by entering E on the Edit Database Relations panel
as shown above. Enter M against the entry defined using the currency field
type to define the additional parameter to the mapped user-defined field
type function.

20. This panel allows the designer to define from which context the actual
parameters may be selected.

For more information on this process, refer to this topic, the Supplying
Parameters to Mapping Functions subtopic, the Mapping Function Parameters:
Panel/Report Entry Level subtopic, and the online help.

5–48 Defining a Data Model

Creating User-Defined Field Types

Example: Defining a Real Percentage Field (PCX)

Following is an example that illustrates the creation of the real percentage field
type (PCX) with external field length calculation.

The example shows the steps required and all the panels involved in the order
you would follow to create a user-defined field type in CA 2E.

The percentage data type has different internal and external field lengths, the
external field length being determined from the length assigned to the internal
version of the field. If the external field length is 5.2, the internal length
becomes 5.4 to account for automatic division by 100. A percentage entered
or displayed as 45.55, will be stored internally as 0.4555.

The external length calculation is performed by a program which derives its
name from the data type. For a data type PCX, a program YPCXLENR1C must
exist for this length calculation. Several parameters are required on this
function. The figure below shows a generic STR type file in CA 2E, defining
what fields are required as parameters to the length calculation program. This
STR file should be defined on the Edit Database Relations panel as shown
below. The file name contains XXX indicating the values to be substituted for
the data type mnemonic.

Chapter 5: Maintaining Your Data Model 5–49

Creating User-Defined Field Types

Once you have entered the relations, press F10 to define the file and fields as
indicated in the figure that follows.

The external fields that are referenced fields are referenced to their internal
counterparts.

The function to perform the external field length calculation can be attached to
the *Field attribute types file. Position the Edit Database Relations panel at
this file and go into the functions. Add one of the correct names, in this case
YPCXLENR1C, making it of type EXCEXTFUN, as below.

Zoom into the function and change the source member name to that of the
desired length calculation program (YPCXLENR1C).

Attach parameters as defined by the structure file below, and give them the
usage as indicated.

5–50 Defining a Data Model

Creating User-Defined Field Types

Attach parameters as defined by the structure file, shown below, and give the
usage as indicated.

Chapter 5: Maintaining Your Data Model 5–51

Creating User-Defined Field Types

The parameters should all have a usage of I except the External length,
External no. of integers and External no. of decimals. These are the
parameters that the CA 2E calling function is expecting to be returned.

In this simple example, all the length conversion program will do is ensure
that the number of decimal places externally is two less than the number
internally. Set up the action diagram for the function as below. Then exit and
save the function.

5–52 Defining a Data Model

Creating User-Defined Field Types

Create the Int/Ext and Ext/Int mapping functions now. These should be of
type EXCINTFUN. In this case 'PCX Divide PCT by 100' and 'PCX Multiply PCT
by 100' have been created for the mapping functions (see previous figure for
Edit functions over *Field Attribute type file). Attach parameters to the
functions, as indicated below. Defines both the PCX_External field and the
PCX_Internal field as NBR type fields. Their lengths are arbitrary. CA 2E will
create fields of the appropriate length at function generation time.

Ext/Int mapping function parameters:

Chapter 5: Maintaining Your Data Model 5–53

Creating User-Defined Field Types

The Ext/Int mapping function should contain action diagram statements to
divide the percentage by 100. Set the statement as below.

Int/Ext mapping function parameters:

5–54 Defining a Data Model

Creating User-Defined Field Types

The Int/Ext mapping function should contain action diagram statements to
multiply the percentage by 100. Set the statement as below.

Finally, create the data type. Zoom into the *Field Attributes types file and
press F9 to add an object attribute.

Enter Z against the PCX field type to display the Edit Field Type panel.

Create the data type as defined below, ensuring that the Int/Ext len conv field
is set to C and that the correct mapping functions are specified.

Chapter 5: Maintaining Your Data Model 5–55

Creating User-Defined Field Types

Note: The YPCXLENR1C program must exist before you confirm this step;
otherwise you will receive an error message.

Press Enter to display the summary panel. Change the Mnemonic code to PCX.
Fill the field exit options and edit codes to complete the data type.

5–56 Defining a Data Model

Chapter 6: Documenting Your Data
Model

This chapter covers the CA 2E documentation commands you can use to
produce hard copy documentation of your data model.

A document produced in this manner consists of details of the specific model's
design objects that you want. The documentation provides a historical record
of the development of your data model.

Related Information
This section covers only documentation of files, fields, relations, and
application areas. For more information about documentation commands and
how to use them to document access paths, functions, model library files, and
messages, refer to the following modules:

 Implementation Guide

 Command Reference

 Building Access Paths

 Building Applications

Documenting Files, Fields, Relations, and Application Areas
Use the following procedures to document your model's files, fields, relations,
and application areas. You must use the appropriate documentation command.

 Document Model Files (YDOCMDLF) command for files

 Document Model Fields (YDOCMDLFLD) command for fields

 Document Model Relations (YDOCMDLREL) command for relations

 Document Model Application Areas (YDOCMDLAPP) command for
application areas

You can access these commands via the CA 2E Services Menu or by typing the
command name directly from a command line on your screen.

Chapter 6: Documenting Your Data Model 6–1

CA 2E Documentation Commands

CA 2E Documentation Commands
These are CA 2E documentation commands that you can use to document your
data model's objects:

YDOCMDLREL model relations

YDOCMDLF model files

YDOCMDLFLD model fields

YDOCMDLAPP model application areas

All CA 2E documentation commands have several selection parameters and
print options which allow you to:

 Select the type of information you want to be documented for the selected
objects. For example, you can list files by a specific application area code,
list the relations by the desired level, or print relation entries.

 Decide whether to include user-defined text in the documentation for each
selected object. For example, you can use the PRTTEXT parameter to
specify whether you wish narrative text to be included in the
documentation listing, and if so, which type of text (functional or
operational).

For more information:

 On narrative text, see the chapter “Using Your Model” in the
Administration Guide

 On how to add narrative text at file, field, or relation level, see the chapter
“Maintaining Your Data Model”

Using Documentation Commands via Display Services Menu
1. On the Edit Database Relations panel, press F17 to go to the Display

Services Menu.

2. Select the Documentation menu option and press Enter.

 The Display Documentation Menu panel displays.

3. Select the appropriate option to document your model objects from this
panel.

 Depending on the option you selected, CA 2E displays one of the following
panels:

 Document Model Files (YDOCMDLF)

 Document Model Fields (YDOCMDLFLD)

6–2 Defining a Data Model

Viewing the Documentation

 Document Model Relations (YDOCMDLREL)

 Document Application Areas (YDOCMDLAPP)

4. Change any of the default parameters as you wish and press Enter.

 A message displays indicating that the documentation is created.

Note: If you press Enter without changing the defaults, CA 2E assumes
that you want all of these options for your documentation.

 You will be returned to the Display Documentation Menu.

 To view the documentation online, see Viewing the Documentation
procedure that follows.

5. Send your files to the printer according to your system configuration to
obtain printouts.

Using Documentation Commands from a Command Line
1. Type YDOCMDLF (or YDOCMDLFLD, YDOCMDLREL, YDOCMDLAPP) and

press F4. This will print the document using the default values.

 F4 shows parameter values.

2. Follow steps 3 through 4 of the procedure for using documentation
commands via the Display Services Menu above.

3. From the Display Documentation Menu panel, type the option, and press
F4 or Enter.

Note: F4 allows you to change the default parameters on this panel. If you
press Enter, CA 2E assumes that you want all of the default options for
your documentation.

 A message displays indicating that the documentation is created.

 You will be returned to the Display Documentation Menu.

4. Send your files to the printer according to your system configuration to
obtain printouts.

Viewing the Documentation
1. From the Display Documentation Menu panel, press F8 to obtain a

command line.

2. On the command line, enter the i OS Work with Job (WRKJOB) command.
Select option 4 to display spool files created. Documentation is in spool file
YDOCMDLxxx, where xxx identifies the type of report.

3. Type 5 next to the file you want to view and press Enter.

The following pages give examples of documentation listings.

Chapter 6: Documenting Your Data Model 6–3

Documentation Commands Output Listings

Documentation Commands Output Listings
These are examples of the documentation produced from using the
documentation commands.

YDOCMDLF (Document Model Files)

6–4 Defining a Data Model

Documentation Commands Output Listings

YDOCMDLFLD (Document Model Fields)

Chapter 6: Documenting Your Data Model 6–5

Documentation Commands Output Listings

YDOCMDLREL (Document Model Relations)

6–6 Defining a Data Model

Documentation Commands Output Listings

Chapter 6: Documenting Your Data Model 6–7

YDOCMDLAPP (Document Model Application Areas)

Chapter 7: Assimilation

This chapter describes assimilation and provides instructions for assimilating i
OS database files using the Retrieve Physical Files into Model (YRTVPFMDL)
command. It also lists the considerations and restrictions associated with this
process.

Understanding Assimilation
Assimilation is the technique of retrieving and using file definitions from
existing i OS physical files to create CA 2E files. The assimilated files then can
be used in a CA 2E data model. You can add extra relations and define access
paths and functions for assimilated files the same as you would with other
modeled files.

Assimilating database files allows you to develop new functions and access
paths over an existing database defined outside of CA 2E.

Degrees of Assimilation

Depending on your objectives, you can choose to carry out assimilation to
these different degrees:

 Assimilation as is

 The existing database is preserved exactly as is. Field, format and file
names remain the same. You will be able to use the files with all your
existing programs without a need for change or recompilation.

 This degree of assimilation, however, may lead to restrictions in certain
cases, particularly if the data model implied by the existing database is
incorrect or inconsistent.

 Assimilation with limited modifications

 The existing database is preserved but model data structures can be
rationalized or corrected where appropriate. You will still be able to use
most of your existing programs with only minor modifications.

 You can take full advantage of CA 2E capabilities now because your files
have been fully defined in the model and can be used as any other
modeled files. The greater the degree of assimilation that can be achieved,
the greater the use that can be made of CA 2E capabilities when
generating programs.

Chapter 7: Assimilation 7–1

Using the YRTVPFMDL Command

For more information on normalization and considerations regarding
normalized databases, see the chapter “Developing a Conceptual Model.”

Using the YRTVPFMDL Command
You use the Retrieve Physical Files into Model (YRTVPFMDL) command to
perform assimilation. Confirm that all developers and programmers are out of
the model. Execute the YRTVPFMDL command before entering the model.

The YRTVPFMDL command retrieves into a CA 2E design model all file and field
definitions not already present in the model. It creates a CA 2E file for each i
OS physical file retrieved and a CA 2E field for each of the retrieved fields
found with a unique DDS name. The fields are connected to the file with Has
relations.

The YRTVPFMDL command has several parameters that allow you to perform
functions such as removing the DDS prefix from field names, amending a
retrieved field, and nominating a file that you want CA 2E to treat as a field
reference file.

Note: You can retrieve an i OS SQL table into your model by specifying the
name of the associated i OS physical file in the library for the SQL collection.

Parameters/Functions

Parameters for the YRTVPFMDL command are as follows:

 FILE specifies qualified generic name of the i OS physical file from which
the description is to be retrieved.

 RMVFLDPFX specifies whether a prefix will be removed from the
implementation field names in the retrieved file.

 REFFILE specifies the name of the file to be treated as the field reference
file. No Has relations will be created for the file. All fields will be added to
the field dictionary.

For more information refer to the YRTVPFMDL command, the CA 2E Command
Reference.

7–2 Defining a Data Model

Adding Extra Information to Assimilated Files

Adding Extra Information to Assimilated Files
A file created through assimilation may not contain as much information as
one of your normally modeled files. You may have to add extra information to
each of the assimilated files. For example, because the YRTVPFMDL command
does not identify the key fields of a file that it assimilates, you may have to
identify the key fields of that file to CA 2E by changing some of its relations
from Has to Known by. Be aware that if the relations are not sequenced, the
Known by relations are placed before the Has relations. This changes the file
format, making it different than the existing physical file. To keep the same
field sequence, you must resequence the physical file format entries as
detailed in the next topic.

Editing i OS Physical File Format Entries
CA 2E stores default file format entries for fields on an assimilated file,
including:

 sequence of the field

 implementation name of the field on the physical file or the SQL column
name on the table

 i OS data type of the field

 length of the field

You can view and change all of these defaults using the Edit Physical File
Format Entry panel, which is available only for assimilated files. To access this
panel:

1. Zoom into the assimilated file from the Edit Database Relations panel. The
Edit File Details panel displays.

2. Zoom into the PHY access path of the file. The Edit Access Path Details
displays.

3. Zoom into the access path format entries. The Edit Access Path Format
Entries panel displays.

4. Press F8 to get the physical file entries. The Edit Physical File Format Entry
panel displays.

Chapter 7: Assimilation 7–3

Considerations

This panel enables you to enter and maintain details about the fields that
belong to the format of an assimilated physical file. It shows the name and
type of format. If adding a relation causes a mismatch between the sequence
of fields defined to CA 2E and the existing physical file, change the sequence
number defined on the Edit Physical File Format Entry panel. For example, if a
Known by relation causes the field to be defined as one of the first fields in the
file, change the sequence number defined on the Edit Physical File Format
Entry panel.

Considerations
There are some considerations associated with assimilation. Resulting from the
way CA 2E implements a data model, considerations involve

 i OS field names and field naming in CA 2E

 Inconsistent implicit data model

 Date formats

Whether these considerations will prove restrictive depends on

 The extent to which you wish to preserve the existing database

 Names used in the existing database

 The extent of the “correctness” of the model as implied by the assimilated
set of i OS files

In making this implied model explicit, assimilation tends to highlight any
inconsistencies such as missing keys, redundancy, conflicting field lengths, or
the association of an attribute with the wrong entity.

Changing Field Name and Attribute Type

Prefix

If the names of your fields in each file already contain a prefix, you can tell CA
2E to remove the prefix by specifying a value of *YES for the RMVFLDPFX
parameter on the YRTVPFMDL command.

7–4 Defining a Data Model

Inconsistent Implicit Data Model

Duplicate Field Names

Existing i OS physical files may contain the same field name in several
different files. For example, you may find a field named Order Date that could
well mean Customer, Purchase, or Shop Order Date. If you have this problem,
you should either:

 Use the REF field attribute to base the definition of one of the fields on
that of the other, or

 Use the Edit Physical File Format Entry panel to establish a different field
name for the field on the file.

Inconsistent Implicit Data Model
If the data model implied by your existing database is incomplete or
inconsistent, you may want to rationalize and correct it before you can take
advantage of using CA 2E's capabilities.

Examples of Inconsistency

 Examples of inconsistency are:

 Different field definitions. If you have used different attributes for a
same field in different files, then you must standardize the field definitions
before you can establish a CA 2E relationship. For instance, if Customer
code is defined as five characters in one file and six in another, then you
must make the length the same for both instances of this field.

 Missing field entries. You may have omitted a field from a file that is
necessary to resolve a relation, either by mistake or because the omitted
field is to be supplied procedurally.

 In particular, you may have omitted key fields if you have used either
relative record processing or purely arrival sequence processing, neither of
which are supported by CA 2E data modeling.

Date Formats
If you wish to use the CA 2E date field type (DTE), you may need to convert
the date field's data and length to match the internal stored format described
by CA 2E. Dates of this field type are always stored on file in CYYMMDD
format. CA 2E provides automatic date validation and mapping into the local
display format.

Chapter 7: Assimilation 7–5

Using Extended by Relations in Assimilated Files

CA 2E assimilates i OS DATE fields as field type DT#.

For more information on date field types, see the chapter “Understanding Your
Data Model” and IBM IBM i Programming: Data Description Specifications
Reference.

Using Extended by Relations in Assimilated Files
You can use the Extended by relation to add more data to an assimilated file
without actually changing the file. The Extended by relation allows you to
specify a one-to-one relationship between the existing file and a new,
extended file that contains the additional fields you want to add. You will get
automatic validation and existence checking and be able to define virtual fields
from either file into the other.

Using Extended by relations also helps you save disk space because you can
choose only to create records in the extended file when and if the data is
needed.

Example of Using Extended by Relations

You have assimilated your Customer master file and do not want to change it,
but you want to add some credit history data for those customers who finance
their purchases.

In your data model, add the new relations as shown below:

Customer

Customer Credit History

Customer Credit History

Customer Credit History

Customer Credit History

Extended by

Owned by

Has

Has

Has

Customer Credit History

Customer Master

Avg Payment Days

Avg Payment Amount

Last Payment Date

The Extended by relation does not generate new fields in the Customer file so
you do not have to change your programs. You have to maintain only the
Customer Credit History records associated with the Customer file.

Assimilation Procedure
Use the following procedure to perform assimilation.

7–6 Defining a Data Model

Assimilation Procedure

Chapter 7: Assimilation 7–7

1. Retrieve existing i OS physical files using the YRTVPFMDL command.
This command allows you to retrieve (the definitions of) one, several, or
all i OS physical files in the database.

 You can specify a value for the RMVFLDPFX parameter of the command to
indicate whether or not you want CA 2E to drop the prefix from the DDS
field names in the retrieved file. The purpose of using this parameter is to
make sure the DDS names match those of your existing programs.

For more information, see the section Changing Field Name and Attribute
Type.

2. Identify key fields. You identify key fields to CA 2E by changing the
relevant Has relations into Known by relations since all fields are
assimilated as Has relations.

3. Adding file-to-file relationships. You change or add new relations to
explicitly indicate file relationships to include the processing logic for the
keys arising from Owned by or Refers to relations, and for referential
integrity checking.

 If adding a relation causes a mismatch between the sequence of the fields
you defined to CA 2E and those of the existing i OS physical file, you can
change the sequence number using the Edit Physical File Format Entry
panel. For example, if a Known by relation causes the field to be defined
as one of the first fields in the file, change the sequence number using the
Edit Physical File Format Entry panel.

4. Lock the physical file. You lock the physical file in your model to prevent
inadvertently selecting the existing file definitions for recompilation.

For more information on:

 Physical files, see the Building Access Paths chapters “Adding Access
Paths” and “Tailoring For Performance”

 How to lock files, see the chapter “Using Your Model” in the Administration
Guide

 Index–1

Index

*

*Field Attribute Types, 3-8

1

1NF (first normal form), 2-17

2

2NF (second normal form), 2-17

3

3NF (third normal form), 2-17

A

allow lower case, 3-17

application areas, 4-3
documenting, 6-1

application development
data-driven, 1-2
process-driven, 1-2

assimilation
adding information to assimilated files, 7-3
assimilation procedure, 7-7
changing field name and attribute type, 7-
4
considerations, 7-4
date formats, 7-5
defined, 7-1
degrees of, 7-1
inconsistent implicit data model, 7-5
using Extended by relations, 7-6
using YRTVPFMDL command, 7-2

assimilation of DBF files, 7-1

attribute
defined, 1-3
domain, 2-7
foreign key, 2-11
functional dependence, 2-16
identifying, 2-2, 2-6
key, 2-16
non-key, 2-16
primary key, 2-11

C

capture file (CPT)
defined, 3-5
specifying, 4-6

cardinality, 2-9

CDE (code) field type, 3-38

check condition, 3-19, 5-11

circularity, 3-89

CNT (count) function field, 3-52

code field type (CDE), 3-38

column headings, 3-16

compare (CMP) condition
defined, 3-60
valid operators for, 3-60

composite, 2-16

conceptual data model
about, 2-1
considerations when developing, 2-22
creating with design tools, 2-23
equivalent terms in data model, 3-2
generalization of entities, 2-4
goals of, 2-2
identifying data relationship types, 2-8
identifying entities

attributes, 2-2
identifying entity attributes for, 2-6
identifying relations, 2-8

data-driven approach, 1-2 condition
advantages, 1-2 adding/modifying, 5-7

compare (CMP), 3-60
date

defined, 3-55
4-digit year, 3-28

deleting, 5-19
D8#, 3-24

list (LST), 3-59
DT# (ISO date), 3-26

name, 3-18, 3-19
DTE, 3-30

properties, 3-56
edit codes, 3-20, 3-27

range (RNG), 3-61
ISO timestamp, 3-46

Synon/2E, 3-56
decimal places, 3-16 types, 3-56, 5-7

using, 3-55
default condition, 3-18

using VAL and LST, 5-10
using, 5-12

validating entries for field, 5-11
default functions value (VAL), 3-57

CPT, 3-6
Count function field (CNT), 3-52

REF, 3-6

defined as relation

D displaying, 3-68

Defined as relation
D8# (date) field type, 3-24 defined, 3-67

deleting, 3-69, 5-18 data area, 3-11
default condition, 3-18 delete

condition, 5-19 data model
field, 5-19 conceptual, 2-1
file, 5-18 defined, 1-1
messages, 5-18 design elements, 3-1
relations, 5-18 differentiation of entities, 2-4

documenting, 6-1 Derived (DRV) function field, 3-52
Entity-Relationship diagram (ERD), 2-8

differentiation equivalent terms in conceptual model, 3-2
defined, 2-4 example, 1-4

identifying data relationship types, 2-8 display relation entries, 4-27
identifying entities

documentation attributes, 2-2
commands, 6-1 maintaining, 5-1
examples, 6-4 normalizing, 2-15

domain data modelling
defined, 2-7 data-driven approach, 1-2
using with REF field, 3-40 defined, 1-1

in project life cycle, 1-2 DRV (derived) function field, 3-52
Synon/2E approach, 1-3

DT# (ISO date) field type, 3-26
data relationship connections, 2-8

DTE (date) field type, 3-30
data type, 3-15

database field, 3-10

Index–2 Defining a Data Model

E Extended by relation, 3-74

external length, 3-15
edit codes, 3-20 specify default values for, 5-23

Edit Codes
using, 3-21

F
Edit Database Relations panel

accessing Field Attribute types file, 3-11
field

changing relation on, 5-20
adding field types to newly defined fields,
4-11

deleting a file, 5-18
described, 3-2, 4-2

adding/modifying conditions, 5-7
entering relations, 4-15

adding/modifying information, 5-3
specifying relations, 3-66

allow lower case, 3-17
Edit Field Conditions panel, 5-8 as file entry, 4-17

basic attributes of, 5-22
Edit Field Details panel, 5-3

column headings, 3-16
condition name, 3-18, 3-19 Edit Field Type panel, 5-23
conditions, 3-55

Edit File Entries panel, 4-24, 5-1
data type, 3-15
database, 3-10 Edit Functions panel, 5-28
decimal places, 3-16

Edit Model Object List panel, 4-2, 4-3
default condition, 3-18
defined, 3-7, 4-9 Edit Redirected Fields panel, 4-28
defining, 4-9, 4-11

entity, 2-16
defining as data area, 3-11

attributes of, 2-6
defining new field types, 5-23

defined, 1-3
deleting, 5-19

differentiation, 2-4
documenting, 6-1

foreign key, 2-11
edit codes, 3-20

functional dependence, 2-16
external length, 3-15

generalization, 2-4
function, 3-51

identifying, 2-2
implementation name, 3-14

key
internal and external length, 5-23

composite, 2-16
internal length, 3-16

primary key, 2-11
keyboard shift, 3-17

relationship
LHS (Left hand side) text, 3-16

implementing, 2-13
mandatory fill, 3-17
mapping functions for, 5-23 entity-relationship
Modulus 10/11, 3-18 defined, 1-3
name, 3-8, 4-9

entity-relationship (E-R)
properties, 3-7

modelling method, 2-8
reference (REF), 3-39, 4-10
RHS (Right hand side) text, 3-16 Entity-Relationship diagram (ERD), 2-8
three-character mnemonic for type, 5-22

entry, 3-3
types, 3-8
user-defined field types, 5-21 existing files, 7-1
using VAL and LST conditions, 5-10

expanding relations, 3-91
valid system name (VNM), 3-18

expansion, 3-91, 3-92

 Index–3

displaying, 4-24 validating field entries using conditions, 5-
11 levels, 4-17

redirecting a relation entry, 4-20 virtual, 3-88
replacing, 4-19, 4-25

field exit option, 3-19
sharing, 4-19
types, 4-18 Field Mapping Function Parameters panel, 5-33

file name field type
defined, 4-5 code (CDE), 3-23

date (D8#), 3-24
file-to-field relationship, 2-21, 3-67

date (DT#), 3-26
file-to-file relationship, 2-22, 3-67 date (DTE), 3-30

adding virtual fields to, 3-88 displaying existing, 3-11
ideographic character text (IGC), 3-33

First normal form (1NF), 2-17, 2-18
ISO date (DT#), 3-26

foreign key ISO time (TM#), 3-44
defined, 2-11 ISO timestamp (TS#), 3-46

narrative text (NAR), 3-34
function field

number (NBR), 3-35
CNT, 3-52

percentage(PCT), 3-36
defined, 3-10, 3-51

price (PRC), 3-37
DRV, 3-52

quantity (QTY), 3-39
MAX, 3-53

reference (REF), 3-4, 3-39
MIN, 3-53

status (STS), 3-42
SUM, 3-54

surrogate (SGT), 3-40
USR, 3-55

text (TXT), 3-48
functional dependence time (TM#), 3-44

defined, 2-16 time (TME), 3-45
full, 2-16 timestamp (TS#), 3-46

user-defined, 5-21
valid system name (VNM), 3-50

G value (VAL), 3-49

file
generalization assimilating, 7-1

defined, 2-4 defining, 3-3, 4-5
deleting, 5-18
displaying entries, 5-1

H documenting, 6-1
entries

working with, 4-17 Has relation, 3-77
expansion, 3-91
maximum number, 4-8
name, 4-5 I
object/referenced object, 4-5
properties, 3-3

ideographic text character (IGC), 3-33 Synon/2E vs i OS, 4-5
type, 3-4, 4-5 IGC (ideographic text character), 3-32

file entry Includes relation, 3-78
defined, 4-17

Index–4 Defining a Data Model

MIN (minimum) function field, 3-53 internal length, 3-16
specify default values for, 5-23

Minimum (MIN) function field, 3-53
involution, 2-9

model object lists, 4-3
viewing, 4-3 ISO

date (DT#), 3-26
model values

time (TM#), 3-43
last used file prefix (YFILPFX), 4-8

timestamp (TS#), 3-46
member name prefix (YOBJPFX), 4-8
YFILPFX, 4-8
YOBJPFX, 4-8 K

Modulus 10/11, 3-18

key attribute, 2-16

N key redirection, 4-21

keyboard shift, 3-17
NAR (narrative text) field type, 3-33

Known by relation, 3-71
narrative text (NAR) field type, 3-33

adding to relations, 5-20

L NBR (number) field type, 3-34

normalization LHS (Left hand side) text, 3-16
defined, 2-15

life cycle of application development, 1-2 rules of, 2-17

list (LST) condition number (NBR) field type, 3-34
defined, 3-59
inquiries, 3-59

O LST (list) condition, 3-59

object

M object/referenced object file, 4-5

one-to-many relationship, 2-10
mandatory fill, 3-17

one-to-none relationship, 3-74
mandatory relations, 3-7

one-to-one relationship, 2-10
many-to-many relationship, 2-11

Owned by relation, 3-69
mapping functions

defined, 5-23

P defining, 5-32
defining parameters for, 5-31
Field Mapping Function Parameters panel,
5-33

PCT (percentage) field type, 3-36

screen/report entry level, 5-35 percentage (PCT) field type, 3-36
specifying additional parameters for, 5-35

PRC (price), 3-37
MAX (maximum) function field, 3-53

price (PRC), 3-37
Maximum (MAX) function field, 3-53

 Index–5

Known by, 3-71 primary entity, 2-6
mandatory, 3-7 identifying attributes for, 2-6
optional, 2-9

primary key
Owned by, 3-69

defined, 2-11
Qualified by, 3-72

first normal form (1NF), 2-18
Refers to, 3-76

in implementing relationships, 2-13
relation statements, 3-64
sequencing, 3-79 process-driven approach, 1-2
specifying, 3-66

project life cycle
statements/extended, 3-80

data modelling in, 1-2
types, 3-62
usage groups, 3-63
using, 3-66 Q using For text and Sharing with, 3-83

relationship QTY (quantity) field type, 3-22
cardinality, 2-9

Qualified by relation, 3-72 data relationship connections, 2-8
redirection, 4-21 determining file entry classification, 4-18

display/redirect relation entries, 4-26 quantity field type (QTY), 3-22
documenting, 6-1
foreign key, 2-11
functional dependence, 2-16 R
implementing, 2-13
involution, 2-9

range (RNG) condition mandatory, 2-9, 3-7
defined, 3-61 many-to-many, 2-11

one-to-many, 2-10 redirection, 4-20
one-to-none, 3-74

reference (REF) field, 3-39, 4-10 one-to-one, 2-10
optional, 2-9, 3-7 reference (REF) file
redirection, 4-20 defined, 3-4, 4-6

resynchronize, 3-91 Refers to relation, 3-76

Retrieve Physical Files into Model command
(YRTVPFMDL), 7-2

relation
adding narrative text to, 5-20
changing, 5-20 RHS (Right hand side) text, 3-16
chart of types, 4-15

right to left support, 3-19 defined, 3-62
Defined as, 3-67 RNG (range) condition, 3-61
deleting, 5-21
entering, 4-15
examples, 3-63 S
expanding, 3-91
Extended by, 3-74

Screen Field Mapping Function Parameters
panel, 5-35

file-to-field, 3-67
file-to-file, 3-67
Has, 3-77 Second normal form (2NF), 2-17, 2-19
identifying, 2-8

SGT (surrogate), 3-40 Includes, 3-78

Index–6 Defining a Data Model

 Index–7

sharing entries
defined, 3-83
sharing parameter, 3-83

Status (STS), 3-41

structure file (STR), 4-6
defined, 3-6

STS (status), 3-41

SUM (summation function) field, 3-54

Summation (SUM) function field, 3-54

Surrogate (SGT), 3-40

synchronizing a model, 3-91

T

text (TXT), 3-47

Third normal form (3NF), 2-17, 2-20

time
timestamp (TS#), 3-46
TM# (ISO time), 3-43
TME, 3-44

TM# (time) field type, 3-43

TME (time) field type, 3-44

TS# (ISO timestamp) field type, 3-46

TXT (text) field type, 3-47

U

unique identifier (primary key), 2-11

User-defined (USR) function field, 3-55

user-defined field types, 5-21
attributes, 5-25, 5-29

example, 5-31, 5-36, 5-51
length of, 5-23
mapping functions, 5-23, 5-28, 5-31, 5-32,
5-35, 5-55
mnemonic code, 5-22

USR (user-defined) function field, 3-55

V

valid system name (VNM), 3-18, 5-7

value condition (VAL)
defined, 3-57
internal and external, 3-57

virtual fields
defined, 3-88
using, 5-14
virtualizing, 5-16

VNM (valid system name), 3-18, 5-7

Y

YDOCMDLAPP, 6-1

YDOCMDLF, 6-1

YDOCMDLFLD, 6-1

YDOCMDLREL, 6-1

YFILPFX (Last Used File Prefix) model value
changing, 4-8

YOBJPFX (Object Prefix) model value
changing, 4-8

YRTVPFMDL, 7-2

YXXXLENR1C, 5-51

	Defining a Data Model
	Contents
	1: Introducing Data Modeling
	Understanding Data Modeling
	What is a Data Model?

	The Life Cycle of Application Development
	Advantages of a Data-Driven Approach
	The CA 2E Approach to Data Modeling
	Example of a CA 2E Data Model

	2: Developing a Conceptual Model
	Before You Begin
	Overview
	Goals of Your Conceptual Model
	Identifying Entities and Attributes
	Step 1: Identifying Primary Entities
	Generalization and Differentiation of Entities
	Step 2: Identifying Entity Attributes

	Domains
	Identifying Relations
	Data Relationship Connections
	Step 1: Identifying Relations Between Entities
	Step 2: Selecting Primary Key (Unique Identifier) for an Entity
	Implementing Entity To Entity Relationships
	One-to-One Relationship
	One-to-Many Relationship
	Many-to-Many Relationship

	Normalizing Your Data Model
	Functional Dependence
	Full Functional Dependence
	Step 1: Creating First Normal Form (1NF)
	Step 2: Creating Second Normal Form (2NF)
	Step 3: Creating Third Normal Form (3NF)
	CA 2E Basic Relations
	File-to-field Relationships
	File-to-file Relationships
	Considerations
	Performance
	Existing Database
	Using Design Tools

	3: Understanding Your Data Model
	CA 2E Data Model
	CA 2E Data Model Objects
	From Your Conceptual Model to a CA 2E Data Model

	Edit Database Relations Panel
	Using Files
	CA 2E Files
	Properties of CA 2E Files
	Default Functions for REF and CPT Files
	CA 2E File versus i OS File

	Using Fields
	CA 2E Fields
	Properties of CA 2E Fields
	Overriding CA 2E Default Field Attributes
	Field Usages
	Defining a Field as a Data Area
	Shipped CA 2E Field Types
	Displaying Existing Field Types
	Field Type Default Characteristics
	Using Field Edit Codes
	Description and Usage of Field Types
	ISO Date
	Ideographic Character Text
	Defining Function Fields as REF Fields
	Using Function Fields

	Using Conditions
	Properties of Conditions
	Condition Types
	Status Field Conditions
	Non-Status Field Conditions

	Using Relations
	CA 2E Relations
	Relation Types
	Relation Usage Groups
	CA 2E Relations
	Specifying Relations
	File-to-file Relationships
	File-to-field Relationships
	Describing and Using CA 2E Relations
	Owned by Relation
	Known by Relation
	Examples of Using Known by Relation
	Qualified by Relation
	Examples of Using Qualified by Relations
	Extended by Relation
	Example of Using Extended by Relations
	Refers to Relation
	Example of Using Refers to Relations
	Has Relation
	Example of Using Has Relations
	Includes Relation
	Examples of Using Includes Relations
	Relation Sequencing
	Using For Text and Sharing with Relations
	For Text
	Examples of Using For Text
	Sharing
	Example of Sharing
	Use of For Text for a Parts Assembly
	Adding Virtual Fields to File-to-file Relations
	Circularity

	4: Creating/Defining Your Data Model
	Before You Begin
	Using CA 2E Model Management Facilities
	Edit Database Relations Panel
	Edit Model Object List Panel

	Defining Your Data Model
	Step 1: Defining Files
	Object/Referenced Object File
	File Name
	File Type
	Capture Files
	Reference Files
	Structure Files
	Adding Files
	Step 2: Defining Fields
	Field Name
	Field Types
	Reference Field
	Field Types for Referenced Objects
	Specifying Field Types
	Step 3: Entering Relations
	Relation Sequencing
	CA 2E Relation Types Charts
	Levels of Entry
	Entry Types
	Key Field Entries
	Attribute Field Entries
	Virtual Field Entries
	Overriding Entries
	Replacing Entries
	Sharing Entries
	Redirection
	Redirecting Entries
	Redirection of Qualifier Fields
	Example of Redirecting Qualifier Fields
	Example of Redirecting a Reference to a Qualified File
	Procedures for Working with Entries
	Display File Entries
	The Edit File Entries Panel
	Replace File Entries
	Display Referenced Field Details Panel
	Display/Redirect Relation Entries
	Display Relation Entries Panel
	Edit Redirected Fields Panel
	Modifying For Text and Sharing Entries

	5: Maintaining Your Data Model
	Displaying File Entries
	Edit File Entries Panel
	Display File Entries

	Adding/Modifying Field Information
	Using the Edit Field Details Panel
	Change Field Name and/or Type
	Change Field Length
	Add Narrative Text
	Change Field Text and Headings
	Change Valid System Name (VNM)

	Adding/Modifying Conditions
	Condition Types
	Using the Edit Field Conditions Panel
	Add New Conditions
	To Modify Existing Conditions:
	Using VAL and LST Conditions
	Validating Field Entries Using Check Condition
	Changing Default Conditions
	Changing Translate Condition Values
	Converting Conditions to List of Values

	Adding/Modifying Virtual Fields
	Virtual Fields and Access Paths
	Example of Using Virtual Fields
	Virtualizing Virtual Fields

	Related Procedures for Maintaining Your Model
	Files
	Add Narrative Text
	Change a File Name
	Delete a File
	Fields
	Delete a Field
	Conditions
	Delete a Condition
	Relations
	Add Narrative Text
	Change a Relation
	Override Default Relations Sequence
	Delete a Relation

	Creating User-Defined Field Types
	Name and Text
	Basic Attributes
	Internal and External Length
	Mapping Functions
	Defining New Field Types
	Edit Field Type Panel
	Specifying Basic Attribute Values
	Specifying Mapping Functions
	Specifying Additional Attribute Values
	Example: Defining a Century date Field Type (DTX)
	Defining Parameters for the Mapping Functions
	Defining the Mapping Functions
	Supplying Parameters to Mapping Functions
	Field Mapping Function Parameters Panel
	Specifying Additional Parameters for Mapping Functions
	Mapping Function Parameters: Panel/Report Entry Level
	Screen Field Mapping Parameters Panel
	Example: Defining a Currency Field Type (CUR)
	Example: Defining a Real Percentage Field (PCX)
	Ext/Int mapping function parameters:
	Int/Ext mapping function parameters:

	6: Documenting Your Data Model
	Related Information
	Documenting Files, Fields, Relations, and Application Areas
	CA 2E Documentation Commands
	Using Documentation Commands via Display Services Menu
	Using Documentation Commands from a Command Line

	Viewing the Documentation
	Documentation Commands Output Listings

	7: Assimilation
	Understanding Assimilation
	Degrees of Assimilation

	Using the YRTVPFMDL Command
	Parameters/Functions

	Adding Extra Information to Assimilated Files
	Editing i OS Physical File Format Entries
	Considerations
	Changing Field Name and Attribute Type
	Prefix
	Duplicate Field Names

	Inconsistent Implicit Data Model
	Examples of Inconsistency

	Date Formats
	Using Extended by Relations in Assimilated Files
	Example of Using Extended by Relations

	Assimilation Procedure

	Index

