
 

Building Access Paths 
r8.5 

CA 2E 

 
 
 



 

This documentation and any related computer software help programs (hereinafter referred to as the 
“Documentation”) is for the end user’s informational purposes only and is subject to change or withdrawal by CA at 
any time. 

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in 
part, without the prior written consent of CA. This Documentation is confidential and proprietary information of CA 
and protected by the copyright laws of the United States and international treaties.  

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of the documentation for 
their own internal use, and may make one copy of the related software as reasonably required for back-up and 
disaster recovery purposes, provided that all CA copyright notices and legends are affixed to each reproduced copy. 
Only authorized employees, consultants, or agents of the user who are bound by the provisions of the license for 
the product are permitted to have access to such copies. 

The right to print copies of the documentation and to make a copy of the related software is limited to the period 
during which the applicable license for the Product remains in full force and effect. Should the license terminate for 
any reason, it shall be the user’s responsibility to certify in writing to CA that all copies and partial copies of the 
Documentation have been returned to CA or destroyed.  

EXCEPT AS OTHERWISE STATED IN THE APPLICABLE LICENSE AGREEMENT, TO THE EXTENT PERMITTED BY 
APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING 
WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE 
OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY LOSS 
OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT 
LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY 
ADVISED OF SUCH LOSS OR DAMAGE. 

The use of any product referenced in the Documentation is governed by the end user’s applicable license 
agreement. 

The manufacturer of this Documentation is CA.  

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the 
restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-
7014(b)(3), as applicable, or their successors.  

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies. 

Copyright © 2009 CA. All rights reserved. 



 

Contact CA 
Contact Technical Support 

For your convenience, CA provides one site where you can access the 
information you need for your Home Office, Small Business, and Enterprise CA 
products. At http://ca.com/support, you can access the following: 

 Online and telephone contact information for technical assistance and 
customer services 

 Information about user communities and forums 

 Product and documentation downloads 

 CA Support policies and guidelines 

 Other helpful resources appropriate for your product 

Provide Feedback 

If you have comments or questions about CA product documentation, you can 
send a message to techpubs@ca.com. 

If you would like to provide feedback about CA product documentation, 
complete our short customer survey, which is also available on the CA support 
website, found at http://ca.com/support. 

http://www.ca.com/support�
mailto:techpubs@ca.com�
http://www.casurveys.com/wsb.dll/166/TIPO_2008_Survey.htm�
http://www.ca.com/support�
http://www.ca.com/support�




  

Contents    v 

Contents 
 

Chapter 1: Introduction to Access Paths 

Purpose ...................................................................................... 1-1 
Organization ................................................................................. 1-1 
Contents ..................................................................................... 1-1 
Related Information .......................................................................... 1-3 
Acronyms and Terms Used in this Guide ....................................................... 1-3 

Acronyms ................................................................................ 1-3 
Values ................................................................................... 1-4 

Understanding Access Paths ................................................................... 1-5 
Recognizing the Basic Properties of Access Paths ............................................... 1-5 

Identifying Access Path Types ............................................................. 1-5 
Physical (PHY) Access Path ................................................................ 1-5 
Examples ................................................................................ 1-6 
Update (UPD) Access Path ................................................................. 1-6 
Examples ................................................................................ 1-6 
Retrieval (RTV) Access Path ............................................................... 1-7 
Examples ................................................................................ 1-7 
Resequence (RSQ) Access Path ............................................................ 1-8 
Examples ................................................................................ 1-8 
Query (QRY) Access Path .................................................................. 1-8 
Examples ................................................................................ 1-9 
Span (SPN) Access Path ................................................................... 1-9 
Examples ................................................................................ 1-9 
Characteristics of Access Paths ........................................................... 1-10 
Naming Access Paths .................................................................... 1-10 

Recognizing Access Path Components ......................................................... 1-11 
Access Path Details ...................................................................... 1-11 
Access Path Format Entries ............................................................... 1-11 
Access Path Relations .................................................................... 1-11 
Access Path Auxiliaries ................................................................... 1-11 

Narrative Text ............................................................................... 1-12 
Understanding Generator Types .............................................................. 1-12 
Model Values ................................................................................. 1-1 
Changing Values .............................................................................. 1-2 

Allocating Names ......................................................................... 1-3 
Allocating a Source Member Name for an Access Path ....................................... 1-3 
Controlling Auxiliary Names ............................................................... 1-3 



  

 

vi     Building Access Paths 

Creating an SQL Environment ............................................................. 1-4 
Specifying Generation Mode ............................................................... 1-5 
Changing the Generation Mode at the Access Path Level .................................... 1-5 

Changing Compiler Overrides ................................................................. 1-5 

Chapter 2: Setting Default Options for Your Functions 

Model Values Used in Building Functions ....................................................... 2-1 
User Interface Manager (UIM) ............................................................ 2-10 
Window Borders ......................................................................... 2-10 

Changing Model Values ...................................................................... 2-10 
Function Level .......................................................................... 2-10 
Model Level ............................................................................. 2-11 

Changing a Function Name .................................................................. 2-12 
Function Key Defaults ....................................................................... 2-12 

Chapter 3: Adding Access Paths 

Before Adding ............................................................................... 3-1 
Edit File Details .............................................................................. 3-1 
Adding an Access Path ....................................................................... 3-2 

Adding a Physical (PHY) Access Path ....................................................... 3-3 
Adding a Resequence (RSQ) Access Path ................................................... 3-4 
Adding a Query (QRY) Access Path ........................................................ 3-4 
Adding a Span (SPN) Access Path ......................................................... 3-5 

Chapter 4: Modifying Access Paths 

Before You Begin ............................................................................. 4-1 
Before Modifying ............................................................................. 4-1 

Navigational Techniques and Aids ......................................................... 4-2 
Automatic Add Options ................................................................... 4-2 
Changing the Auto Add Setting ............................................................ 4-2 
Trimming an Access Path ................................................................. 4-3 
Virtualizing an Access Path ................................................................ 4-4 
Locking an Access Path ................................................................... 4-4 
Temporary Locks ......................................................................... 4-4 
Permanent Locks ......................................................................... 4-5 
Displaying Usages for Access Paths ........................................................ 4-5 

Building Distributed Relational Database Applications ........................................... 4-5 
Specifying Distributed Files ............................................................... 4-5 



  

Contents    vii 

Modifying Access Path Details ................................................................. 4-6 
Editing Access Path Details ................................................................ 4-7 
Specifying Unique/Duplicate Key Retrieval Sequence ........................................ 4-8 
Specifying Access Path Maintenance ....................................................... 4-9 
Specifying Alternate Collating Sequence ................................................... 4-10 
Specifying Select/Omit Criteria ........................................................... 4-10 
Specifying Generation Mode .............................................................. 4-11 
SQL and DDS Joins ...................................................................... 4-12 
Copying an Access Path Generated with SQL ............................................... 4-13 
Changing Source Member Text and Names ................................................ 4-13 

Modifying Access Path Format Entries ......................................................... 4-13 
Identifying Access Path Format Text ...................................................... 4-13 
Identifying Access Path Format Keys ...................................................... 4-13 
Changing the Key Sequence .............................................................. 4-14 
Editing Access Path Format Entries ........................................................ 4-15 
Editing Physical File Format Entries ....................................................... 4-15 
Altering Field Sequence or Implementation Name .......................................... 4-16 

Modifying Access Path Relations .............................................................. 4-17 
Understanding Required Relations ........................................................ 4-17 
Adding Relations to a File ................................................................. 4-18 
Editing Access Path Relations ............................................................. 4-18 

Modifying Virtual Field Entries ................................................................ 4-19 
Understanding Access Path Virtual Field Entries ............................................ 4-20 
Identifying Relations with Virtual Fields .................................................... 4-20 
Specifying File and Access Path Relations .................................................. 4-21 
Editing Virtual Field Entries ............................................................... 4-22 
Tailoring Virtual Fields for Access Paths ................................................... 4-23 

Choosing Select/Omit Criteria ................................................................ 4-23 
Understanding Select/Omit ............................................................... 4-24 
Specifying Selection ...................................................................... 4-25 
Specifying Conditions .................................................................... 4-26 

Changing a Referenced Access Path ........................................................... 4-26 
F4 Prompt Function Assignment .......................................................... 4-29 

Modifying Access Path Auxiliaries ............................................................. 4-29 
Understanding Access Path Auxiliaries ........................................................ 4-30 

For DDS Query (QRY) Access Paths ....................................................... 4-30 
For SQL Access Paths with *IMMED Maintenance ........................................... 4-30 
Editing Access Path Auxiliaries ............................................................ 4-30 

Chapter 5: Deleting Access Paths 

Deleting an Access Path ....................................................................... 5-1 



  

 

viii     Building Access Paths 

Determining the Usage of an Access Path ...................................................... 5-2 

Chapter 6: Defining Arrays 

Understanding Arrays ........................................................................ 6-1 
Structuring Field Data Using Arrays ........................................................... 6-2 
Passing Parameters .......................................................................... 6-2 

Storing Data Between Calls ............................................................... 6-3 
Defining an Array ............................................................................ 6-3 
Editing an Array .............................................................................. 6-5 

Viewing Function References .............................................................. 6-6 
Changing the Name of an Array ........................................................... 6-6 

Deleting an Array ............................................................................ 6-6 

Chapter 7: Generating and Compiling 

Implementing ................................................................................ 7-1 
i OS Index Versus CA 2E Index ............................................................ 7-1 
Setting Your Options ..................................................................... 7-1 
Changing Compiler Overrides from DDS to SQL ............................................ 7-1 
Identifying the Implementation Attributes .................................................. 7-2 
Generating an Access Path ................................................................ 7-3 

Chapter 8: Documenting Access Paths 

Documenting an Access Path.................................................................. 8-1 
Creating the Documentation .............................................................. 8-1 

Chapter 9: Tailoring for Performance 

Considering the Types of Data in the Physical File .............................................. 9-1 
Minimizing the Number of Active Indexes ...................................................... 9-2 

The Active Index ......................................................................... 9-3 
Sharing Active Indexes ................................................................... 9-3 

Access Path Maintenance (Immediate, Delay, or Rebuild) ....................................... 9-4 
Maintenance for Query (QRY) Access Paths ................................................ 9-5 

Using Select/Omit Maintenance ............................................................... 9-6 
Using Join Logicals ........................................................................... 9-7 
Using Multi-Format Access Paths .............................................................. 9-8 
Using Open Data Paths ....................................................................... 9-9 
Creating Default Retrieval Access Paths ........................................................ 9-9 



  

Contents    ix 

Index 
 

  





  

Chapter 1: Introduction to Access Paths    1–1 

Chapter 1: Introduction to Access Paths 
 

Building Access Paths is part of a set of guides that provide instructions on 
how to use the CA 2E product. 

Purpose 
This guide describes how to build access paths and arrays in CA 2E. It explains 
how to set up your CA 2E system and model values and how to add, modify, 
delete, and document access paths and arrays. Each chapter is designed to 
provide the complete information needed to perform the tasks identified in the 
chapter. Review the entire guide or see the chapter that relates to the specific 
task you want to perform. 

Organization 
This guide contains a preface, an introductory chapter, and eight task-oriented 
chapters. 

The introduction provides a high level overview of the CA 2E concepts for 
building access paths. Seven of the remaining eight chapters contain 
conceptual material and instructions on the specific tasks required to add, 
modify, delete, and generate access paths. One chapter deals specifically with 
building arrays. 

Where necessary, these chapters also contain references to other topics and 
chapters in this guide and other guides or reference manuals with related 
information. 

Contents 
The chapters in this guide are as follows: 



Contents 

1–2     Building Access Paths 

 

Chapter Description 

1. Access Paths: An 
Introduction 

This chapter contains an introduction to the 
types of access paths and a high level overview 
of the CA 2E concepts for building access paths.

2. Setting Default Options for 
Your Access Paths 

This chapter contains conceptual material and 
instructions on setting CA 2E model values for 
allocating prefixes, file names and SQL 
libraries. It also includes details on generating 
database file values and instructions on 
changing compiler overrides. 

3. Adding Access Paths This chapter contains conceptual material and 
instructions for editing file details and adding 
the following six access paths: physical, update, 
retrieval, resequence, query, and span. 

4. Modifying Access Paths This chapter contains conceptual material and 
instructions on how to modify existing access 
paths, including the details, format entries, 
relations, and auxiliaries. It also contains 
information on modifying virtual field entries 
and select/omit criteria. 

5. Deleting Access Paths This chapter contains conceptual material and 
instructions on how to delete existing access 
paths. 

6. Defining Arrays This chapter contains conceptual material and 
instructions on how to add, edit, and delete an 
array. 

7. Generating and Compiling This chapter contains conceptual material and 
instructions on how to set up your generation 
options and how to generate and compile your 
access paths. 

8. Documenting Access Paths This chapter contains conceptual material and 
instructions on how to document the access 
paths created in CA 2E. 

9. Tailoring For Performance This chapter contains material that can help 
you tailor your access paths to obtain the best 
system performance. 



Related Information 

Chapter 1: Introduction to Access Paths    1–3 

Related Information 
Before you build your access paths, you should read or review the material in 
the following guides: 

 Readme 

 Getting Started 

 Defining a Data Model 

The following guides contain additional information relating to the generation 
of access paths and associated functions. 

 Building Applications 

 Generating and Implementing Applications 

You may want to see the following IBM documentation in the context of using 
this guide.  

 IBM i DDS Reference Manual 

Acronyms and Terms Used in this Guide 
Descriptions of the acronyms and values used in this guide are defined once, 
in this chapter. Thereafter, only the acronym or value is used. 

Acronyms 

The following acronyms appear in this guide: 

 

ANSI American National Standards Institute 

CBL COBOL 

CL Control Language 

DDL Data Definition Language 

DDS  Data Description Specifications 

DML Data Manipulation Language 

DRDA Distributed Relational Database 
Architecture 

ESF External Source Format 

FCFO First Changed, First Out 

FIFO First In, First Out 



Acronyms and Terms Used in this Guide 

1–4     Building Access Paths 

HLL High level language 

IBM International Business Machines 
Corporation 

I/O Input/Output 

LIFO  Last In, First Out 

ODP Open Data Path 

RPG Report Program Generator 

SAA  Systems Application Architecture 

SQL  Structured Query Language 

Values 

The following values appear in this guide: 

 

CPT  Capture file 

PHY Physical access path 

QRY Query access path 

REF Reference file 

RSQ Resequence access path 

RTV Retrieval access path 

SPN  Span access path 

UPD Update access path 

This chapter provides an overview of how to build access paths. Its purpose is 
to help you understand the CA 2E concepts for using access paths in your 
design model.  

In this guide, the term access path refers to the CA 2E definition exclusively 
unless identified as an i OS access path. 



Understanding Access Paths 

Chapter 1: Introduction to Access Paths    1–5 

Understanding Access Paths 
A CA 2E access path can be implemented as one or more i OS objects. Access 
paths can be created over files that have been defined, but before the 
functions associated with the access path are created. The application uses 
access paths to retrieve, sequence, or update data from the physical file. CA 
2E creates default access paths for you when you define a file in your model. 
However, you can create additional access paths for your file. 

An access path defines the physical file and/or the logical views of that file. 
When you build one, you specify the following: 

 The order in which you want to retrieve records from a file 

 Which fields will be present 

 Your select/omit criteria for deciding which records from the file will be 
retrieved by the access path 

Recognizing the Basic Properties of Access Paths 
There are six different  types of access paths, each with a different purpose. 
These types are defined in this topic. Access paths are allowed for both 
Reference (REF) and Capture (CPT) files. In addition, each access path must 
have a valid CA 2E name. 

For more information about REF and CPT files, see Understanding Your Data 
Model in Defining a Data Model. 

Identifying Access Path Types 

The following sections present a description of the six types of access paths. 

Physical (PHY) Access Path 

A PHY access path is a single-format file containing the fields derived from the 
resolution of all the relations on a file. This access path type: 

 Is unkeyed 

 Has no virtual fields 

 Is created automatically by CA 2E for every defined REF or CPT file 

 Is not referenced directly by functions 

 Allows no additional PHY access path to be created for a given CA 2E file 



Recognizing the Basic Properties of Access Paths 

1–6     Building Access Paths 

 Is created in a model if an existing physical file is retrieved into the model 
through assimilation 

For more information about: 

 Assimilation, see the “Assimilation” chapter Defining a Data Model 

 Editing physical file format entries for assimilated files, see the “Modifying 
Access Paths” chapter 

Examples 

Every CA 2E file has one access path of type PHY, called Physical file by 
default. For example: 

 Physical file for the Company file 

 Physical file for the Product file 

 Physical file for the Order file 

 Physical file for the Order detail file 

Update (UPD) Access Path 

A UPD access path specifies a uniquely keyed, single-format access path that 
describes a view to the function for updating the file. This access path type: 

 Is always keyed on the fields that identify the file. These entries arise from 
the resolution of the key relations. 

 Has no virtual fields 

 Is created automatically by CA 2E for every defined REF or CPT file 

You can create additional UPD access paths, with the same keys as specified 
on the file, but which have a subset of the fields defined by the relations. 
Additional UPD access paths are seldom required. 

Examples 

Every CA 2E file has a default CA 2E UPD access path that will be called 
Update index by default. For example: 

 Update index for the Company file 

 Update index for the Product file 

 Update index for the Order file 

 Update index for the Order detail file 



Recognizing the Basic Properties of Access Paths 

Chapter 1: Introduction to Access Paths    1–7 

You can create other CA 2E UPD access paths for use in functions that update 
only some fields from a file, for example: 

 Company address update only 

 Batch status only 

Retrieval (RTV) Access Path 

An RTV access path specifies a uniquely keyed, single- format access path that 
functions can use to retrieve records from a file. This access path type: 

 Is always keyed in exactly the same way as the UPD access path using the 
relations of the based-on file. 

 Allows virtual fields on the access path. 

 Is automatically created by CA 2E for every defined REF or CPT file. 

 Defaults to the virtual fields of the based-on file's relations. These are then 
present on the access path's relations. 

 Is associated with an UPD access path; CA 2E automatically makes this 
association. 

 Can be edited or trimmed to drop some or all non-key fields from the 
record layout. 

 Can define select/omit logic to select or omit records from the access path. 

 Can be set not to pick up virtual fields. 

You can create many RTV access paths for a given file. Each can contain a 
different combination of fields and/or virtual fields and a different set of 
selection criteria, but all have the same key fields. 

Examples 

Every CA 2E file has a default RTV access path, created for it automatically by 
CA 2E, called Retrieval index by default. For example: 

 Retrieval index for the Company file 

You can define other CA 2E RTV access paths for the same CA 2E file. For 
example: 

 Company active index (selecting active records only) 

 Company summary index (with a subset of the file relations) 



Recognizing the Basic Properties of Access Paths 

1–8     Building Access Paths 

Resequence (RSQ) Access Path 

A RSQ access path specifies a uniquely or non-uniquely keyed, single-format 
access path you can use to describe to CA 2E functions how records are to be 
retrieved from a file. This access path type: 

 Must be created explicitly 

 Defaults to those keys defined by the key relations for the based-on file, 
but allows them to be overridden to an alternative key sequence that does 
not need to be unique 

 Allows virtual fields to be specified on the access path 

 Is associated with a RTV access path that points to an associated UPD 
access path 

 Defaults to the virtual fields of the based-on file's relations. These are then 
present on the access path's relations 

You can create many RSQ access paths for a given file. Each can contain a 
different combination of data fields and/or virtual fields, a different set of 
selection criteria, or an alternative key order. 

Examples 
 Company Known by Company code; RSQ by Company name 

 Order Known by Order no.; RSQ by Order date 

 Person Known by Person code; RSQ by Height 

Query (QRY) Access Path 

A QRY access path specifies a keyed, single-format access path you can use to 
describe to functions how records are to be retrieved from a file. This access 
path type: 

 Allows virtual fields to be specified as key and non-key fields on the access 
path 

 Can use virtual fields as key fields 

 Is available for use with the following function types: Display File, Select 
Record, Retrieve Object, Print Object, and Print File 

 Defaults to those keys defined by the key relations for the file, but allows 
them to be overridden to an alternative key sequence 

 Must be created explicitly 

 Is associated with a RTV access path that in turn points to an associated 
UPD access path 



Recognizing the Basic Properties of Access Paths 

Chapter 1: Introduction to Access Paths    1–9 

 Defaults to the virtual fields of the based-on file's relations. These are then 
present on the access path's relations 

You can create many QRY access paths for a given file. Each can contain a 
different combination of data fields and virtual fields, a different set of 
selection criteria, and/or an alternative key sequence. 

Examples 
 Customer known by Customer code; Order refers to Customer and 

Customer name is a virtual field on Order. Using a QRY access path, you 
can retrieve Order records in Customer name order. 

 Product known by product code; Order line refers to Product and Product 
name is a virtual field on Order line. Using a QRY access path, you can 
retrieve Order line records in Product name order. 

 Company known by Company code; Employee owned by Company and 
Company name is a virtual field on Employee. Using a QRY access path, 
you can retrieve Employee records in Company name order. 

Span (SPN) Access Path 

A SPN access path specifies a keyed multi-format access path. It can be used 
to describe to the edit and display transaction functions how records are to be 
retrieved from a pair of related files. These files possess a common foreign 
key. These files must be related by an Owned by or Refers to relation. The 
SPN access path must be created over the owning or referred to file. This 
access path type: 

 Initially defaults to those keys defined by the key relations of the based-on 
files but can be overridden to an alternative key sequence 

 Allows virtual fields to be specified on the access path relations 

 Must be created explicitly 

 Is associated with a RTV access path that points to an associated UPD 
access path used to carry out any updates to the based-on file 

 Allows explicit selection of multiple access path formats 

 Defaults to the virtual fields of the based-on file's relations; these are then 
present on the access path's relations. 

Examples 
 Order and Order details (Order detail owned by Order) 

 Race and Entries (Entry owned by Race) 

 Orders for Customer (Order refers to Customer) 



Recognizing the Basic Properties of Access Paths 

1–10     Building Access Paths 

You can create many SPN access paths for a given file. Each can contain a 
different combination of formats, a different set of selection criteria, and/or an 
alternative key sequence. 

The RTV access path is used automatically by CA 2E to tell functions to 
retrieve any virtual fields specified for the SPN access path. This is necessary 
because i OS does not support join logical multi-format files. 

Each trio of associated SPN, RTV, and UPD access paths should contain the 
same access path relations. Otherwise, CA 2E transaction functions (EDTTRN 
and DSPTRN) based on the SPN access path will not operate correctly. EDTTRN 
and DSPTRN functions use the first two formats of a multi-format span access 
path. 

Characteristics of Access Paths 

The following table shows characteristics of CA 2E access paths: 

 

Access Path Type Real 
Fields 

Key Fields Virtual 
Fields 

Virtual Keys 

PHY (Physical) Yes No No No 

UPD (Update) Yes Relation No No 

RTV (Retrieval) Yes Relation Yes No 

RSQ (Resequence) Yes User Yes No 

QRY (Query) Yes User Yes Yes 

SPN (Span) Yes User Yes No 

Naming Access Paths 

A name for an access path can be free format and up to 25 characters. Within 
a given file, the access path names must be unique. Since each access path is 
implemented as a separate i OS object, each access path also will be given a 
unique source member name (in the model) before source code can be 
generated for it. The member name becomes the name of the object used to 
implement the access path.  

CA 2E supplies a default name if the Allocate Name (YALCVNM) model value is 
set to *YES or *MNC. 

For more information about: 

 Changing a default name refer to the “Setting Default Options for Your 
Access Paths” chapter. 



Recognizing Access Path Components 

Chapter 1: Introduction to Access Paths    1–11 

 Naming implementation objects see the topic Setting Up the User 
Environment in the “Using Your Development Environment” chapter of the 
Administration Guide. 

 The YCHGMDLVAL command, see the CA 2E Command Reference Guide.  

Recognizing Access Path Components 
This section explains access path details, format entries, and path relations. 

Access Path Details 

Access Path Details are the various implementation options specified for access 
paths. These options include changing source names and text, allowing 
selection criteria, and specifying generation mode, unique key sequence, 
access path maintenance, and alternate collating sequence. 

Access Path Format Entries 

Access Path Format Entries show which fields are present on the access path, 
which of those fields are key fields for that access path, and the order of those 
keys. SPN access paths have at least two formats. Other access path types 
can have only one format. 

Access Path Relations 

Access Path Relations are the set or subset of a file's relations that apply to a 
particular access path. The compulsory relations for an access path are the 
key level relations. They must be present on all access paths for the file. Each 
file-to-file relation on the access path can be associated with a different set of 
virtual fields. 

Access Path Auxiliaries 

Access Path Auxiliaries refer to: 

 The three different i OS objects used to implement a query access path for 
DDS objects. They include a logical file, a physical file, and a control 
language (CL) program. 

 The SQL index created for an SQL-implemented access path with *IMMED 
index maintenance. 



Narrative Text 

1–12     Building Access Paths 

For more information about auxiliaries, see: 

 The topic Adding a Query (QRY) Access Path in the “Adding Access Paths” 
chapter  

 The topic Modifying Access Paths in the “Modifying Access Paths” chapter 

Narrative Text 
Narrative text is user-added text associated with any CA 2E object. You can 
add narrative text to any access path you create. After you create the access 
paths, add the narrative text to describe its definition and function. It is used 
in the following places: 

 Documentation of the model 

 Interactive explanation of the model 

 Generation of help text for functions 

 Generation of program synopses 

For more information about how to use narrative text, see: 

 The topic Using Narrative Text in the “Using Your Model” chapter of the 
Administration Guide 

 The “Documenting Access Paths” chapter of this guide 

Understanding Generator Types 
Within a CA 2E design model, you can use both DDS and SQL to implement 
data definitions for all types of access paths. 

For more information about generator types, see the following: 

 The “Setting Default Options for Your Access Paths” chapter and the 
“Generating and Compiling” chapter in this guide. 

 The “Setting Default Options for Your Functions” chapter in the CA 2E 
Building Applications guide  

 The “Using Your Development Environment” chapter in the Administration 
Guide 



  

Error! No text of specified style in document.    1–1 

This chapter explains how to set up options for the model values assigned to 
the access paths that you build and how to change compiler overrides. 

Model Values 
Model-specific values control particular features of the interactive use of CA 
2E, code generation, and implementation. 

For more information about what a model value is, see the “Using Your 
Development Environment” chapter in the Administration Guide.  

The model values you need when building access paths are: 

 

YALCVNM The Allocate Valid Name (YALCVNM) model value specifies 
whether DDS and SQL object names are to be allocated 
automatically by CA 2E or by a specific standard you 
establish for the CA 2E model. 

YOBJPFX The Object Prefix (YOBJPFX) model value specifies the 
prefix to be used when generating system objects. 

YFILPFX The Last Used File Prefix (YFILPFX) model value contains 
the last 2-character identifying mnemonic CA 2E used 
when creating a new file. These two characters occupy 
positions three and four of the new file name, following the 
model object prefix. 

For more information about object name prefixes, see the following: 

 The “Creating and Managing Your Model” chapter in the Administration 
Guide  

 The Setting Up the User Environment section in the “Using Your 
Development Environment” chapter of the Administration Guide 

 

YDBFGEN The Database Generation (YDBFGEN) model value specifies 
the default method of source generation (DDS or SQL) for 
database definition. 

You can set your source generation type by doing the following: 

 Setting the model value YDBFGEN at the time that you create your CA 2E 
model. 

 Changing the model value YDBFGEN after creating the model. 

 Changing the generation mode on a specific access path. 



Chapter 1: Introduction to Access Paths 

1–2     Building Access Paths 

For more information about setting the source generation type for your model, 
see the “Creating and Managing Your Model” chapter in the Administration 
Guide. 

 

YSQLLIB The SQL Library (YSQLLIB) model value specifies the 
library (collection) in which to place the SQL objects 
needed to implement an SQL database. 

YSQLVNM The SQL Naming (YSQLVNM) model value specifies 
whether to use the extended SQL naming capability. You 
can specify either DDS names (the shipped default) or the 
names of CA 2E objects in the model (extend SQL 
naming). 

YSQLLEN The SQL Naming Length (YSQLLEN) model value is a 
numeric value that controls the length of the extended SQL 
name. Its maximum value is 25. This model value is used 
only when YSQLVNM is *SQL. 

 For more information about extended SQL naming, see the “SQL 
Implementation” appendix in the Administration Guide. 

 YDBFACC The Database Access Method (YDBFACC) model value lets 
you specify whether to access data from a table or from a 
view when an access path and the table over which it is 
based contain the same fields. 

For more information about direct table access, see the “SQL Implementation” 
appendix in the Administration Guide. 

You can set your model values when you create your model or change the 
model value with the YCHGMDLVAL command. However, once you have set 
your model values, you can then override many of these defaults for a specific 
access path using the access path detail options. 

For more information about model values and how to set model values, see 
YCHGMDLVAL in the CA 2E Command Reference Guide. 

Changing Values 
Use the following information to change the model values for your access 
paths.  



Chapter 1: Introduction to Access Paths 

Chapter 1: Introduction to Access Paths    1–3 

Allocating Names 

This topic tells you how to control the names assigned to CA 2E objects by 
changing the names given to the source member names when the access 
paths are built. 

Allocating a Source Member Name for an Access Path  
1. Zoom into the file.  

At the Edit Database Relation panel, type Z next to any relation for the file 
and press Enter. 

 The Edit File Details panel displays. 

2. Zoom into the access path.  

Type Z next to the one you want to rename and press Enter. 

 The Edit Access Path Details panel displays: 

  

3. Enter the new source member name in the source member name option 
field and press Enter.  

Controlling Auxiliary Names 

CA 2E generates default values for access path auxiliaries for Query (QRY) 
access paths and SQL tables or views with *IMMED maintenance capability.  

For more information about:  

 SQL generation, see Specifying Generation Mode later in this section. 



Chapter 1: Introduction to Access Paths 

1–4     Building Access Paths 

 SQL naming and separate view and index creation, see the “SQL 
Implementation” appendix in the Administration Guide. 

Change the name of auxiliaries using the following procedure: 

1. Zoom into the file.  

At the Edit Database Relations panel, type Z next to the relation for the file 
and press Enter. 

 The Edit File Details panel displays. 

2. Zoom into the access path.  

Type Z next to the selected QRY (or SQL) access path and press Enter. 

 The Edit Access Path Details panel displays with the details for the selected 
access path. 

3. View the auxiliaries.  

Press F7 to view the access path auxiliaries. 

 The Edit Access Path Auxiliaries panel displays. 

4. Type the new source member names and press Enter. 

Creating an SQL Environment 

Using SQL facilitates the portability of generated applications and is the only 
means of database access across machines in Distributed Relational Database 
Architecture (DRDA). 

For more information: 

 On SQL, see the appendix “SQL Implementation” in the Administration 
Guide. 

 On DRDA, see the chapter “Modifying Access Paths” in this guide, and the 
chapter “Distributed Relational Database Architecture” in Generating and 
Implementing Applications. 

To create SQL tables and views for your model, you need an SQL library 
known as a collection. This collection contains the SQL objects, including the 
catalog, a data dictionary, a journal, and two journal receivers. 

When creating an SQL environment, use one of the following: 

 SQLLIB parameter on the YCRTMDLLIB command creates a collection 
library name with MDL replaced by SQL or a name of your choosing.  

 Create SQL Library (YCRTSQLLIB) command creates a collection and links 
it to a model. 



Chapter 1: Introduction to Access Paths 

Chapter 1: Introduction to Access Paths    1–5 

Specifying Generation Mode 

The choice of which generation mode to use is controlled by the Database File 
Generation (YDBFGEN) model value that acts as an implementation flag. The 
default value is DDS. You can use the following procedure to assign a value to 
a specific access path when it is built. The options are DDS and SQL.  

Changing the Generation Mode at the Access Path Level 

To change the generation mode for a specific access path at the access path 
level: 

1. Zoom into the file. At the Edit Database Relations panel, type Z next to 
the relations for the file and press Enter. 

 The Edit File Details panel displays. 

2. Zoom into the access path. Type Z next to the access path whose 
generation mode you want to change and press Enter. 

 The Edit Access Path Details panel displays. 

3. Change the generation mode. Type the character that represents the 
new generation model value. 

 Options are: 

 D for DDS 

 S for SQL 

 M for MDLVAL 

Note: If an access path specifies M for MDLVAL when it is generated, it 
will use the current value for the YDBFGEN model value. If you want to 
override this value, enter D or S. The default is M. 

4. Press Enter. 

Changing Compiler Overrides 
Within CA 2E, there are various properties of the i OS database files that you 
can modify by specifying compiler overrides. The overrides are the parameters 
on the compiler commands. 

CA 2E allows you to prompt for and store these overrides that are then 
automatically applied by the compile pre-processor when you compile your 
programs. 

Some of the overrides you can specify are: 



Chapter 1: Introduction to Access Paths 

1–6     Building Access Paths 

 Physical files: i OS Create Physical File (CRTPF) command 

 MAXMBRS, SIZE 

Note: MAXMBRS is a parameter that specifies the maximum number of 
members the file can hold. 

 Logical files: i OS Create Logical File (CRTLF) command 

 MAXMBRS, DTAMBRS 

Note: Some of the compile parameters (MAINT, TEXT) are specified by the 
access path details. Override values should not be specified for these values. 

For more information: 

 On how to prompt for and store overrides, see the Changing Compiler 
Overrides section in the “Generating and Compiling” chapter of this guide. 

 On the i OS commands, see the IBM i CL Command Reference. 



  

Chapter 2: Setting Default Options for Your Functions    2–1 

Chapter 2: Setting Default Options for 
Your Functions 
 

This chapter identifies the model values specific to functions and shows you 
how to change them, how to change the default names that CA 2E assigns to 
functions, and function key defaults. 

Model Values Used in Building Functions 
This topic covers the model values used by functions. Function options can 
affect the device design and processing defaults. Model values are shipped as 
defaults for the Create Model Library (YCRTMDLLIB) command. 

Many function options are derived from model values. If you find that you 
often change these options at the function level, you may want to review the 
settings in your model and change them at the model level. 

For more information about: 

 Understanding model values, see Getting Started, Setting Up the Model 
Environment in the chapter  “Using Your Development Environment” 

 Model values you can change at the function level, see Changing Model 
Values later in this chapter  

 Descriptions of each model value, YCHGMDLVAL, see the Command 
Reference 

YABRNPT The YABRNPT value is only for NPT generation, and enables you to choose 
between creations of CA 2E Action Bars or DDS Menu Bars for a given 
function. The default is DDS Menu Bars for models created as of r5.0 of 
COOL:2E. For existing models upgraded to r5.0, the default is Action Bars. 

We recommend that you migrate to DDS Menu Bars over time since DDS Menu 
Bars make use of the new OS/400 ENPTUI features, which allow the menu 
bars to be coded in the DDS for the display file. The CA 2E Action Bars require 
that an external program be called to process the action bar. As a result, the 
DDS Menu Bars are faster, have more functionality, and create more efficient 
CA 2E functions. 

For more information about NPT user interface options, see ENPTUI in the 
chapter “Modifying Device Designs.” 



Model Values Used in Building Functions 

2–2     Building Access Paths 

YACTCND The Action Diagram Compound Symbols (YACTCND) model value defines the 
symbols used in editing and displaying compound condition expressions.  

The format for modifying this design option is: 

YCHGMDLVAL  MDLVAL(YACTCND)  VALUE('& AND | OR ^ NOT  ( ( ) ) c c') 

For more information about compound conditions, see Entering and Editing 
Compound Conditions in the chapter “Modifying Action Diagrams.” 

YACTFUN The Action Diagram Compute Symbols (YACTFUN) model value defines the 
symbols used in editing compute expressions, which include + - * / \ ( ) x. 
You are only likely to change these defaults if you have national language 
requirements. The binary code values for these symbols can map to different 
values, depending on the code page in use. For example, a forward slash (/) 
on the US code page would map to a cedilla in a French National code page. 

For more information on compute expressions, see Entering and Editing 
Compound Conditions in the chapter “Modifying Action Diagrams.”  

YACTSYM The Action Diagram Structure Symbols (YACTSYM) model value defines the 
symbols used in action diagrams. The shipped default is *SAA. The Action 
Diagram Editor and the Document Model Functions (YDOCMDLFUN) command 
use this design option. 

YACTUPD The Action Diagram Update (YACTUPD) model value defines the default value 
for the Change/create function option on the Exit Function Definition panel. 
The shipped default is *YES. The value *CALC sets the Change/create 
function option to Y only when a change to the function’s action diagram or 
panel design is detected. 

YALCVNM The Automatic Name Allocation (YALCVNM) model value indicates whether CA 
2E should automatically allocate DDS and object names. The shipped default 
is *YES. 

For more information on name allocation, see Getting Started— Setting Up the 
User Environment topic, Naming Control in the chapter “Using Your 
Development Environment.” 

YBNDDIR Specifies a binding directory that can resolve the location of any previously 
compiled RPGIV modules. Use this model value while compiling RPGIV 
programs with the CRTBNDRPG command. 

Note: For more information, see the section The YBNDDIR Model Value in the 
Chapter ILE Programming.  

YCNFVAL The Confirm Value (YCNFVAL) model value determines the initial value for 



Model Values Used in Building Functions 

Chapter 2: Setting Default Options for Your Functions    2–3 

the confirm prompt. The shipped default is *NO. 

For more information on function options, see the chapter, “Modifying Function 
Options.” 

YCPYMSG The Copy Back Messages (YCPYMSG) model value specifies whether, at 
program termination, outstanding messages on the program message queue 
are copied to the message queue of the calling program. The shipped default 
is *NO. 

For more information on function options, see the chapter, “Modifying Function 
Options.” 

YCRTENV The Creation Environment (YCRTENV) model value determines the 
environment in which you intend to compile source is the iSeries. The 
shipped default is the iSeries. 

For more information about: 

 Controlling design, Setting Up the Model Environment in the chapter 
“Using Your Development Environment,” in Getting Started 

 Environments, see Managing Your Work Environment—Generating and 
Implementing Applications in the chapter  “Preparing for Generation and 
Compilation”  

YCUAEXT The CUA Device Extension (YCUAEXT) model value determines whether the 
text on the right side text is used for device designs. The shipped default is 
*DEFAULT, which results in no right text and no padding or dot leaders. 

The YCUAEXT value, *C89EXT (for CUA Text), provides CUA design features 
on top of those which the model value YSAAFMT provides, such as defaulting 
and alignment of right side text, padding or dot leaders to connect fields with 
field text, and prompt instruction lines on all device function types. 

For more information on field attributes and right side text defaults, see the 
chapter, “Modifying Device Designs,” Device Design Conventions and Styles. 

YCUAPMT The CUA Prompt (YCUAPMT) model value controls the CUA prompt (F4). If 
enabled, this design option enables end users to request a list display of 
allowed values by pressing F4. The value *CALC provides additional F4 
functionality by processing the CALC: user points in the function where F4 is 
pressed—for example, to provide Retrieve Condition functionality.  

The default value for YCUAPMT is *MDL. This value directs CA 2E to enable the 
CUA prompt at the model level if the YSAAFMT model value is *CUATEXT or 
*CUAENTRY. 

For more information about: 



Model Values Used in Building Functions 

2–4     Building Access Paths 

 Setting display defaults, see the chapter, “Modifying Device Designs” 

 On the *CALC value, see the Command Reference, the YCHGMDLVAL 
command 

YCUTOFF The Year Cutoff (YCUTOFF) model value specifies the first of the hundred 
consecutive years that can be entered using two digits. It is specified as 
19YY, which represents the hundred years: 19YY to 20YY-1. Values between 
YY and 99 are assumed to be in the 20th century; namely, 19YY to 1999; 
values between 00 and YY-1 are assumed to be in the 21st century; namely 
2000 to 20YY-1. The default is 1940. The YCUTOFF value is retrieved at run 
time and applies to all date field types: DTE, D8#, and DT#. 

YDATFMT The Date Format (YDATFMT) model value works in conjunction with the 
model value YDATGEN. If YDATGEN is *VRY. The setting for YDATFMT 
determines the order of the date components at run time; for example, 
MMDDYY or DDMMYY. 

YDATGEN The Date Validation Generation (YDATGEN) model value determines the type 
of date editing source code CA 2E generates. With YDATGEN set to *VRY, you 
can change the date format for an application with the YDATFMT model 
value. No recompilation of functions is necessary. 

YDBFGEN The Database Implementation (YDBFGEN) model value defines the method 
for database file generation and implementation: DDS or SQL. 

YDFTCTX The Parameter Default Context (YDFTCTX) model value specifies the default 
context to use for a given function call in the action diagram editor when no 
context is supplied: LCL or WRK. The shipped default is *WRK. 

YDSTFIO The Distributed File I/O Control (YDSTFIO) model value, together with model 
value YGENRDB, provides DRDA support. The shipped default value is 
*NONE, indicating that CA 2E will not generate distributed functionality. 

For more information on DRDA, see Generating and Implementing 
Applications in the chapter “Distributed Relational Database Architecture.” 

YERRRTN For RPG-generated functions, the Error Routine (YERRRTN) indicates whether 
CA 2E will generate an error handling routine (*PSSR) in the program that 
implements the function. The shipped default value is *NO. 

Note: For EXCUSRPGM functions, this value specifies whether an error-
handling routine should be generated in the calling program to check the 
value of the *Return code on return from the EXCUSRPGM (if the 
EXCUSRPGM does not have the *Return code as a parameter, this check will 
not be generated).     



Model Values Used in Building Functions 

Chapter 2: Setting Default Options for Your Functions    2–5 

YEXCENV The call to a CL program that implements an EXCMSG function uses an 
OS/400 program. The Execution Environment (YEXCENV) model value 
determines the default environment, QCMD (OS/400), in which Execute 
Message (EXCMSG) functions execute. 

For more information about: 

 EXCMSG functions, see Function Types, Message Types, and Function 
Fields in the chapter, “Defining Functions” 

 QCMD and QCL, see Generating and Implementing Applications— 
Managing Your Work Environment in the chapter “Preparing for Generation 
and Compilation” 

YGENCMT The time required to generate a function can be significantly improved if 
comments are not required for the generated source code. The YGENCMT 
model value lets you specify whether or not comments are placed in the 
resulting generated source code. You can specify that all comments (*ALL), 
only header comments (*HDR), or no comments (*NO) be generated. The 
shipped default is *ALL. 

YGENHLP The Generate Help Text (YGENHLP) model value allows you to specify 
whether help text is generated for a particular function. You can specify 
generation of the function only (*NO), help text only (*ONLY), or both the 
function and help text (*YES). This value can be overridden at the function 
level. The shipped default is *YES. 

YGENRDB The Generation RDB Name (YGENRDB) model value provides the DRDA 
support for specifying a default database. When you execute the CRTSQLxxx 
command, this database is used in creation of the SQL package. The default 
value for YGENRDB is *NONE, which means that DRDA compilation is not 
enabled. 

For more information about DRDA, see Generating and Implementing 
Applications in the chapter “Distributed Relational Database Architecture.” 

YHLLGEN The HLL to Generate (YHLLGEN) model value identifies the default HLL type 
for new functions. The HLLGEN parameter on YCRTMDLLIB sets this model 
value. 

Note: To default to the value for model value YSYSHLL, select *SYSHLL for 
the parameter HLLGEN. 



Model Values Used in Building Functions 

2–6     Building Access Paths 

YHLLVNM The HLL Naming Convention (YHLLVNM) model value determines the HLL 
conventions for new function names. The HLLVNM parameter on YCRTMDLLIB 
sets this model value. The default is *RPGCBL, allocation of names that both 
RPG and COBOL compilers support. 

For more information about converting HLLs, see Generating and 
Implementing Applications—Converting a Model from One HLL to Another, in 
the chapter “Preparing for Generation and Compilation.”  

YHLPCSR The Generate Cursor Sensitive Text (YHLPCSR) model value gives you the 
option of generating your function with cursor-sensitive help. That is help- 
specific to the context (cursor position) from which the end user requests it. 
The shipped default is Y (Yes). 

YLHSFLL The Leaders for Device Design (YLHSFLL) model value refers to the symbols 
to usedas leaders between text and input or output fields on panels. The 
shipped default value is *SAA, for SAA default left-hand filler characters. You 
can change any of these characters using the YCHGMDLVAL command. 

YNPTHLP The NPT Help Default Generation Type (YNPTHLP) model value determines 
the type of help text to generate for NPT functions. All CA 2E functions are 
NPT unless the functions are being generated for a GUI product. The types 
are UIM or TM. The shipped default for YNPTHLP is *UIM. 

For more information about UIM support, see Objects from UIM Generation in 
the chapter “Implementing Your Application.”  

YNLLUPD The Null Update Suppression (YNLLUPD) model value sets the default for 
whether CHGOBJ functions update or release the database record if the 
record was not changed. This can be overridden with a matching function 
option. The shipped default is *NO. 

 *NO 

 CHGOBJ functions do not check whether the record has changed before 
updating the database. In other words, null update suppression logic is not 
generated in CHGOBJ functions. 

 *AFTREAD 

CHGOBJ checks whether the record changed between the After Data Read 
and Data Update user points. 

 *YES 

CHGOBJ checks whether the record changed both after the Data Read and 
after the Data Update’ user points. 

For more information about: 



Model Values Used in Building Functions 

Chapter 2: Setting Default Options for Your Functions    2–7 

 CHGOBJ database function, refer to the chapter, “Defining Functions” 

 Suppressing null updates, see Understanding Contexts, PGM in the chapter 
“Modifying Action Diagrams” 

YOBJPFX The Member Name Prefix (YOBJPFX) model value specifies the prefix (up to 
two characters) CA 2E uses to generate object names. The shipped default is 
UU. If you change this prefix, do not use Q, #, and Y because they are 
reserved characters for CA 2E. 

For more information about naming prefixes, see Creating an CA 2E Model in 
the chapter “Creating and Managing Your Model” in Getting Started. 

YPMTGEN The Prompt Implementation (YPMTGEN) model value specifies whether the 
text on your device designs is generated, implemented, and stored in a 
message file, making it available for national language translation. The 
shipped default value is *OFF. The parameter PMTGEN on the YCRTMDLLIB 
command initially sets the YPMTGEN model value. 

For more information about: 

 National Language Support, see Generating and Implementing Applications 
in the chapter “National Language Support” 

 YCRTMDLLIB, see the Command Reference 

YPMTMSF The Prompt Message File (YPMTMSF) model value specifies the message file 
into which device text message IDs are stored. CA 2E retrieves the messages 
from this message file at execution time. 

For more information about National Language Support, see Generating and 
Implementing Applications in the chapter “National Language Support.” 

YPUTOVR The DDS Put With Override (YPUTOVR) model value is a function generation 
option. It enables you to specify use of the DDS PUTOVR keyword in the 
generated DDS. This keyword, in effect, reduces the amount of data that 
needs transmission between the system and its workstations. Its use can 
improve performance, particularly on remote lines. 

For more information about system performance, see the AS/400 
Programming: Data Description Specifications Reference. 

YRP4HSP Used by the RPGIV Generator for the contents of the Control (H) specification 
for objects of type *PGM. The allowed values are any RPGIV H-specification 
keywords, for example: 

 DATEDIT(*YMD) DEBUG(*YES) 

 DATFMT(*YMD) 



Model Values Used in Building Functions 

2–8     Building Access Paths 

Note: If you need to enter a value that is longer than 80 characters, you 
should use the command YEDTDTAARA DTAARA(YRP4HSPRFA) 

YRP4HS2 Used by the RPGIV Generator for the contents of the Control (H) specification 
for objects of type *MODULE. The allowed values are any RPGIV H-
specification keywords, for example: 

 H DATFMT(*YMD) 

 DATEDIT(*YMD) DEBUG(*YES) 

Note: If you need to enter a value that is longer than 80 characters, you 
should use the command YEDTDTAARA DTAARA(YRP4HS2RFA) 

YRP4SGN The RPGIV generator includes some source generation options that you can 
set at a model level. These options are in the model value YRP4SGN in a data 
area called YRP4SGNRFA (RPGIV source generation options). YRP4SGNRFA 
is a 16-character data area. 

Note: For more information, see the section Model Value YRP4SGN in the 
Chapter ILE Programming. 

 

YSAAFMT The SAA Format (YSAAFMT) model value controls the design standard for 
panel layout. This standard can be CUA. *CUAENTRY is the shipped default. 

The DSNSTD parameter on the YCRTMDLLIB command controls the initial 
YSAAFMT value. You can override the header or footer for a function from the 
Edit Function Options panel. You can also change the value of YSAAFMT using 
the YCHGMDLVAL command. 

For more information about: 

 Using YSAAFMT options, see Device Design Conventions and Styles in the 
chapter  “Modifying Device Designs” 

 YSAAFMT values, see YCHGMDLVAL in the Command Reference 

YSFLEND The Subfile End (YSFLEND) model value controls whether the + sign or  
More. . . is displayed in the lower right location of the subfile to indicate that 
the subfile contains more records. This feature is available for all subfile 
functions. The shipped default is *PLUS. To change to *TEXT everywhere, 
change the model value and regenerate your subfile functions. 

The setting of YSFLEND is resolved in the following areas:  

 Generated applications 

 Device designs 

 Animated functions 

 Function documentation (YDOCMDLFUN)  



Model Values Used in Building Functions 

Chapter 2: Setting Default Options for Your Functions    2–9 

YSHRSBR The Share Subroutine (YSHRSBR) model value specifies whether generated 
source code for subroutines are shared and whether the subroutine’s 
interface is internal or external. This model value and its associated function 
option are available on the CHGOBJ, CRTOBJ, DLTOBJ, RTVOBJ, and 
EXCINTFUN function types. 

YSNDMSG For new functions, the Send Error Message (YSNDMSG) model value specifies 
whether to send an error message for only the first error found or for every 
error. In either case, outstanding messages clear when the end user presses 
Enter. The shipped default value is *NO, do not send all error messages; 
send only the first error message. 

YSQLLCK The SQL Locking (YSQLLCK) model value specifies whether a row to be 
updated is locked at the time it is read or at the time it is updated. The 
default is *UPD, lock rows at time of update. 

YSQLWHR The SQL Where Clause (YSQLWHR) model value specifies whether to use OR 
or NOT logic when generating SQL WHERE clauses. The default is *OR. 

For more information about the YSQLLCK and YSQLWHR model values, see the 
appendix "SQL Implementation" in Getting Started. 

YWSNGEN The Workstation Generation (YWSNGEN) model value defines whether 
interactive CA 2E functions operate on non-programmable terminals (NPT) or 
on programmable workstations (PWS) communicating with an iSeries host. 
For programmable workstations, you also specify the PC runtime 
environment. YWSNGEN can be overridden by a function option. The possible 
values are: 

 *NPT 

 Generates CA 2E functions for non-programmable terminals (NPT) 
communicating with an iSeries host system. 

 *GUI 

Generates CA 2E functions for non-programmable terminals together with 
a Windows executable running in a Windows environment under emulation 
to the host. 

 *JVA 

 Generates CA 2E functions for non-programmable terminals together with 
a Windows executable running in a Windows environment under emulation 
to the host and a Java executable running in a Windows environment using 
a Web browser with emulation to the host. 

 *VB 

 Generates CA 2E functions for non-programmable terminals together with 
a Visual Basic executable running in a Windows environment under 
emulation to the host. 



Changing Model Values 

2–10     Building Access Paths 

User Interface Manager (UIM) 

Three model values provide options for UIM help text generation: 

 The Bidirectional UIM Help Text (YUIMBID) model value provides national 
language support of languages with both left-to-right and right-to-left 
orientations 

 The Default UIM Format (YUIMFMT) model value provides paragraph or 
line tags 

 The UIM Search Index (YUIMIDX) model value provides search for the 
index name derived from Values List prefix 

Window Borders 

Three model values provide design options for the appearance of the border on 
windows: 

 The Window Border Attribute (YWBDATR) model value provides shadow or 
no shadow 

 The Window Border Characters (YWBDCHR) model value provides 
dot/colon formation 

 The Window Border Color (YWBDCLR) model value provides CUA default 
(Blue) or another color 

For more information on Modifying Windows, see Editing Device Designs in the 
chapter  “Modifying Device Designs.”  

Changing Model Values 
This topic summarizes changing model values for a function of your model. 

Function Level 

You can override model value settings that determine function options at the 
function level from the Edit Function Options panel. You can reach this panel 
by zooming into the function from the Edit Functions panel, then pressing F7 
(Options) from the Edit Function Details panel. 

The model values that have corresponding fields on the Edit Function Options 
panel are: 



Changing Model Values 

Chapter 2: Setting Default Options for Your Functions    2–11 

 

Values Meaning 

YABRNPT Create CA 2E Action Bars or DDS Menu Bars for NPT 
generation 

YCNFVAL Initial value for the confirm prompt 

YCPYMSG Copy back messages 

YDBFGEN Generation mode 

YDSTFIO Distributed file I/O control 

YERRRTN Generate error routine 

YGENHLP Generate help text 

YNPTHLP Type of help text to be generated 

YPMTGEN Screen text implementation 

YSNDMSG Send all error msgs (messages) 

YSFLEND Subfile end 

YWSNGEN Type of workstation 

For more information about: 

 Options applicable to each function see Function Types, Message Types, 
and Function Fields in the chapter, “Defining Functions” 

 On step-by-step procedures, see Specifying Function Option in the 
chapter, “Modifying Function Options” 

Model Level 

You can change the setting of a model value for your model by executing the 
Change Model Value (YCHGMDLVAL) command. Be sure to use YCHGMDLVAL, 
rather than the OS/400 command, Change Data Area (CHGDTAARA). 
Changing model values involves more than changing data areas; many 
internal model changes are made by YCHGMDLVAL. 

You should always exit from your model entirely when changing model values. 
Although the command can appear to run successfully while you are in the 
model, there is no guarantee that a full update has taken place.  

For more information on using the YCHGMDLVAL command, see the Command 
Reference. 



Changing a Function Name 

2–12     Building Access Paths 

Changing a Function Name 
To change a function name 

1. Select the file. From the Edit Database Relations panel, type F next to the 
desired file and press Enter. 

 The Edit Functions panel appears, listing the functions for that file. 

2. Zoom into the function details. Type Z next to the desired function and 
press Enter. 

 The Edit Function Details panel appears, showing the function name at the 
top. 

3. Request to change the function name. Press F8 (Change name). 

 The function whose name you want to change appears underlined on the 
panel. 

4. Change the function name. Type the desired name.  If you want, you can 
change any other underlined names to better correspond to the new 
function name . Press Enter, then F3 to exit. 

Function Key Defaults 
CA 2E assigns the standard function key usage of your design standard. You 
can specify additional function keys in action diagrams or modify existing 
function key default values. 

For more information about function keys, see the chapter “Modifying Device 
Designs.” 

The following table shows the shipped device design defaults for the iSeries. 

 

Meaning iSeries default 

*Help F01/HELP 

Prompt  F04  

Reset  F05  

*Change mode request F09  

*Change mode to Add F09  

*Change mode to Change F09  

*Delete request F11  

*Cancel F12  



Function Key Defaults 

Chapter 2: Setting Default Options for Your Functions    2–13 

Meaning iSeries default 

*Exit F03  

*Exit request  F03  

*Key panel request/*Cancel F12  

*IGC support F18  

Change RDB F22  

*Previous page request F07/ROLLDOWN 

*Next page request F08/ROLLUP 

The default is determined by the design standard selected. The iSeries default 
is used if the YSAAFMT model value is set to *CUATEXT or *CUAENTY. 

 





  

Chapter 3: Adding Access Paths    3–1 

Chapter 3: Adding Access Paths 
 

This chapter describes how to build an access path. A description of the types 
of access paths is provided in the Recognizing the Basic Properties of Access 
Paths section of the “Access Paths: An Introduction” chapter. 

Before Adding 
When you create and define your file, CA 2E automatically creates the 
following three default access paths for the file: physical, update, and 
retrieval. These default access paths have default values equal to those of the 
model values. Generally, the access path options are set when you create your 
model. However, you can change the values for the access paths at other 
times. 

For more information: 

 On how to change the model values or values for a specific access path, 
see the instructions in this guide's “Setting Default Options for Your Access 
Paths” and “Modifying Access Paths” chapters. 

 On model values, see the YCHGMDLVAL command in CA 2E Command 
Reference Guide. 

Adding access paths to your design model allows CA 2E to provide you with 
specific views of the data in the physical files for your application. These views 
allow you to retrieve data in a format that most suits your needs with less 
system overhead. 

For more information on tailoring your access paths, see the “Tailoring for 
Performance” chapter in this guide. 

Edit File Details 
The Edit File Details panel is where you add new access paths to your model, 
modify existing access paths, or view the list of the existing access paths for a 
selected file.  



Adding an Access Path 

3–2     Building Access Paths 

1. Zoom into the file. Type Z next to any relation for the selected file on the 
Edit Database Relations panel and press Enter. Alternatively, select option 
2 from the Edit Model Object List panel. 

 The Edit File Details panel displays with a list of the access paths built over 
that file, the source member names, key sequence, and implementation 
attributes: 

  

2. Review the details. In the top half of this panel, view the details for the 
file. 

3. Review existing access paths. In the bottom half of the panel, view the 
list of all access paths already defined for the file, including the three 
default access paths (PHY, RTV, and UPD). 

Adding an Access Path 
A list of the available types of access paths follows: 

 Physical (PHY) 

 Update (UPD) 

 Retrieval (RTV) 

 Resequence (RSQ) 

 Query (QRY) 

 Span (SPN) 



Adding an Access Path 

Chapter 3: Adding Access Paths    3–3 

In addition to the three default access path types created when the file is 
defined, you can create additional update and retrieval access paths or 
resequence, query, or span access paths using the instructions that follow. 

To add any access path, except a PHY access path, use the following steps: 

1. Zoom into the file. Type Z next to any relation for the selected file on the 
Edit Database Relations panel and press Enter. Alternatively, you can use 
selection option 2 from the Edit Model Object List panel. 

 The Edit File Details panel displays with a list of any existing (default) 
access paths for the file. 

2. Add the new access path. At the next available line on this panel (use 
the Roll Up key, if necessary), type the access path value type in the Typ 
column and the name of the access path in the Access Path column and 
press Enter. 

 Your options for the Typ column are UPD, RTV, RSQ, QRY, and SPN. 

For more information on each access path type and when to use it, see the 
“Access Paths: An Introduction” chapter in this guide.  

 CA 2E displays the following information for the new access path: 

 Source member name in the Source Mbr field 

 Unique and non-unique key selection in the Key field 

 Maintenance selection (immediate, delay, and rebuild) in the Index 
field 

3. View the access path details. Type Z next to the new access path and 
press Enter. 

 The Edit Access Path Details panel displays. 

At this point, you have defined an access path to the model. 

For more information on making changes to the access paths, such as to the 
keys, or to add virtuals, see the instructions in the “Modifying Access Paths” 
chapter of this guide. 

For additional instructions that are commonly used when adding RSQ, QRY, 
and SPN type access paths, refer to that material in the following sections. 

Adding a Physical (PHY) Access Path 

Unlike other access path types, you cannot add a physical access path to an 
existing file. The PHY access path corresponds to an arrival sequence i OS 
physical file or an SQL table. When you create and define your file and then 
zoom into the file from the Edit Database Relations panel, CA 2E automatically 
creates a PHY access path as one of the three defaults. 



Adding an Access Path 

3–4     Building Access Paths 

For more information on creating and defining a file and instructions on 
assimilating a physical file, see the “Creating/Defining Your Data Model” and 
“Assimilation” chapters in Defining a Data Model.  

Adding a Resequence (RSQ) Access Path 

Once you add the RSQ access path, follow the instructions in the preceding 
section, Adding an Access Path. At the Edit Access Paths Format Entries panel, 
you can also identify the new key sequence order: 

 

Changing the Key Sequence 

1. Remove the old key sequence order from the Key no. column. 

2. Add the new key sequence order in the Key no. column. Ascending or 
descending sequence can also be specified for each field in the key 
sequence. 

Note: Lower key numbers indicate a higher key order or a major key. The key 
sequence numbering should be unique. 

Adding a Query (QRY) Access Path 

Once you add the QRY access path, following the instructions in the preceding 
section, Adding an Access Path, CA 2E creates and generates default values for 
three auxiliary objects for DDS only. Each object type has its own source, 
either DDS or CL, that is held in the appropriate source file in the generation 
library. These objects include: 



Adding an Access Path 

Chapter 3: Adding Access Paths    3–5 

 Logical file, which is based on the physical file whose data is being 
referenced. 

 Physical file, which never contains data and is used to define a record 
format and keys to any HLL program generated for a function based on the 
QRY access path.  

 CL program, which executes the Open Query File (OPNQRYF) command. 
This command is called at execution by any program generated for a 
function based on the QRY access path. 

For more information on how the auxiliaries are implemented, see the 
Implementation table in the “Generating and Compiling” chapter in this guide.  

Adding a Span (SPN) Access Path 

The SPN access path is a multi-format view that allows views of two or more 
formats. The SPN access path can only be specified over files with Owned by 
or Refers to relationships. The SPN access path must be created over an 
owning or referred to file.  

Once you add the SPN access path, following the instructions in the preceding 
section, Adding an Access Path, you can also add the new format entries:  

1. View the SPN access path. Press F9 from the Edit Access Path Details 
panel to select formats. 

 The Display Access Path Formats panel displays where you select the 
format. 

2. Select the primary format. Type an X next to the primary format for the 
specified file and press Enter. 

Note: You always select the Refers to or Owned by file first. 

 The Edit Access Paths Details panel redisplays which shows the format 
selection indicated by the number in the Seq column next to the format. 

3. Repeat the above process for each format. Follow Steps 1 and 2 to 
select the secondary format. 



Adding an Access Path 

3–6     Building Access Paths 

  

Note: The keys of the second format must include all of the keys of the 
first format, in the same order. Any additional keys on the second format 
must be sequenced after the first format keys. 

Once you have completed the preceding steps, you have added the SPN 
access path. To view the entries on the format and change the key order, 
at the Edit Access Path Details panel, perform the following. 

4. Zoom into the format. Type Z next to the format name of the format. 

 The Edit Access Path Format Entries panel displays with a list of the details 
(fields), field type, source name, type, key number, alternate collating 
sequence, and reference count for your format. 

5. Change the key order number for the format. At the Edit Access Path 
Format Entries panel, type the different sequence for the key order 
numbers and press Enter. 

 CA 2E stores the key sequence. 

 



  

Chapter 4: Modifying Access Paths    4–1 

Chapter 4: Modifying Access Paths 
 

This chapter explains how to modify an existing access path; it contains nine 
topics that identify where you can modify the access paths.  

Once you add access paths to your model, you can modify the details, values, 
or options you selected. CA 2E provides sensible defaults for the selections and 
protects the values that should not be changed. However, in creating your own 
application, you may need to change some of the defaults based on your own 
organization's application design conventions. These procedures walk you 
through the process. 

Before You Begin 
When an access path is created, it is created with defaults based on your 
model values. Some of the model values are specifically used with access 
paths. By changing the options for one of these model values, it is possible to 
modify the access paths if your application design warrants the changes. 

For more information about: 

 The types of access paths available in CA 2E, see the chapter “Access 
Paths: An Introduction” 

 The default values for access paths and instructions on how to change 
them, see the chapter “Setting Default Options for Your Access Paths” 

 How to add access paths to your model, see the chapter “Adding Access 
Paths” 

 How to generate and compile an access path, see the chapter “Generating 
and Compiling” 

Before Modifying 
This topic describes navigational techniques and aids used in the subfile 
selection area of the left margin of the panel and the selection options found in 
the command text area at the bottom of the panels. This topic also identifies 
procedures for adding and removing virtual fields, holding and locking access 
paths, and displaying access path references. 



Before Modifying 

4–2     Toolkit Reference 

Navigational Techniques and Aids 

CA 2E provides you with ways to navigate to different panels other than by 
using function keys. CA 2E identifies a number of standard line selection 
values usually found in the command text area at the bottom of the panel. 

For example, you can use Z to zoom into a file or D to delete. When you place 
one of these selections next to a file in the subfile selection area of your Edit 
Database Relations panel and press Enter, CA 2E executes the action. 

For more information about navigation, see the following: 

 The Navigation Facilities section of the chapter “Using Your Model” in the 
Administrators Guide 

 The Editing Model Object Lists section of the chapter “Managing Model 
Objects” in Generating and Implementing Applications 

Automatic Add Options 

Each access path initially contains all of the relations for the file on which it is 
based, but none of the virtuals. If you add a new relation to a file, the effect 
on the access path is controlled by the Automatic Add setting. Following are 
the three Auto Add settings: 

 

Setting Description 

*Attr Only Only attributes are added (physical file changes). 

*All Both virtuals and attributes are added. 

*Held No changes are made to the access path. This prevents 
level checking.  

Changing the Auto Add Setting 
Do the following to change the Auto Add setting: 

1. Zoom into the file.  

Type Z next to any relation for the selected file on the Edit Database 
Relations panel and press Enter. 

 The Edit File Details panel displays. 

2. Toggle the Auto Add setting.  

At the Edit File Details panel, type H next to the selected access path and 
press Enter. 

 The allowable Auto Add settings and defaults are as follows. 



Before Modifying 

Chapter 4: Modifying Access Paths    4–3 

 

Access Path Atr Only Held All 

PHY Default No No 

UPD Default Yes No 

RTV Default Yes Yes 

RSQ Default Yes Yes 

QRY Default Yes Yes 

 A refreshed panel displays with the indicator ALL, ATR ONLY, or HELD 
showing that the selected access path has changed its Auto Add setting. 

Note: The key relations (Known by, Owned by, and Qualified by) are added to 
the access path regardless of the Auto Add setting. These relations must 
always be present on all access paths for the file. 

If a relation is added to an access path and functions that use the access path 
already exist, the entries that result from resolving the new relations are 
added to any device designs (reports and panels) used by the functions. For 
example, if the entries are not key fields on the access path, they will be 
added as hidden fields to the device designs. 

If they are key fields on the access path, they are added as input fields to the 
device designs. The device designs may therefore require readjustment before 
they can be successfully regenerated. 

For more information about readjusting the device designs, see the “Modifying 
Device Designs” chapter of Building Applications. 

Trimming an Access Path 

You can remove all virtuals from an access path using the Trim option. 

To trim an Access Path 

1. Zoom into the file.  

Type Z next to any relation for the selected file on the Edit Database 
Relations panel and press Enter. 

 The Edit File Details panel displays. 

2. Trim the Access Path.  

At the Edit File Details panel, enter T next to the selected access path and 
press Enter. Repeat the action to confirm. 



Before Modifying 

4–4     Toolkit Reference 

Note: You can also trim a format using the Edit Access Path Details panel. 

 If you trim an access path that has Auto Add set to ALL, Auto Add is reset 
to ATR ONLY. 

Virtualizing an Access Path 

You can add all virtual fields to an access path using the Virtualize option.  

To virtualize an access path 

1. Zoom into the file.  

Type Z next to any relation for the selected file on the Edit Database 
Relations panel and press Enter. 

 The Edit File Details panel displays. 

2. Virtualize the Access Path.  

At the Edit File Details panel enter V next to the selected access path and 
press Enter. You need to repeat the action to confirm. 

Note: You can also virtualize a format of an access path using the Edit 
Access Path Details panel.  

 If you virtualize an access path that has Auto Add set to Held, it will be 
reset to All. 

Locking an Access Path 

CA 2E supports two types of object locks: temporary and permanent.  

Temporary Locks 

Temporary locks are imposed automatically by CA 2E to prevent two users 
from working on the same object at the same time. These locks are normally 
cleared by CA 2E when the object is no longer in use. Temporary locks hold 
the access paths so that they can be changed only by one user at a time. This 
lock is automatically placed on each CA 2E object while it is in use. 

If you are using an object and leave the model abnormally, such as with a 
subsystem termination or power failure, a temporary lock can be left on the 
object. This lock now prevents you from accessing the object. To remove this 
inactive temporary lock, select L from the bottom of the Edit File Details panel 
to view the locks in your model. CA 2E automatically removes the locks no 
longer required. 



Building Distributed Relational Database Applications 

Chapter 4: Modifying Access Paths    4–5 

Permanent Locks 

Permanent locks can be placed by the designer on any object to prevent any 
modification or generation of that object. These locks stay in effect, even if the 
object and model are not in use, until they are removed by the designer. 
Permanent locks can be placed on CA 2E objects. A permanent lock prevents 
users from changing a CA 2E object. For designers to add and remove 
permanent locks, they must have *OBJOWN rights to the YMDLLIBRFA data 
area. 

For more information about locks, see the section Locking Objects in the 
“Using Your Model” chapter of the Administration Guide. 

Displaying Usages for Access Paths 

To view a list of where each access path is used in the model view the usages, 
as follows: 

1. Access the Edit File Details panel. 

2. Enter U or F next to the selected access path and press Enter. 

The Display Model Usages panel displays with a list of all model objects that 
use the selected access path. 

For more information about usages, see the Impact Analysis section of the 
“Managing Model Objects” chapter in the Generating and Implementing 
Applications guide. 

Building Distributed Relational Database Applications 
This topic discusses Distributed Relational Database Architecture (DRDA). 
DRDA is IBM's architecture that provides access to data distributed across 
various machines. The objective of DRDA is to provide the user, via a high-
level programming language, access to relational databases and files that 
reside on multiple machines. 

Specifying Distributed Files 

CA 2E lets you flag any files you create for DRDA on the Edit File Details panel. 
The distributed flag indicates whether the file is distributed or local. The field 
has two values; Y means it is distributed and N means it is local. The default is 
N. YGENRDB is the model value that specifies the relational database used 
when distributed functions are used. If it is set to *NONE, the flag is ignored 
regardless of its content. 



Modifying Access Path Details 

4–6     Toolkit Reference 

AY implies that any access paths that are based on this file can conceivably 
exist on a remote machine. Files initially designed and created as Distributed N 
can be changed to Distributed Y, just as files created as Distributed Y can be 
changed to Distributed N. 

Note: Any functions built over this file must be regenerated and recompiled to 
contain the distributed functionality. 

For more information about Distributed Relational Database Architecture see 
the “Distributed Relational Database Architecture” chapter of the Generating 
and Implementing Applications guide. 

Modifying Access Path Details 
This topic discusses use of the Edit Access Path Details panel including 
specifying unique/duplicate key retrieval sequence, access path maintenance, 
alternate collating sequence, select/omit criteria, generation mode, and 
changing source member text and names. 

Access paths are implemented as separate i OS objects. You can specify 
various implementation options for each access path such as the i OS object 
name for the logical file and whether the access path maintenance will be 
Rebuild, Delay, or Immediate. CA 2E provides defaults for those options and 
protects the values that should not be changed. 

For instance, i OS requires that immediate access path maintenance be 
specified if you specify the DDS UNIQUE keyword. The values allowed for the 
implementation details depend on the access path. A table of i OS access path 
implementation attributes follows. 

 

  

Access Path Type 

(1) (2)  

Unique or 
Dup Key 
Sequence 
(DDS only) 

(3)  

Access 
Path 
Maint. 

(4)  

Alt Col 
(DDS 
only) 

(5)   

Selection

PHY Physical  

UPD Update (default)  

UPD Update  

RTV Retrieval (default)  

RTV Retrieval  

RSQ Resequence  

QRY Query  

SPN Span 

-  

U  

U/L/F/  /C  

U  

U/L/F/  /C  

U/L/F/  /C  

F  

U/L/F/  /C 

-  

I  

I,D,R  

I  

I,D,R  

I,D,R  

I,D,R  

I,D,R 

-  

-  

-  

-  

-  

Yes  

-  

Yes 

-  

-  

-  

S/D  

S/D  

S/D  

D  

S/D 



Modifying Access Path Details 

Chapter 4: Modifying Access Paths    4–7 

The following legend applies for the access path types:   

(1) Unique key status (DDS unique keyword or SQL unique keyword with 
create index statement). U indicates unique; if not unique, see note (2). The 
default UPD and RTV access paths must be unique.  

(2) Duplicate key sequence for DDS only (L=LIFO, F=FIFO,' '=undefined, 
C=FCFO)  

(3) i OS access path maintenance (I=*IMMED, R=*REBLD, D=*DLY);    for QRY access paths (I=*FIRSTIO, D=*MINWAIT, R=*ALLIO). See the 
following table.  

(4) Alternative collating sequence table for DDS only (DDS ALTCOL keyword)  

(5) Selection type (S=static, D=dynamic) (DDS DYNSLT keyword) 

 

The following table shows the effect of each of the Access Path Maintenance 
options depending on whether this option is implemented in DDS, CL, or SQL. 

 

Edit Access Path 
Details Panel 
Maintenance 
Option 

Method Used to Implement the Access Path 
Maintenance Option 

  

DDS  
(Non-QRY Access 
Paths) 

(1)  

OPNQRYF 
command 
(QRY Access 
Paths) 

  

SQL 

I (Immediate) *IMMED *FIRSTIO Create Index 

D (Delay) *DLY *MINWAIT No Index 

    

R (Rebuild) *REBLD *ALLIO No Index 

(1)  For QRY access paths the access path maintenance options are 
implemented using OPTIMIZE parameter values on the i OS  

OPNQRYF command. 

For more information about parameters for the OPNQRYF command, see IBM i 
Control Language Reference.  

Editing Access Path Details 

You can display and change the details for a CA 2E access path using the Edit 
Access Path Details panel. 



Modifying Access Path Details 

4–8     Toolkit Reference 

 

You can display and edit the following details for an access path using the Edit 
Access Path Details panel. 

 Unique/Duplicate Key sequence 

 Access Path Maintenance 

 Alternate Collating Sequence 

 Select/Omit Criteria 

 Generation Mode 

 Source Member Name and Text 

Specifying Unique/Duplicate Key Retrieval Sequence 

CA 2E lets you determine if the key values of the access path are unique or 
duplicate and, if they are duplicate, what the sequence would be.  

1. Zoom into the file. 

From the Edit Database Relations panel, type Z next to the selected file 
and press Enter. The Edit File Details panel displays. 

2. Zoom into the access path.  

Type Z next to the selected access path and press Enter. The Edit Access 
Path Details panel displays. 

3. Specify the key sequence.  

Change the key sequence by entering the selected option in the Duplicate 
Sequence field and press Enter. 

 The possible options are: 



Modifying Access Path Details 

Chapter 4: Modifying Access Paths    4–9 

 U for unique (this requires Immediate maintenance). 

 F for first in, first out (FIFO). 

 L for last in, first out (LIFO). 

 C for first changed, first out (FCFO). 

 Blank means an unspecified sequence is used. 

For more information about the unique/duplicate key sequence, see IBM i DDS 
Reference Manual and IBM i Database Guide. 

Specifying Access Path Maintenance 

CA 2E lets you select the type of maintenance for your i OS access paths. i OS 
maintains all access paths immediately, while they are open, regardless of the 
maintenance option. However, when the file is closed, the access path 
maintenance option specifies to i OS how the access path should be 
maintained. 

The type of access path maintenance you specify depends on the number of 
records, the frequency of additions, deletions, and updates to a file, and the 
frequency of opens. If you do not specify the type of maintenance, the default 
is immediate maintenance. 

Specify access path maintenance. At the Edit Access Path Details panel, enter 
or change the maintenance selection for updating the records in the 
Maintenance field and press Enter. 

The access path maintenance options are: 

 

Option Description 

I=*IMMED Immediate Maintenance. The i OS access path is maintained 
as changes are made to its associated data, regardless of 
whether the i OS file is open.  

For QRY access paths, the OPNQRYF command's OPTIMIZE 
parameter is set to *FIRSTIO, which minimizes time required 
to open the file and to retrieve the first buffer of records from 
the file. 

D=*DLY Delay maintenance. Any maintenance for the i OS access path 
is done the next time the associated file is opened.  

For QRY access paths, the OPNQRYF command's OPTIMIZE 
parameter is set to *MINWAIT, which minimizes delays while 
reading the file. 



Modifying Access Path Details 

4–10     Toolkit Reference 

Option Description 

R=*REBLD Rebuild maintenance. The i OS access path is completely 
rebuilt each time the file is opened.  

For QRY access paths, the OPNQRYF command's OPTIMIZE 
parameter is set to *ALLIO, which attempts to minimize total 
processing time. 

Note: Specify I (immediate maintenance) for all files that require unique keys 
in order to ensure uniqueness for inserts and updates. 

For more information: 

 About access path maintenance, see the “Tailoring for Performance” 
chapter and the IBM i DDS Reference Manual. 

 On the i OS OPNQRYF command, see IBM i Control Language Reference.  

Specifying Alternate Collating Sequence 

CA 2E lets you specify a keyword to direct the i OS program to use an 
alternative collating sequence table when sequencing the records. 

A typical example is to use the i OS-supplied translate table, QCASE256, to 
make the collating sequence for both upper and lower case the same. This 
creates an access path that suppresses unwanted upper/lower case 
discrepancies in the collating sequence while preserving the upper/lower case 
differences in the data. Any field used as a key for this access path should be 
similarly translated (uppercase only). 

Specify Alternate Collating Sequence. At the Edit Access Path Details panel, 
enter or change the keyword name of the alternative collating sequence table 
in the Alternating Collating Table field and press Enter. 

Use the i OS Create Table (CRTTBL) command to create the table or use an 
existing i OS table, such as QSYSTRNTBL or QCASE256. 

Specifying Select/Omit Criteria 

CA 2E allows you to specify select/omit criteria that filter your view of the 
records for the RTV, RSQ, SPN, and QRY type access paths. 

For more information about select/omit criteria, see the section Choosing 
Select/Omit Criteria in this chapter. 

Specify select/omit criteria. At the Edit Access Path Details panel, enter or 
change the select/omit criteria at the Allow Select/Omit field and press Enter. 



Modifying Access Path Details 

Chapter 4: Modifying Access Paths    4–11 

Options are: 

 S—Static applies the selection and omission criteria as the records are 
added (stored) 

 D—Dynamic specifies the selection and omission of logical file records 
performed during processing, instead of when the access path (if any) is 
maintained 

 Blank—No selection/omission criteria 

Note: Dynamic must be specified if there are any virtual fields on the access 
paths. For QRY access paths, dynamic will be defaulted if required. 

Specifying Generation Mode 

CA 2E lets you specify the mode in which you generate the source (Data 
Definition Language). 

Specify Generation Mode. At the Edit Access Path Details panel enter or 
change the generation mode at the Generation Mode field and press Enter. 

Options are: 

 D—for DDS 

 S—for SQL 

 M—for Model value 

In CA 2E, some combinations of files and access paths that use different Data 
Definition Languages are permitted, while some are not. For example, you 
cannot have an CA 2E SQL logical file over an CA 2E DDS physical file. The 
following table outlines these rules: 

 

 

 

CA 2E Logical 
Access Path 

 

 

 

 

CA 2E Physical Access 
Path 

 DDS SQL 

 

 

DDS Yes No 

 

 

SQL Yes Yes 



Modifying Access Path Details 

4–12     Toolkit Reference 

SQL and DDS Joins 

To join information from tables/files, SQL uses inner joins and DDS uses outer 
joins. Outer joins are not part of the American National Standards Institute 
(ANSI) standard for SQL. If you switch an access path from DDS to SQL or 
vice versa, be aware that the same records might not be included. 

The following examples illustrate an SQL inner join and a DDS outer join, 
where the joins resolve to a different set of records:  

 

In the preceding example, the customer record for Order # 002, Cust. # 2, 
does not exist in the Customer file. In the SQL join file, the record for Order # 
002 is dropped from the file. In the DDS join file, the record for Order # 002 is 
included in the file. Note that the virtual field Cust. Name is filled with blanks 
in the DDS join file. 



Modifying Access Path Format Entries 

Chapter 4: Modifying Access Paths    4–13 

Copying an Access Path Generated with SQL 

If you use the Copy Model Objects (YCPYMDLOBJ) command to copy an SQL 
generated access path or function to a model that does not have an SQL 
environment, YCPYMDLOBJ runs successfully, but you need to create an SQL 
collection for the receiving access path before you can generate source. 

Changing Source Member Text and Names 

CA 2E lets you change the source member names and text created.  

Change the text or name. At the Edit Access Path Details panel, change the 
name in the Source Member Name field or the text in the Source Member Text 
field and press Enter. 

Modifying Access Path Format Entries 
This topic provides information on identifying access path format text and keys 
and instructions on changing the key sequence and editing access path format 
entries. 

An access path format shows which fields are present in the access path. It 
also indicates which of those fields are key fields for the access path, and the 
order in which the key fields appear. 

SPN type access paths can have more than one format. Other types of access 
paths have only one format. 

Identifying Access Path Format Text 

An access path format can have up to fifty characters of descriptive text. The 
default text is a concatenation of the file name and the access path name. The 
text appears in the Format Text field on the Edit Access Path Format Entries 
panel. 

Identifying Access Path Format Keys 

The keys of UPD and RTV access paths come from the key relations for the 
based-on file and cannot be changed. 

The keys of the RSQ, SPN, and QRY type access paths are initially defaulted to 
the entries defined by the key relations but can be changed. Keys can be 
sequenced in ascending or descending order. 



Modifying Access Path Format Entries 

4–14     Toolkit Reference 

For more information about the i OS limit on the number of keys that can be 
specified, see IBM i Database Guide. 

If an alternative collating table is specified for the access path, you can specify 
whether to use it to collate particular key fields. You can use this panel to flag 
those keys that are to be alternately collated. 

Changing the Key Sequence 
Do the following to change the key sequence 

1. Zoom into the file.  

At the Edit Database Relations panel, type Z next to any relation for the 
selected file and press Enter. Alternatively, you can use selection option 2 
from the Edit Model Object List panel. 

 The Edit File Details panel displays. 

2. Zoom into the access path.  

Type Z next to the selected access path and press Enter. 

 The Edit Access Path Details panel displays. 

3. Zoom into the format.  

Type Z next to the selected format and press Enter. 

 The Edit Access Path Format Entries panel displays:  

  



Modifying Access Path Format Entries 

Chapter 4: Modifying Access Paths    4–15 

4. Change the key sequence.  

Change the key order as appropriate by changing the numbers in the Key 
no. column. 

 Numbers represent the order of the fields that make up a composite key. 
Ensure that the key sequence numbers are unique. Low key order 
indicates the sequence of the major keys. 

5. Generate the access path.  

For the new specification to take effect, you must regenerate the access 
path. 

For more information about how to generate an access path see the 
“Generating and Compiling” chapter. 

Editing Access Path Format Entries 

The presence of a field on an access path format (an access path entry) is 
controlled by the relations specified for the access path. By default, all the 
relations specified for the based-on file are declared to be present on an 
access path so that all the fields from the file are initially present. By dropping 
particular relations from an access path, you can omit fields from the access 
path's format. 

To display and change the relations for an access path, use the Edit Access 
Path Relations panel. To display the fields that are present on the access path 
format, use the Edit Access Path Format Entries panel. 

You can use the Edit Access Path Format Entries panel to specify an alternative 
key order for RSQ, QRY, and SPN type access paths. CA 2E lets you edit 
access path format entries using the Edit Access Path Details panel. Access 
path formats are created automatically for all access path types except SPN. 
For SPN access paths you need to add formats explicitly. 

For more information on adding SPN access path format entries, see this 
guide's “Adding Access Paths” chapter. 

Note: Relations are present on an access path if they were added to the 
based-on file after a hold was specified on the access path. 

Editing Physical File Format Entries 

The physical file format entries for an assimilated CA 2E physical access path 
can be edited using the Edit Physical File Format Entries panel. You use the 
panel to specify override values to be used when generating source. 

This panel allows you to specify: 



Modifying Access Path Format Entries 

4–16     Toolkit Reference 

 That the fields in a given database file have different implementation 
names from those used in the logical files based over them 

 That the fields occur in a different order from that shown on the Edit 
Access Path Entries panel 

Altering Field Sequence or Implementation Name 
Do the following to alter the field sequence or implementation name: 

1. Zoom into the file.  

At the Edit Database Relations panel, type Z next to any relation for the 
selected file and press Enter. Alternatively, you can select option 2 from 
the Edit Model Object List panel. 

 The Edit File Details panel displays. 

2. Zoom into the physical access path of the assimilated file. Type Z next to 
the PHY access path and press Enter. 

 The Edit Access Path Details panel displays. 

3. Zoom into the format. 

Type Z next to the format and press Enter. 

 The Edit Access Path Format Entries panel displays. 

4. Access the Edit Physical File Format Entries panel.  

Press F8. 

 The Edit Physical File Format Entries panel displays: 

  

5. Change the DDS name or the file sequence as appropriate and press 
Enter. 



Modifying Access Path Relations 

Chapter 4: Modifying Access Paths    4–17 

Modifying Access Path Relations 
This topic discusses required relations and provides instructions on editing 
access path relations. 

The relations for an access path are composed of the set or subset of a file's 
relations that apply to a particular access path. For a specific access path 
belonging to a given file, only some of the relations specified for the file need 
to apply. 

In other words, a particular access path may not require all of the fields and 
relations from the file to be present on the access path. Each access path may 
have its own subset of the file's attributes and relations. When you drop file-
to-file relations, such as Refers to, those key fields associated with the relation 
are dropped as are all associated virtual fields. The following is an illustration 
of access path and file relations. 

 

For more information about relations, see the Using Relations section of the 
“Understanding Your Data Model” chapter in Defining a Data Model. 

Understanding Required Relations 

The key level relations for a file (Known by, Owned by, and Qualified by) must 
be present on all access paths for the file. 

A PHY type access path always contains all of the relations for the file on which 
it is based. On UPD and RTV type access paths, define the entries resulting 
from the resolution of the relations as the keys of the access path. On other 
access path types, the relations merely cause the fields to be present on the 
file, not necessarily as key fields. 



Modifying Access Path Relations 

4–18     Toolkit Reference 

For more information about how to define specific required relations, see the 
next section Adding Relations to a File. 

Adding Relations to a File 

Each access path initially contains all the relations for the file on which it is 
based. If a new relation is added to a file, it will be added to the list of access 
path relations for each of the file's access paths provided that the access paths 
are not held. Held access paths remain unchanged, as do any functions 
attached to them. 

If a relation is added to an access path and functions already exist that use 
that access path, the entries that result from resolving the new relations will 
be added to the function's device designs as follows: 

 If they are not key fields on the access path, they will be added as hidden 
fields to the device design. 

 If they are key fields, they will be added as input fields to the device 
designs. 

Editing Access Path Relations 

CA 2E lets you display and edit access path relations with the Edit Access Path 
Relations panel. On this panel, you can reinstate or drop relations from an 
access path. 

1. Zoom into the file.  

From the Edit Database Relations panel, type Z next to any relation for the 
selected file and press Enter. Alternatively, you can use selection option 2 
from the Edit Model Object List panel. 

 The Edit File Details panel displays. 

2. Zoom into the access path.  

Type Z next to the selected access path and press Enter. 

 The Edit Access Paths Details panel displays. 



Modifying Virtual Field Entries 

Chapter 4: Modifying Access Paths    4–19 

3. Select the access path relation.  

Type R next to the selected access path and press Enter. 

 The Edit Access Path Relations panel displays:  

  

4. Specify the access path relations.  

Type + (plus) or - (minus) next to the relations you want to reinstate or 
remove from the access path and press Enter. 

Each access path initially contains all of the relations for the file on which it is 
based. If a new relation is added to a file, it is added to the list of access path 
relations for each of the file's access paths except those access paths specified 
to be held. Held access paths remain unchanged as do any functions attached 
to them. 

Modifying Virtual Field Entries 
This topic explains how to identify relations with virtual fields, specify file and 
access path relations, and tailor virtual fields for access paths. This topic also 
contains instructions on editing virtual field entries. 

A virtual field specified on a relation of a file is added, by default, to each 
instance of that relation on a particular access path of the file. 



Modifying Virtual Field Entries 

4–20     Toolkit Reference 

Understanding Access Path Virtual Field Entries 

An access path virtual field is a field that is logically, rather than physically, 
present on an access path. Although the field does not reside on the based-on 
physical file, a view of it is available through the relations that exist for the 
access path. 

It is possible to omit particular virtual fields from a particular access path. The 
virtual fields for an access path can be selected only from among fields that 
have been specified as virtual fields for the file. 

For example, if Customer file has five fields (Customer no., Branch name, 
Branch no., Customer name, and Customer address), and if Customer file 
Refers To Branch file with only Branch name field as a virtual field, only the 
Branch name field is available as a virtual field on all access paths of Customer 
file. 

 

Branch Known by Branch no. 

Branch Has  Branch name 

Branch Has Branch address 

Customer Known by Customer no. 

Customer Has Customer name 

Customer Has Customer address 

Customer Refers to Branch 

The Customer Refers to relation adds the field Branch No. to the Customer file. 
Virtualization allows you to add the field Branch name as a virtual field to the 
Customer file. You can include or drop this virtual field from any access paths 
over the Customer file. 

Identifying Relations with Virtual Fields 

CA 2E lets you specify only virtual fields on the Owned by, Refers to, and 
Extended by relation types. Virtual fields can be used only as read-only fields 
in standard functions. This read-only field is implemented as a join logical file 
or SQL view. It checks on the generation mode and access path type. 

Different access paths for a file can contain different combinations of relations, 
and each file-to-file relation on the access path can have a different set of 
virtual fields associated with it. 

For more information about files and relations, see the chapters  
“Understanding Your Data Model” and “Creating/Defining Your Data Model” in 
Defining a Data Model.  



Modifying Virtual Field Entries 

Chapter 4: Modifying Access Paths    4–21 

Specifying File and Access Path Relations 

Specifying virtual fields is a two level process: For a field to be used as a 
virtual field, you must specify it as a virtual field on both the file relations and 
the access path relations. 

In the previous example, the field Branch address is not available as a virtual 
field on any access path of the Customer file, as it is not specified as a field on 
the relations for the file. 

For more information about:  

 Specifying virtual fields on a file, see the Adding/Modifying Virtual Fields 
section in the “Maintaining Your Data Model” chapter of Defining a Data 
Model.   

 Specifying virtual fields on an access path, see the Tailoring Virtual Fields 
for Access Paths section later in this chapter. 

The following example shows how access paths can have subsets of the 
relations on the file: 

 



Modifying Virtual Field Entries 

4–22     Toolkit Reference 

Editing Virtual Field Entries 

CA 2E lets you edit the virtual field entries on both the file and the access 
path. Field level virtual fields are specified using the Edit Virtual Field Entries 
panel. Access path virtual fields are specified using the Edit Access Path 
Relation Virtual Fields panel. 

The file level panel declares that a field is available for use as a virtual field on 
any of the access paths for the file. The access path level panel specifies that a 
virtual field is present on a particular access path. 

1. Zoom into the file.  

At the Edit Database Relations panel, type Z next to any relation for the 
selected file and press Enter. Alternatively, you can use selection option 2 
from the Edit Model Object List panel. 

 The Edit File Detail panel displays. 

2. Zoom into the access path.  

Type Z next to the selected access path and press Enter. 

 The Edit Access Path Details panel displays. 

3. Zoom into the format.  

Type Z next to the selected format and press Enter. 

 The Edit Access Path Format Entry panel displays. 

4. Specify virtual fields.  

Press F7 and press Enter. 

 The Edit Access Path Relations panel displays. 



Choosing Select/Omit Criteria 

Chapter 4: Modifying Access Paths    4–23 

5. Select the virtual field entry.  

Type V next to the selected relation and press Enter. 

 The Edit Access Path Relation Virtual Field panel displays: 

  

Note: The selected relation must be an Owned by, Refers to, or Extended 
by relation or you will not be able to virtualize the field. 

6. Edit the virtual field entry.  

Type + (plus) or – (minus) next to the field(s) you want to virtualize and 
press Enter. 

 A refreshed panel displays with your choices highlighted. 

Tailoring Virtual Fields for Access Paths 

It is important to consider the design of your application when specifying 
virtual fields. Ensure that the join logicals you set up when you virtualize 
provide you with the data you need. This saves the operating system from 
having to do unnecessary Input/Output (I/O) to other files. 

For more information about tailoring virtuals, see the Using Join Logicals 
section in the “Tailoring for Performance” chapter.   

Choosing Select/Omit Criteria 
This topic provides instructions about how to specify selection and conditions. 



Choosing Select/Omit Criteria 

4–24     Toolkit Reference 

Access path selection lets you specify that a particular access path retrieves 
only the records from the file that meet specified select/omit criteria, such as 
those that contain specified values for particular fields. 

For example, you have a personnel file containing records for both full-time 
and part-time employees. If you want to obtain a view of only the part-time 
employees, you can define an access path with selection on an employee type 
field that identifies part-time employees. 

Understanding Select/Omit 

CA 2E lets you specify selection using a select/omit set. A given access path 
may have none, one, or many select/omit sets specified. If there is more than 
one set, the sets are ORed together. 

Once a record satisfies a select or omit set, it is either selected or omitted and 
further sets are not relevant. If a record does not satisfy a select or omit set, it 
will be tested against subsequent sets. If a record does not satisfy any select 
or omit set, it is omitted if the last set was a select set and selected if the last 
set was an omit set. 

Each set is made up of one or more conditions that specify the actual values 
that a field may take. If there is more than one condition, the conditions within 
a set are ANDed together. 

For example, if there are two conditions, both must be valid for the entire set 
to be valid. 

In the following example, the access path suspended order is made of two 
select/omit sets: Awaiting Confirmation and Passed Credit Check. Each of the 
select/omit sets are defined by one or more conditions.  

 



Choosing Select/Omit Criteria 

Chapter 4: Modifying Access Paths    4–25 

Specifying Selection 

Use the Edit Access Path Select/Omit panel to specify selection and the names 
of the select/omit sets that make up the selection criteria. The following steps 
tell you how to specify selection. 

1. Zoom into the file.  

At the Edit Database Relations panel, type Z next to any relation for the 
selected file and press Enter. Alternatively, you can use selection option 2 
from the Edit Model Object List panel. 

 The Edit File Details panel displays. 

2. Zoom into the access path.  

Type Z next to the selected access path and press Enter. 

 The Edit Access Path Details panel displays. 

3. Select the format.  

Enter S next to the selected format and press Enter. 

 The Edit Access Path Select/Omit panel displays. 

Note: The Allow Select/Omit access path option must be set to either  
S or D. 

4. Specify selection.  

Type S for select or O for omit in the S/O column and the text description 
to indicate the name for the selection criteria set. 

  

5. Zoom into the selection.  

Type Z next to the selection to specify the conditions and press Enter.  

 The Edit Access Path Conditions panel displays. 



Changing a Referenced Access Path 

4–26     Toolkit Reference 

Specifying Conditions 

Use the Edit Access Path Conditions panel to specify conditions (which are the 
actual field conditions that make up a given select/omit set). 

1. Specify the condition.  

Enter the field and condition name for the selection in the appropriate 
column. If you do not know the field or condition name, place a question 
mark in the appropriate column and press Enter. 

 The Display Access Path Format Entries panel or the Edit Field Conditions 
panel displays. 

2. View the fields or conditions.  

Type X next to the selected field or condition and press Enter. 

 The Edit Access Path Conditions panel displays with the selections.  

For more information about how to add conditions, see the Adding/Modifying 
Conditions section in the “Maintaining Your Data Model” chapter of Defining a 
Data Model.    

Changing a Referenced Access Path 
When an access path includes a relation that refers to another file, the relation 
always references an access path. This access path is used by functions for 
validation and, by default, this is the access path RTV automatically created by 
CA 2E. You can, however, alter the relation so that a different access path is 
used. This enables you to specify selection criteria for the relationship. 

Using the F4 prompt function assignment, you can change the prompt function 
assigned to a file-to-file relation. If you change the access path, then the 
prompt function will default to the SELRCD function for that access path. 

For more information about function assignment, see the information at the 
end of this section.  

In a database recording pedigrees, you could specify that Mothers be only 
female, and Fathers be only male by specifying the access path selection on 
the relation. 



Changing a Referenced Access Path 

Chapter 4: Modifying Access Paths    4–27 

 

The relations you would need to specify the pedigree are as follows: 

 

Then, having attached two conditions to gender, Male and Female, you can 
define two additional retrieval access paths on the Animal file that select on 
each gender respectively.  

 



Changing a Referenced Access Path 

4–28     Toolkit Reference 

Having added the new access paths, you can return to the relations for the 
original retrieval CA 2E access path and specify that the Refers to relations are 
to use the additional CA 2E access paths with gender-specific selection. Thus, 
fathers must be male, and mothers must be female. 

1. Zoom into the access path details.  

Type Z next to the selected access path on the Edit File Details panel. 

 The Edit Access Path Details panel displays. 

2. Go to the access path relations panel.  

Type R next to the formats and press Enter. 

 The Edit Access Path Relations panel displays: 

 

 

3. Select the Referenced Access Paths option.  

Type A next to the relation and press Enter. 

 The Display File Access Paths panel displays. 

4. Select the access path.  

Type X next to the appropriate access path and press Enter. 



Modifying Access Path Auxiliaries 

Chapter 4: Modifying Access Paths    4–29 

F4 Prompt Function Assignment 

CA 2E allows you to change the access path assigned to the file-to-file relation 
and to assign a new prompt function over the access path. This can be done at 
the access path or function level. Function level overrides take precedence 
over access path level overrides. 

For more information about F4 prompt function assignment at the function 
level, see the SELRCD section of the “Defining Functions” chapter in Building 
Applications.  

To prompt for a new function assignment: 

1. Use the instructions on the previous page to get to the Edit Access Path 
Relations panel. 

2. Type S next to the selected file-to-file relation you want to assign to the 
access path and press Enter. 

 The Edit Function panel displays. 

3. Type X next to the selected function and press Enter. 

 You can select any external function other than Print File (PRTFIL) and the 
function can be based over any access path that is valid for the function 
type you select. 

To cancel the function assignment and return to the default function: 

1. Type T next to the selected relation.  

2. Press Enter. 

Modifying Access Path Auxiliaries 
This topic provides instructions on editing access path auxiliaries. 

To implement QRY type access paths for DDS, use the i OS Open Query File 
(OPNQRYF) command. For SQL, use dynamic SQL. In order to do this, CA 2E 
holds some additional information for QRY access paths and SQL tables and 
views with *IMMED maintenance capability, which is shown on the Edit Access 
Path Auxiliaries panel. CA 2E generates default values for the access path 
auxiliary display when the access path is created.  



Understanding Access Path Auxiliaries 

4–30     Toolkit Reference 

Understanding Access Path Auxiliaries 

For DDS Query (QRY) Access Paths 

Use the following three types of i OS objects to implement a QRY access path 
in DDS: 

 An i OS logical file based on the real physical file whose data is being 
referenced. 

 An i OS physical file, which does not contain any data, but is used to 
define a record format and keys to any HLL program generated for a 
function based on the QRY access path. 

 A CL program that executes the OPNQRYF command. It is called at 
execution by any program generated for a function based on the QRY 
access path. 

Each object type has its own source, either DDS or CL, which is held in the 
appropriate source file in the generation library. 

All three of the auxiliary objects must be generated and compiled. 

You can control the implementation names given to the auxiliary objects by 
controlling the names given to the source members generated for them. If the 
YALCVNM model value is set to YES, CA 2E will automatically supply source 
member names. 

For more information about access path auxiliaries and QRY access paths, see 
the “Access Paths: An Introduction” chapter. 

For SQL Access Paths with *IMMED Maintenance 

When an access path that is implemented in SQL is created with *IMMED 
index maintenance, CA 2E also creates an SQL index as an access path 
auxiliary. You can suppress generation of the SQL index and also retain 
*IMMED maintenance capability. 

For more information on SQL, see the “SQL Implementation” appendix in the 
Administration Guide. 

Editing Access Path Auxiliaries 

Use the Edit Access Path Auxiliaries panel to display and change the auxiliary 
details for a QRY (or SQL) access path including changing source member 
names. 



Understanding Access Path Auxiliaries 

Chapter 4: Modifying Access Paths    4–31 

1. Zoom into the file.  

At the Edit Database Relations panel, type Z next to any relation for the 
selected file and press Enter. Alternatively, you can, select option 2 from 
the Edit Model Object List panel. 

 The Edit File Details panel displays. 

2. Zoom into the access path.  

Type Z on the selected QRY (or SQL) access path and press Enter. 

 The Edit Access Path Details panel displays. 

3. View the auxiliaries.  

Press F7. 

 The Edit Access Path Auxiliaries panel displays. 

Note: In order to get the F7 option for auxiliaries, you must zoom into the 
access path by typing Z next to the access path. 

4. Edit the auxiliaries.  

Change any of the following details as appropriate: 

 Source Member Name 

 Source Member Text 

 Index Name for SQL only. Enter *NONE to suppress generation of the 
SQL index. 

5. Generate the access path.  

For the new specifications to take effect, you need to regenerate the 
access path. 

For more information about how to generate the access path, see the 
instructions in the chapter “Generating and Compiling.” 

 





  

Chapter 5: Deleting Access Paths    5–1 

Chapter 5: Deleting Access Paths 
 

This chapter contains instructions on how to delete access paths from your 
application. You may want to delete access paths created in error or those no 
longer needed. 

Deleting an Access Path 
Access paths can be deleted only if they are not referenced by any other 
function or access path. A cross-reference panel, Display Access Path 
Reference, is available to show you where a given access path is used. 

To delete an access path 

1. Zoom into the file. At the Edit Database Relations panel, type Z next to 
any relation for the selected file and press Enter. Alternatively, you can 
use selection option 2 from the Edit Model Object List panel. 

 The Edit File Details panel displays with a list of the access paths for the 
file. 

2. Delete the access path. Type D next to the access path you want to 
delete and press Enter. 

 The Delete Access Path panel displays: 

  



Determining the Usage of an Access Path 

5–2     Building Access Paths 

3. Validate your actions. Press Enter to validate the deletion. 

 An additional confirmation prompt displays before the access path is 
deleted. This prompt allows you to specify that the source and object are 
to be deleted. 

 CA 2E does not allow you to delete the access path if it is referenced by 
any other function or access path.  

 You must eliminate the references before you can delete the access path. 
You can do so by determining the usage of an access path. 

4. Confirm the deletion. At prompt, press Enter to confirm the deletion. 

Determining the Usage of an Access Path  
1. View the access path usages. Type U next to the selected access path 

on the Edit File Details panel and press Enter.  

 The Display Model Usages panel displays with a list of functions and other 
access paths that reference the selected access path.  

2. View the functions that use the access path. Type F next to the 
selected access path on the Edit File Details panel and press Enter. 

 The Display Model Usages panel appears with a list of the functions that 
reference the access path. A function built over an access path is an 
example of a function using an access path. 

For more information on usages, see the Impact Analysis section in the 
“Managing Model Objects” chapter of Generating and Implementing 
Applications, and the Advantage 2E Command Reference, YDSPMDLUSG 
command. 



  

Chapter 6: Defining Arrays    6–1 

Chapter 6: Defining Arrays 
 

This chapter contains procedures for defining, editing, renaming, and deleting 
an array. An array is a structure that stores sets of data within a function. The 
contents of an array are available only as long as the function is active. The 
structure has a defined layout and each entry (element) of the structure has 
the same layout. Define this layout with any set of fields from the model, such 
as attribute, code, and function fields. 

Use arrays to: 

 Improve performance where a function requires repeated access and use 
of a finite number of entries, such as table lookups. 

 Move between a field and a data structure. 

 Sequence a finite set of data by a set of unrelated key fields. 

Programmers (*PGMR) and designers (*DSNR) can define arrays. 

Understanding Arrays 
The array has a defined layout and each entry (element) of the structure has 
the same layout. Define this layout with any set of fields from the model, such 
as attribute, code, and function fields. The array must have a defined key that 
acts as an index into the array. The key is any subset of the fields in the array 
structure, up to a maximum composite key length of 990. Each key field in the 
composite key list acts as a different dimension to the array. The composite 
key is defined as being either unique or non-unique. 

CA 2E does not guarantee the sequence of equally keyed elements in a non-
unique array. The key also is defined as ascending or descending. This 
definition applies to the complete composite key. When determining the key 
sequence, CA 2E ignores the signs of any numerical fields in the key of the 
array. 



Structuring Field Data Using Arrays 

6–2     Building Access Paths 

Arrays can be used only by the *CVTVAR built-in function and the following 
four standard data function types: 

 Create Object (CRTOBJ) to add an element 

 Change Object (CHGOBJ) to change an element 

 Delete Object (DLTOBJ) to delete an element 

 Retrieve Object (RTVOBJ) to read an element or set of elements 

For more information about how to use or clear the data from an array, refer 
to the Array Processing section in the “Defining Functions” chapter of the 
Building Applications. 

Structuring Field Data Using Arrays 
Since a single-element array is equivalent to a data structure, you can use the 
*CVTVAR built-in function and the ELM context to apply a data structure to a 
field. This gives you a simple way to decompose a field into a structure and to 
(re)compose a set of fields into a single field in a single operation. 

Structure files (STR) provide a similar capability, but you need to be a 
designer (*DSNR) to define a structure file. Both *DSNR and *PGMR can 
define arrays. 

For more information on structuring field data and examples, see the sections 
Understanding Built-In Functions (*CVTVAR), and Understanding Contexts 
(ELM) in the chapter “Modifying Action Diagrams,” in Building Applications. 

Passing Parameters 
You can also use arrays to define a set of fields that are then used as a 
parameter entry to any function. This process allows you to define a large 
number of parameters of any field type to a function without creating a 
structure file (a *DSNR function). 



Defining an Array 

Chapter 6: Defining Arrays    6–3 

Storing Data Between Calls 

For programs that do not close down, arrays are initialized on the first call to 
the program. Subsequent calls do not clear the array. The first call loads the 
array and subsequent calls retrieve that data. In addition, you can define an 
array to store and restore any fields in the program between calls. The PGM 
context variable Initial Call can be used to distinguish between first and 
subsequent calls. This variable is always set to *YES if the program closes 
down. 

For more information on defining arrays, see Building Applications. 

Defining an Array 
This topic tells you how to create and fully define an array. This process 
includes selecting the fields for the array and defining the relative order of the 
fields by assigning sequential numbers to key fields. 

1. View the list of files. At the Edit Database Relations panel, type *a or 
*ARRAYS in the positioner field at the top of the panel and press Enter. 

 The list of the CA 2E reserved files displays. 

2. Zoom into the array file. Type Z next to the *Arrays file and press 
Enter. 

 The Edit Array panel displays. 

3. Define the array. Type the name of the new array under the Arrays 
heading in the first blank line and press Enter. 

 The name must be a unique array name. This field becomes an output-
only field. 

 The default line data for the new array displays, including the following 
information: 

 Sequence—Sequence of the key or composite key of the array in either 
ascending or descending order. The default for this field is ASCEND. 

 Unique—Defines if the keys in the array must be unique or non-
unique. Unique is the default. 

 Elements—Defines the maximum number (9999) of elements that this 
array can hold. An element is a full array entry and not a field within 
that entry. The default is 100. 

The following array sample could be used to accumulate Order Totals for each 
State/Branch combination: 



Defining an Array 

6–4     Building Access Paths 

 

Selecting Field and Key Details for Your Array 

4. Zoom into the array. Type Z next to the selected array and press Enter. 

 The Edit Array Details panel displays. This panel is where you specify the 
files and fields that are used to define the layout of the array entry. 

5. Specify the layout. Specify the file or field that defines this part of the 
array entry layout. 

6. Define source. Define the source of the field definitions. This source may 
specify file or *field.  

7. Specify the field. If the source of the field is *FIELD, specify the actual 
field in the next column (or select by entering ?). 

8. Specify the access path. If the source of the field is a file, specify the 
access path of the file (or *NONE for all fields for the file) in the second 
column. 

a. Type Z next to the line and press Enter to select the required fields 
from the access path. 

 The Edit Array Entries panel displays with a list of fields for the 
selected access path or file. 

b. Type + (plus) next to the fields you want to add to the array and press 
Enter. 

c. Type – (minus) next to selected fields you want to drop from the array 
and press Enter. 

9. Exit. Press F3 to exit panel. 



Editing an Array 

Chapter 6: Defining Arrays    6–5 

 The Edit Array Details panel redisplays with a list of selected fields. 

10. Select keys. Press F7 to select the keys for an array. 

 The Edit Array Key Entries panel displays. 

 Note that you must define a key for an array even if the array holds a 
single element. 

11. Select the key order for the fields. Type a number in the Key no. 
column that defines the relative order of the field in the composite key list. 
The lowest value (1) is the major key or first dimension of an array. 

You have created and defined your array. 

Note: 2E does not support numeric keys that can have negative values. 

Editing an Array  
To edit an array, use the steps in the preceding Defining An Array topic to 
determine where to make the following types of changes to your array. 

Array Details: 

 Sequence status 

 Unique key status 

 Elements  

Fields Definitions: 

 Selected files 

 Selected access paths 

 Selected fields 

Key Order: 

 Key and composite key 

Type – (minus) next to any selected + (plus) field you want to remove from 
the array on the Display All Fields panel. 

In addition, use the following instructions to examine array usage and change 
the array name. 



Deleting an Array 

6–6     Building Access Paths 

Viewing Function References 

At the Edit Array panel, type F next to the selected array to examine the 
usage. 

The Display Model Usages panel displays the functions that use the selected 
array. 

Changing the Name of an Array 

Follow these steps to change the name of an array. 

1. View the list of files. At the Edit Database Relations panel, type *a or 
*ARRAY in the positioner field on the top line of the panel and press 
Enter. 

 The list of reserved files displays. 

2. Zoom into the array file. Type v next to the Arrays file. 

 The Edit Arrays panel displays with a list of the arrays in your model. 

3. Zoom into the array. Type Z next to the array you want to rename. 

 The Edit Array Details panel displays with the name of the array and the 
array details. 

4. Change output field to input field. Press F8. 

 The output-only field, Array Name, is changed to an input-capable field. 

5. Rename the array. Type the new name of the array and press Enter to 
accept the change. 

 The panel redisplays with the new array name. 

Note: The array name must be unique; CA 2E does not accept duplicate 
names. 

Deleting an Array 
The CA 2E Delete Array feature allows you to delete an existing array. 

1. View the list of files. At the Edit Database Relations panel, type *a or 
*ARRAY in the positioner field on the top line of the panel and press 
Enter. 

 The list of the reserved files displays. 

2. Zoom into the array file. Type Z next to the Arrays file. 

 The Edit Arrays panel displays with a list of the arrays in your model. 



Deleting an Array 

Chapter 6: Defining Arrays    6–7 

3. Delete the array. Type D next to the array you want to delete and press 
Enter. 

 A Delete Array window displays at the top of the panel that confirms the 
delete array request. 

Note: You cannot delete an array if it is used by any function. 

For more information on how to determine array usage, see the Editing an 
Array and Viewing Function References sections in this chapter. 





  

Chapter 7: Generating and Compiling    7–1 

Chapter 7: Generating and Compiling 
 

This chapter contains information on the results of generating a specific type 
of access path, depending on the generation mode you selected, and provides 
instructions on how to generate and compile an access path.  

You must first generate the HLL source code needed to implement access 
paths you created. Instructions for this are provided earlier in this module. 
After you generate the access paths, you compile the source to produce 
executable i OS objects, files, and tables. 

Implementing 
An access path closely corresponds to the i OS use of the term. You can 
specify an access path to various generation modes, including values such as 
DDS and SQL. DDS generates physical and logical file and SQL generates 
indexes and table. 

You must first generate the source members for the database files to 
implement the access paths. The generated source needs to be compiled. You 
can generate source either interactively or in batch. 

i OS Index Versus CA 2E Index 

The type of index generated is determined by the source you select in the 
model value. CA 2E access paths are generated as i OS objects. i OS access 
paths are generated as indexes and views. 

Setting Your Options 

You can specify various implementation options for each access path such as 
the i OS object name used for the logical file and whether the access path 
maintenance is Rebuild, Delay or Immediate. CA 2E provides defaults for these 
options. 

Changing Compiler Overrides from DDS to SQL 

If you change your model from DDS to SQL, verify that the *MESSAGE 
shipped file contains the CA 2E shipped compiler options. Any DDS overrides in 
effect during generation for an SQL implementation will cause the compile to 
fail. 



Implementing 

7–2     Building Access Paths 

Identifying the Implementation Attributes 

The following table shows the i OS implementation attributes for each of the 
access paths: 

 

Access Path Type (1) (2) 

Unique or 
Dup Key 
Sequence 
(DDS 
only) 

(3) 

Access 
Path 

Maint. 

(4) 

Alt 
Col 
(DDS 
only) 

(5) 

Selection

SQL 
Implementation 

DDS 
Implementation 

PHY Physical 

UPD Update 
(default) 

UPD Update 

RTV Retrieval 
(default) 

RTV Retrieval  

RSQ Resequence 

QRY Query 

SPN Span 

Generating 
and 
Compiling 

- 

I 

I/D/R 

I 

I/D/R 

I,D,R 

I/D/R 
(6) 

I,D,R 

- 

- 

- 

- 

- 

Yes 

- 

Yes 

- 

- 

- 

S,D 

S,D 

S,D 

D 

S,D 

Table 

View and Index 

View and Index 

View and Index 

View and Index 

View and Index 

View and Index 

Two indexes and 
two views 

Physical File 

Logical File 

Logical File 

Logical File 

Logical File 

Logical File 

Physical File 

Logical File 

CL Program 

Logical File 

The following legend applies for the access path types:  

(1) Unique key status (DDS unique keyword or SQL unique keyword with create index statement). U 
indicates unique; if not unique, see Note (2). The default UPD and RTV access paths must be unique. 

(2) Duplicate key sequence for DDS only (L=LIFO, F=FIFO,' '=undefined, C=FCFO). 

(3) i OS access path maintenance (I=*IMMED,R=*REBLD, D=*DLY). For QRY access paths, see item 
(6). 

(4) Alternative collating sequence table for DDS only (DDS ALTCOL keyword). 

(5) Selection type (S=static, D=dynamic) (DDS DYNSLT keyword). 

(6) Causes the i OS OPNQRYF command to be called with the OPTIMIZE option equal to *FIRSTIO, 
*MINWAIT, or *ALLIO, respectively. 

For SQL, static selection is implemented through SQL Data Definition 
Language (DDL) statements. Dynamic selection is implemented by Data 
Manipulation Language (DML) statements. 

Note: If an SQL-generated RSQ access path has select/omit criteria and is 
defined as Unique with Static maintenance, the key defined as unique must be 
unique over the entire file and not just with a subset of that file (as defined by 
the select/omit criteria). 



Implementing 

Chapter 7: Generating and Compiling    7–3 

Generating an Access Path 

You must generate and compile the source members for your access paths 
before you can run your application. The following steps provide you with 
instructions to generate your access path. 

1. Go to the Services Menu. At the Edit Database Relations panel, press 
F17. 

 The Display Services Menu appears. 

2. Select access paths. Type 8 at the bottom of the screen and press Enter. 

 The Display All Access Paths panel appears with a list of all of the access 
paths in your model. 

3. Generate the access path. Type J next to each of the access paths you 
want to generate and press Enter. 

 The Display All Access Paths panel reappears with messages at the bottom 
of the panel that say the source generation requests have been accepted. 

Note: Selecting either J for batch generation or G for interactive generation 
generates your access paths. However, selecting G has an impact on 
system performance. Generating interactively negatively impacts other 
interactive users.  

4. Press F3 to return to the Services Menu panel. 

Note: An alternative to this procedure is to use option 14 (generate in batch) 
or 15 (generate interactively) from the Edit Model Object List panel. 

For more information: 

 On the Edit Model Object List panel, see the Editing Model Object Lists 
section in the “Managing Model Objects” chapter of Generating and 
Implementing Applications. 

 On the following topics, see Generating and Implementing Applications: 

– Generating Request Panels/Displays 

– Generating Access Paths 

– Changing Generation Mode 

– Verifying Results 

– Checking Code Generation Errors 

– Identifying Common Errors 





  

Chapter 8: Documenting Access Paths    8–1 

Chapter 8: Documenting Access Paths 
 

This chapter contains procedures on how to document your access paths. CA 
2E includes a number of commands to produce hard copy documentation of 
your design model. For access paths, this documentation identifies the access 
paths in your model and provides a complete list of their details. This 
documentation consists of CA 2E functional text. Functional text is entered by 
the designer to describe the purpose of the design object and any restrictions 
and notes on the reason for design decisions. 

Documenting an Access Path 
There are two types of narrative text allowed for each object entry: functional 
text, used to describe the purpose of the design object; and operational text, 
used to describe the function of an object to an end user. If no operational 
text is available, functional text is used in the generated help panels. 

All the documentation commands have a PRTTEXT parameter that allows you 
to specify whether you want text to be included in the listing and, if so, which 
type of text. 

A maximum of ten pages of text of each type can be associated with each CA 
2E object to explain the purpose of the object within the design. 

Creating the Documentation 

Use the following method to document an access path: 

1. Go to the Display Services Menu. At the Edit Database Relations panel, 
press F17. 

 The Display Services Menu panel displays. 

2. Display Documentation Menu. From the Model Documentation options 
on the Display Services Menu panel, select the option and press Enter.  

 The Display Documentation Menu panel displays. 



Documenting an Access Path 

8–2     Building Access Paths 

3. Select access paths. Select the option to document the access paths. 

 The Document Model Access Paths (YDOCMDLACP) panel displays. 

4. Select type of documentation. Choose the documentation option you 
want from the following list of choices. 

 Model files 

 Application area code 

 Print text 

 Print access path details 

 Access path type 

 Begin new page 

CA 2E creates a print file that contains your documentation. 



  

Chapter 9: Tailoring for Performance    9–1 

Chapter 9: Tailoring for Performance 
 

When building access paths within your model, you should pay attention to 
certain aspects of system design that will enable you to obtain the best system 
performance. Some issues regarding access paths could affect the 
performance of your application. This chapter explains the issues for i OS 
logical files and relates them to the default values for access paths. Depending 
on your design, you might want to consider the following topics. 

 Considering the Types of Data in the Physical File 

 Minimizing the Number of Active Indexes 

 Maintaining Access Paths (Immediate, Delay, Rebuild) 

 Using Select/Omit Criteria 

 Using Virtual Fields (Join Logical Files) 

 Multi-format Access Paths 

 Using Open Data Paths 

 Creating Default Retrieval Access Paths 

For more information about system performance considerations, refer to CA 
Xtras Performance Expert User Guide and IBM i Database Guide. 

Considering the Types of Data in the Physical File 
An access path is a view of the data in a physical file, in a given key sequence. 
In terms of performance, some of the overhead of access paths has to do with 
the amount of work that the operating system (i OS) does to maintain those 
views. Each time a record is added, deleted, or changed in the physical file, or 
when the data in the key of a record changes, the operating system may have 
to update each CA 2E access path belonging to the PHY file. Consequently, the 
more access paths you build, the more work the operating system may have 
to do for each record change. 

For example, with non-volatile data files (master or table files of relatively 
unchanging data), the number of access paths built over them is not as 
important as it is for the number of logical files built over volatile files 
(transaction files of constantly changing data) because their access paths must 
be constantly updated. This implies that master files should not contain a mix 
of master and volatile data. For example, balance-related information 
(volatile) should not be held in an Item Master file (non-volatile). 



Minimizing the Number of Active Indexes 

9–2     Building Access Paths 

For more information on the data modeling and normalization process, see the 
“Developing a Conceptual Model” chapter in Defining a Data Model.  

You can show the difference between the non-volatile and volatile data files 
using REF and CPT file types respectively. The only difference between the REF 
and CPT file types is the automatic creation of an edit file and select record 
function for REF files. 

Minimizing the Number of Active Indexes 
An access path is defined with key fields specified in a given order and/or with 
dynamic or static selection maintenance specified. Together the keys and 
selection maintenance specify which records on a file are implemented as a 
logical file. However, the operating system implements logical files by 
automatically creating what is called an active index. The active index is part 
of the operating system's implementation of logical files. There is a separate 
active index for each set of key and static selection maintenance. 

Where possible, the operating system tries to share an active index between 
logical files. If logical files have the same key fields and static selection 
maintenance, they may share an active index. If two similar logical files (same 
keys) have dynamic select/omit maintenance, they may be able to share the 
same active index. However, if one (or both) has different static select/omit 
maintenance, they cannot share an active index, and the operating system 
always creates separate active indexes. 



Minimizing the Number of Active Indexes 

Chapter 9: Tailoring for Performance    9–3 

The Active Index 

The following example shows separate active indexes: 

 

It is important to minimize the number of active indexes because active 
indexes cause extra system overhead. Active indexes sharing multiple access 
paths in the design model do not always equate to multiple indexes. For 
example, the UPD and RTV access paths have the same active indexes. 

Sharing Active Indexes 

The following example shows a shared active index. 

 

The compilation sequence can affect the number of active indexes required.  

In the previous example, if the compilation sequence is LGL1, LGL2, LGL3, one 
active index is created. Since the key sequence for LGL2 and LGL3 are subsets 
of LGL1, they can share the same active index. 



Access Path Maintenance (Immediate, Delay, or Rebuild) 

9–4     Building Access Paths 

If the compilation sequence is LGL3, LGL2, LGL1, three active indexes are 
created because the key sequence for LGL2 and LGL1 are not subsets of LGL3. 

Access Path Maintenance (Immediate, Delay, or Rebuild) 
There are three types of access path maintenance options: immediate 
(IMMED), delay (DLY), and rebuild (REBLD). These options determine how the 
operating system applies changes to the access paths. While a file is open, the 
system maintains the access paths as changes are made to the data in the file. 
However, when the file is closed, the access path maintenance option specifies 
to i OS how the access path should be maintained. It is important to pay close 
attention to access paths in the design stage. 

 IMMED maintenance means that the active index is maintained as changes 
are made to its associated data regardless of whether the file is open. 

 DLY maintenance means that any maintenance for the active index is done 
after the file member is opened and while it remains open. Updates to the 
access path are collected from the time the access path is closed until it is 
opened again. When it is opened, only the collected changes are merged 
into the access path.  

 REBLD maintenance means that the active index is maintained only when 
the file is open, not when the file is closed; the access path is rebuilt the 
next time the file is opened. When the file is opened again, the access 
path is totally rebuilt. If one or more programs has opened a specific file 
member with rebuild maintenance specified, the system maintains the 
access path for that member until the last user closes the file member. 

The use of maintenance options applies only to RSQ and SPN access paths. 
The UPD and RTV access paths are defined with a UNIQUE key; as a result, 
maintenance has to be IMMED. For QRY access paths, maintenance does not 
apply because the access path is rebuilt at execution. 

There are considerations with each type of maintenance option. When you 
change a file, indexes with IMMED maintenance are updated. However, when 
programs that open DLY and REBLD maintenance access paths are invoked, 
changes are applied that then make the programs slower to load. 

Use DLY maintenance with caution. If more than approximately 10% of the 
number of entries in the access path are changed, the whole index will be 
rebuilt at the next open. This rebuild could occur during the use of a program 
that does not use that index. 



Access Path Maintenance (Immediate, Delay, or Rebuild) 

Chapter 9: Tailoring for Performance    9–5 

If the file records are non-volatile, you can always take the default IMMED 
maintenance. If the data is likely to change for infrequently used access paths, 
you may use DLY or REBLD maintenance. However, keep in mind that for each 
different type of maintenance, you will get a separate active index. Specify a 
REBLD access path if you already have an IMMED maintenance access path 
with the same set of keys and select/omit sets. 

The following is a comparison of IMMED, DLY, and REBLD maintenance as they 
affect opening and processing files: 

 

Immediate Delay Rebuild 

Fast open because the 
access path is current. 

Moderately fast open 
because the access path 
does not have to be 
rebuilt, but it must still 
be changed. Slow open 
if extensive changes are 
needed. 

Slow open because access 
path must be rebuilt. 

Slower update/output 
operations when many 
access paths with 
immediate maintenance 
are built over changing 
data (the system must 
maintain the access 
paths). 

Moderately fast 
update/output 
operations when many 
access paths with 
delayed maintenance 
are built over changing 
data and are not open 
(the system records the 
changes, but the access 
path itself is not 
maintained). 

Faster update/output 
operations when many 
access paths with rebuild 
maintenance are built over 
changing data and are not 
open (the system does not 
have to maintain the 
access paths). 

For more information: 

 On the access path maintenance options, see Editing Access Path Details 
in the Modifying Access Paths” chapter and Identifying the Implementation 
Attributes in the “Generating and Compiling” chapter. 

 On the effect of the access path maintenance options on performance, see 
IBM i Database Guide. 

Maintenance for Query (QRY) Access Paths 

For Query (QRY) access paths, the access path maintenance option is 
approximated using the OPTIMIZE parameter on the i OS Open Query File 
OPNQRYF command. The OPTIMIZE parameter indicates the optimization goal 
the system is to use when satisfying the QRY access path specifications. 



Using Select/Omit Maintenance 

9–6     Building Access Paths 

The following table gives a brief description of each OPTIMIZE parameter value 
and shows the corresponding access path maintenance option: 

 

OPNQRYF Command OPTIMIZE 
Parameter Values (for QRY Access 
Paths) 

Corresponding Access Path 

Maintenance Option 

*FIRSTIO The system attempts to 
improve the time required 
to open the file and to 
retrieve the first buffer of 
records from the file.  

*IMMED 

*MINWAIT The system attempts to 
minimize delays when 
reading records from the 
file. 

*DLY 

*ALLIO The system attempts to 
improve the total time to 
process the whole query, 
assuming that all query 
records are read from the 
file. 

*REBLD 

For more information: 

 On QRY access paths, see Recognizing the Basic Properties of Access Paths 
in the “Access Paths: An Introduction” chapter and Adding a Query (QRY) 
Access Path in the “Adding Access Paths” chapter. 

 On the OPNQRYF command's OPTIMIZE parameter, see IBM i Control 
Language Reference. 

Using Select/Omit Maintenance 
Select/omit maintenance filters records that match the specified selection or 
omission maintenance. There are two types of select/omit maintenance: static 
and dynamic. 

If the select/omit maintenance is dynamic, all records, regardless of the 
select/omit set, are included in the access path. The records are filtered by the 
system as they are read by a program. Only those that match the select/omit 
maintenance are actually returned to the program. 



Using Join Logicals 

Chapter 9: Tailoring for Performance    9–7 

If the select/omit criteria is static, only those records that satisfy the 
select/omit maintenance are included in the access path. As each record is 
added or changed, the system determines if it should be included in the access 
path. As the data is read, no filtering is required since it has already been 
performed by the access path maintenance. 

Because of this difference, any access path with static select/omit criteria 
usually has a separate internal active index, whereas any access path with 
dynamic select/omit maintenance can share an active index with other 
similarly keyed access paths even if the select/omit criteria differ. The 
provision and use of dynamic select/omits increases the possibilities of sharing 
active indexes. 

Note: For join logical files in CA 2E, (files with virtual fields) with select/omit 
criteria, static select/omit maintenance cannot be used. Use dynamic 
select/omit maintenance. 

The type of data file is again important. For non-volatile (master or table) data 
files the logical files should, if possible, have static select/omit criteria. Static 
select/omit maintenance does require that an extra active index be 
maintained. But the frequency of change to the data is low and therefore 
maintenance does not occur often. For volatile (transaction) data files, the 
type of select/omit criteria depends on the actual number of records being 
read and the frequency of use of the active index. 

If the active index is used infrequently or in batch, the overhead of having 
dynamic select/omit criteria may be acceptable. 

Using Join Logicals 
A join logical file is a logical view of the physical files upon which it is based. It 
also enables data from another physical file or a related (or joined-to) physical 
file to be read. The join is performed when the records in the based-on 
physical are read. One or more fields in the based-on physical are matched 
with fields in each joined-to physical and data from each matched record is 
read. The join logical is composed of only one record format, which contains 
fields from the based-on file and the joined-to physical files. The join fields are 
read-only capable and cannot be updated through the join logical. 

An access path generates and compiles as a join logical if there are virtual field 
entries on the access path format entries. The physical file that contains the 
virtual fields is joined to the primary files using the keys of the file-to-file 
relations to provide the match. These relations can be Owned by, Refers to, or 
Extended by. 



Using Multi-Format Access Paths 

9–8     Building Access Paths 

The operating system does the work. The join (matching records through 
common fields) is implemented using a machine interface (I/O) routine to read 
from the joined-to physical files. You can define join logicals that join through 
several physical files. The maximum number of physical files allowed in a join 
file definition (direct joins or chained joins) is 32. A field that is brought across 
more than six (or as few as three or four) chained joins actually loses the 
performance benefit because it requires many I/O routines to obtain the data. 
Consequently, obtaining data across several joins is not recommended. 

The use of join logicals is efficient only when the data that is being read is 
actually needed. If the data is not required, the operating system is doing 
unnecessary I/O to other files. In terms of internal active indexes, the join 
logical shares the active indexes of the based-on file just as with access path 
types.  

Maintenance can be specified as IMMED, DLY, or REBLD. Only dynamic 
select/omit maintenance can be specified on CA 2E join logical files. In terms 
of performance, this has some significant consequences: 

 Where it may be better to have static select/omit maintenance, you can 
drop the virtual field so that it can be specified. The additional data can be 
retrieved using your own reads to the secondary file.  

 The operating system reads the joined-to data before applying the 
selection because the selection itself could be on a joined-to virtual field. 
This compounds the performance problem particularly where there is I/O 
to several different physical files. 

Using Multi-Format Access Paths 
Multi-format access paths are access paths with more than one record format. 
They are based on more than one physical file and can read/write to several 
physical files. 

The multi-format can be treated as though each format were a separate 
access path. The use of the physical files for each format should collectively 
determine the type of maintenance for the access path. A select/omit 
maintenance can be applied to each format that is best suited for the physical 
file, the effect on performance (hit-rate), and the number of records being 
read. In terms of active indexes, each multi-format access path can share an 
active index. However, in practice, this is unlikely. Therefore, treat each multi-
format access path as if it creates an extra active index over each of the 
physical files. CA 2E supports the multi-format logicals for the SPN access 
path. 



Using Open Data Paths 

Chapter 9: Tailoring for Performance    9–9 

Using Open Data Paths 
An open data path (ODP) is the path through which all input/output (I/O) 
operations for the file are performed. ODPs can be shared by more than one 
program in the same job but not between jobs.  

The object is to be able to share ODPs and still have the applications work as 
before. Sharing the ODP reduces the amount of main memory the job needs 
and reduces the amount of time it takes to open and close the file. 

The amount of work the operating system does can be reduced by sharing the 
ODP among all the programs in the jobs that use it. When a file is used more 
than once in the same job, it can be shared. Sharing an ODP should be done 
with care. With each access path the position of the current record (the file 
cursor) is held only once on the ODP. It is possible that one program accessing 
a file with a shared ODP can change the position in the file inadvertently, 
causing unpredictable results in other programs in the job. 

Sharing an ODP is not defined as a default for access paths. You must specify 
share ODP on the compiler override for a given access path. 

Creating Default Retrieval Access Paths 
To improve the performance of your application, try dropping all of the virtual 
fields from the default RTV access path. You can use this standard with every 
file you implement in CA 2E that contains virtuals. 

The idea is to create an access path that can be used for validation and that 
does not have any virtual fields. To do this use the following steps: 

1. Zoom into the file. At the Edit Database Relations panel, type Z next to 
any relation for the selected file and press Enter. Alternatively, you can 
select option 2 from the Edit Model Object List panel. 

 The Edit File Details panel displays. 

2. Rename the default retrieval. Rename the default RTV access path for 
your file to the name Validation View. 

3. Create a new RTV access path if you require one that contains virtuals. 

4. Rename. Name the new RTV access path Retrieval Index. 

5. Use the new RTV. Base any functions for the file over the new RTV 
access path that requires those virtual fields. 

6. Create the validation view with a compiler override of SHARE (*YES). 



Creating Default Retrieval Access Paths 

9–10     Building Access Paths 

For more information on compiler overrides, see the “Generating and 
Compiling Your Application” chapter in Generating and Implementing 
Applications.  

CA 2E uses the default RTV Index Validation View for all file validations. This 
view also uses the index to determine which fields in the file can be 
virtualized. The fields available for virtualization will default to only those fields 
present in the file itself. Although it is not generally a good performance 
technique, you can virtualize fields that are themselves virtualized. You can do 
this by adjusting the referenced access path of the relation to point to an 
untrimmed access path using the Edit Access Path Relations panel. 



  

    Index–1 

Index 
 

* 

*ARRAYS, 6-3 

*DSNR User type, 6-2 

A 

access path, 1-5 
adding, 3-1 
associated, 1-10 
auxiliaries, 1-11, 4-29, 4-30 
characteristics, 1-10 
default retrieval, 9-1, 9-9 
deleting, 5-1 
details, 1-11 
documenting, 8-1 
editing, 4-6, 4-7 
entry, 4-15 
format, 4-15 
format entries, 4-13, 4-15 
format keys, 4-13 
format text, 4-13 
generating, 7-3 
holding, 4-2, 4-19 
maintenance, 4-8, 4-9, 9-4 
modifying, 4-1 
multi-format, 9-1, 9-8 
naming, 1-10 
performance, 9-1 
physical (PHY), 1-5, 3-2, 3-3 
query (QRY), 1-8, 3-2, 3-4, 4-6, 4-9, 4-29, 
7-2, 9-5 
referenced, 4-26 
relations, 4-17, 4-21 
required relations, 4-17 
resequence (RSQ), 1-8, 3-2, 3-4 
retrieval (RTV), 1-7, 3-2 
span (SPN), 1-9, 3-2, 3-5 
tailoring, 4-23 
trimming, 4-3 
types, 1-5, 4-10 
update (UPD), 1-6, 3-2 

usages, 5-2 
virtual field, 4-3, 4-4, 4-20 

action diagram 
compute condition symbols (YACTCND), 2-
2 
compute expression symbols (YACTFUN), 
2-2 
structure symbols (YACTSYM), 2-2 

active indices, 9-1, 9-2 
minimizing number, 9-2 
sharing, 9-3 

adding 
access paths, 3-4 
based-on access paths, 4-27 
query access paths, 3-4 
resequence access paths, 3-4 
span access paths, 3-5 

allocating names, 1-1, 1-3 

alternate collating sequence, 4-8, 4-10 

alternating collating table, 4-10 

ANDed, 4-24 

array, 6-1 
*CVTVAR function, 6-2 
as data structure, 6-2 
changing names, 6-6 
Closedown Programs, 6-3 
COBOL arrays, 6-3 
deleting, 6-6 
details, 6-5 
editing, 6-5 
ELM context field, 6-2 
field definitions, 6-5 
field details, 6-4 
key details, 6-4 
key order, 6-5 
sample, 6-3 

assimilated files, 4-15 

assimilated physical files, 4-15 

associated access path, 4-27 

auxiliaries, 1-11 



  

Index–2  

B 

based-on access path, 4-27 

basic properties, 1-5 

Bi-directional support, 2-10 
help text, 2-10 

built-in functions 
convert variable, 6-2 

C 

changing 
array name, 6-6 
key sequence, 4-14 
referenced access path, 4-26 

CHGOBJ, 6-2 

CL program, 3-5 

COBOL arrays, 6-3 

command key defaults, 2-12 

comments 
supressing in source code, 2-5 

compilation 
overview, 7-1 

compiler overrides, 1-5, 7-1 
changing, 1-5 

components, 1-11 

condition values 
CUA prompt (YCUAPMT), 2-3 

confirm prompt value (YCNFVAL), 2-2 

context 
ELM (array element), 6-2 

Copy Model Objects (YCPYMDLOBJ) 
SQL access path, 4-13 

Create Logical File, 1-6 

Create Object, 6-2 

Create Physical File, 1-6 

Create Table, 4-10 

CRTLF, 1-6 

CRTOBJ, 6-2 

CRTPF i OS command, 1-6 

CRTTBL, 4-10 

CUA prompt, 2-3 

D 

data area, 4-5 

data definition language, 4-11 

database file generation, 1-5 

database implementation, 2-4 

date 
cutoff (YCUTOFF), 2-4 
format (YDATFMT), 2-4 
validation (YDATGEN), 2-4 

DDS, 1-12, 1-5, 3-4, 4-6, 4-11, 4-29, 7-1 
*Unique keyword, 4-6 
implementation attributes, 7-2 
joins, 4-12 

default 
access paths, 3-1 
environment (YEXCENV), 2-5 
function keys, 2-12 
model values, 1-1, 2-1 
options, 1-1 
retrieval access paths, 9-1, 9-9 

defining 
array, 6-1 

delay 
DLY, 9-4 

delay maintenance, 4-6 

delete 
access path, 5-1 
array, 6-6 
confirmation, 5-2 

designer user type (*DSNR), 6-2 
arrays, 6-1, 6-2 

device design, 4-3 
external MSGIDs (YPMTGEN), 2-7 
leaders (YLSHFLL), 2-6 
panel layout (YSAAFMT), 2-8 



  

    Index–3 

right-hand text (YCUAEXT), 2-3 

Display Documentation Menu, 8-1 

Display Services Menu, 7-3, 8-1 

displaying references, 4-5 

distributed flag, 4-5 

DLTOBJ, 6-2 

DLY, 9-4 

documentation 
access paths, 8-1 
functional text, 8-1 
operational text, 8-1 
type, 8-2 

Documentation Model Access Paths panel, 8-2 

DRDA, 4-5 
default RDB (YGENRDB), 2-5 
distributed flag, 4-5 

duplicate sequence, 4-8 
options, 4-8 

dynamic selection, 9-6 

E 

Edit File Details panel, 3-1 

Edit Function Options panel, 2-10 

editing 
access path auxiliaries, 4-30 
access path details, 4-7 
arrays, 6-5 
format entries, 4-15 
physical file format entries, 4-15 

ELM context, 6-2 

entry, 4-15 

Extended by relation, 4-20 

F 

F4 prompt 
function, 4-26 
YCUAPMT model value, 2-3 

FCFO, 4-9, 7-2 

FIFO, 4-9, 7-2 

file and access path relations, 4-21 

file-to-file relation, 4-17 

format, 4-15 

format entries, 1-11, 4-15 

format keys, 4-13 

format text, 4-13 

function 
changing name, 2-12 

function key 
defaults, 2-12 

function name 
changing, 2-12 

function option 
DDS PUTOVR keyword (YPUTOVR), 2-7 

function references, 6-6 

functional text, 8-1 

G 

generation, 7-1, 7-3 
objects, 1-1, 7-1 

generation mode, 1-5, 4-8, 4-11 
changing, 1-5 
options, 4-11 

generation options, 7-1 

H 

held access paths, 4-18 

Help text 
cursor-sensitive (YHLPCSR), 2-6 
generation (YGENHLP), 2-5 
UIM generation (YNPTHLP), 2-6 
UIM model values, 2-10 

hidden fields, 4-3, 4-18 

high level language (HLL) 



  

Index–4  

default (YHLLGEN), 2-5 
source code, 7-1 

HLL 
high level language (HLL), 2-5, 7-1 

holding, 4-2 

I 

i OS access path, 4-9 

i OS index, 7-1 

I/O, 4-23, 9-8, 9-9 

IBMsarchitecturalframework', 4-5 

identifying, 1-5 
format keys, 4-13 
format text, 4-13 

immediate maintenance, 4-6 

implementation attributes, 7-2 
SQL-generated RSQ, 7-2 
table, 4-7 

input fields, 4-3 

input/output, 4-23, 9-9 

item master file, 9-1 

J 

join logicals, 9-1, 9-7 

K 

key sequence, 3-4, 4-14 

L 

LIFO, 4-9, 7-2 

locks 
permanent, 4-5 
temporary, 4-4 

M 

maintenance, 9-1, 9-4 
dynamic, 9-6 
select/omit, 9-6 
static, 9-7 

maintenance options, 4-9, 7-2, 9-4 
D 

delay, 4-9 
I 

immediate, 4-9 
R 

rebuild, 4-10 

master files, 9-1 

MDLVAL, 1-5 

message 
Copy Back (YCPYMSG), 2-3 
device prompt file (YPMTMSF), 2-7 
when to send (YSNDMSG), 2-9 

minimizing number 
active indices, 9-2 

model values, 1-1, 4-1, 4-11 
changing, 1-2 
changing function level, 2-10 
changing model level, 2-11 
comments in source code (YGENCMT), 2-5 
CUA prompt, 2-3 
F4 prompting, 2-3 
last used file prefix (YFILPFX), 1-1 
prompting (F4), 2-3 
YABRNPT, 2-1 
YACTCND, 2-2 
YACTFUN, 2-2 
YACTSYM, 2-2 
YACTUPD, 2-2 
YALCVNM, 1-1, 2-2 
YBNDDIR, 2-2 
YCNFVAL, 2-2 
YCPYMSG, 2-3 
YCRTENV, 2-3 
YCUAEXT, 2-3 
YCUAPMT, 2-3 
YCUTOFF, 2-4 
YDATFMT, 2-4 
YDATGEN, 2-4 
YDBFGEN, 1-1, 2-4 



  

    Index–5 

YDFTCTX, 2-4 
YERRRTN, 2-4 
YEXCENV, 2-5 
YFILPFX, 1-1 
YGENCMT, 2-5 
YGENHLP, 2-5 
YGENRDB, 2-5 
YHLLGEN, 2-5 
YHLLVNM, 2-6 
YHLPCSR, 2-6 
YLSHFLL, 2-6 
YNLLUPD, 2-6 
YNPTHLP, 2-6 
YOBJPFX, 1-1, 2-7 
YPMTGEN, 2-7 
YPMTMSF, 2-7 
YPUTOVR, 2-7 
YRP4HS2, 2-8 
YRP4HSP, 2-7 
YRP4SGN, 2-8 
YSAAFMT, 2-8 
YSFLEND, 2-8 
YSHRSBR, 2-9 
YSNDMSG, 2-9 
YSQLLIB, 1-2 
YUIMBID, 2-10 
YUIMFMT, 2-10 
YUIMIDX, 2-10 
YWBDATR, 2-10 
YWBDCHR, 2-10 
YWBDCLR, 2-10 

modifying 
access path auxiliaries, 4-29 
access path details, 4-6 
access path format entries, 4-13 
access path relations, 4-17 
access paths, 4-1 
virtual field entries, 4-19 

multi-format, 9-1, 9-8 

N 

naming, 1-10 
automatic (ALCVNM), 2-2 
new functions (YHLLVNM), 2-6 
prefix (YOBJPFX), 2-7 

narrative text, 1-12 

non-volatile, 9-1 

null update suppression, 2-6 

O 

objects 
prefixes, 1-1 

ODP, 9-1, 9-9 
sharing, 9-9 

omit set, 4-24 

open data path (ODP), 9-1, 9-9 

Open Query File (OPNQRYF), 3-5, 4-7, 4-9, 4-
29, 7-2, 9-5 

operational text, 8-1 

ORed, 4-24 

P 

parameters, 1-4, 1-5 
PRTTEXT, 8-1 
SQLLIB, 1-4 

performance considerations 
access paths, 9-1 

permanent locks, 4-5 

PHY (physical) access path, 1-5, 3-2, 3-3 

physical file 
format entries, 4-15 
types of data, 9-1 

programmer user type (*PGMR) 
arrays, 6-1, 6-2 

prompting (F4), 2-3 

Q 

QCASE256, 4-10 

QRY (query) access path, 1-8, 3-2, 3-4, 3-5, 
4-6, 4-9, 4-29, 7-2, 9-5 

adding, 3-4 



  

Index–6  

auxiliaries, 1-3 

QSYSTRNTBL, 4-10 

query (QRY) access path, 1-3, 4-6, 4-9, 4-29, 
7-2, 9-5 

R 

rebuild maintenance, 4-6, 9-4 

referenced access path, 4-26 

Refers to relation, 4-17 

relation, 1-11, 4-17, 9-7 
file-to-file, 4-17 

required relations, 4-17 

retrieve condition, 2-3 

right-hand side text 
YCUAEXT model value, 2-3 

RPG 
error handling (*PSSR), 2-4 

RSQ (resequence) access path, 1-8, 3-2, 3-4, 
7-2, 7-3 

adding, 3-4 

RTV (retrieval) access path, 1-7, 3-2 

RTVOBJ, 6-2 

S 

select/omit, 4-23, 9-1, 9-6 
criteria, 4-8, 4-10, 4-23 
maintenance, 9-6 
sets, 4-24 
static, 4-11 

Services Menu 
Display Services Menu, 8-1 

sharing active indices, 9-3 

source generation type, 1-1 

source member name, 1-3, 4-8 

source member text, 4-8 

SPN (span) access path, 1-9, 3-2, 3-5 

adding, 3-5 

SQL, 1-12, 1-4, 1-5, 4-11, 7-1, 7-3 
access path, 7-2 
copying, 4-13 
creating an environment, 1-4 
environment, 1-4 
implementation, 7-2 
joins, 4-12 
resequence (RSQ) access path, 7-2 
SQLLIB model value, 1-2 

static selection, 9-7 

Synon/2E index, 7-1 

T 

table files, 9-1 

tailoring for performance, 4-23, 9-1 

tailoring virtual fields, 4-23 

temporary locks, 4-4 

translate table, 4-10 

type of maintenance, 4-9 

types of access paths, 1-5 
physical, 1-5, 3-2 
query, 1-8, 3-2 
resequence, 1-8, 3-2 
retrieval, 1-7, 3-2 
span, 1-9, 3-2 
update, 1-6, 3-2 

types of data, 9-1 

U 

UIM, 2-10 

unique/duplicate key sequence, 4-8 
options, 4-8 

UPD (update) access path, 1-6, 3-2 

UPD (update) physical path, 1-6 

update suppression 
null update suppression, 2-6 



  

    Index–7 

upper/lower case discrepancies, 4-10 

usages, 4-5, 5-2 
impact analysis, 5-2 

User Interface Manager (UIM), 2-10 

user-added text, 1-12 

V 

virtual fields, 4-3, 4-4, 4-19, 4-23, 9-1 
auto add to access path, 4-2 
entries, 4-19 

volatile, 9-1 

W 

windows 
border model values, 2-10 

Y 

YALCVNM (Allocate Name) model value, 1-1 

YCHGMDLVAL (Change Model Value), 1-2 

YCPYMDLOBJ (Copy Model Object) 
SQL access path, 4-13 

YCRTMDLLIB (Create Model Library), 1-4 

YCRTSQLLIB (Create SQL Library), 1-4 

YDBFGEN (Database Generation) model value, 
1-1, 1-5 

YFILPFX (last used file prefix) model value, 1-1 

YGENCMT model value, 2-5 

YOBJPFX (Object Prefix), 1-1 

YSAAFMT model value, 2-8 

YSQLLIB (SQL Library) model value, 1-2 

 

 

 

 


	Building Access Paths
	Contents
	1: Introduction to Access Paths
	Purpose
	Organization
	Contents
	Related Information
	Acronyms and Terms Used in this Guide
	Acronyms
	Values

	Understanding Access Paths
	Recognizing the Basic Properties of Access Paths
	Identifying Access Path Types
	Physical (PHY) Access Path
	Examples
	Update (UPD) Access Path
	Examples
	Retrieval (RTV) Access Path
	Examples
	Resequence (RSQ) Access Path
	Examples
	Query (QRY) Access Path
	Examples
	Span (SPN) Access Path
	Examples
	Characteristics of Access Paths
	Naming Access Paths

	Recognizing Access Path Components
	Access Path Details
	Access Path Format Entries
	Access Path Relations
	Access Path Auxiliaries

	Narrative Text
	Understanding Generator Types
	Model Values
	Changing Values
	Allocating Names
	Allocating a Source Member Name for an Access Path
	Controlling Auxiliary Names
	Creating an SQL Environment
	Specifying Generation Mode
	Changing the Generation Mode at the Access Path Level

	Changing Compiler Overrides

	2: Setting Default Options for Your Functions
	Model Values Used in Building Functions
	User Interface Manager (UIM)
	Window Borders

	Changing Model Values
	Function Level
	Model Level

	Changing a Function Name
	Function Key Defaults

	3: Adding Access Paths
	Before Adding
	Edit File Details
	Adding an Access Path
	Adding a Physical (PHY) Access Path
	Adding a Resequence (RSQ) Access Path
	Adding a Query (QRY) Access Path
	Adding a Span (SPN) Access Path


	4: Modifying Access Paths
	Before You Begin
	Before Modifying
	Navigational Techniques and Aids
	Automatic Add Options
	Changing the Auto Add Setting
	Trimming an Access Path
	Virtualizing an Access Path
	Locking an Access Path
	Temporary Locks
	Permanent Locks
	Displaying Usages for Access Paths

	Building Distributed Relational Database Applications
	Specifying Distributed Files

	Modifying Access Path Details
	Editing Access Path Details
	Specifying Unique/Duplicate Key Retrieval Sequence
	Specifying Access Path Maintenance
	Specifying Alternate Collating Sequence
	Specifying Select/Omit Criteria
	Specifying Generation Mode
	SQL and DDS Joins
	Copying an Access Path Generated with SQL
	Changing Source Member Text and Names

	Modifying Access Path Format Entries
	Identifying Access Path Format Text
	Identifying Access Path Format Keys
	Changing the Key Sequence
	Editing Access Path Format Entries
	Editing Physical File Format Entries
	Altering Field Sequence or Implementation Name

	Modifying Access Path Relations
	Understanding Required Relations
	Adding Relations to a File
	Editing Access Path Relations

	Modifying Virtual Field Entries
	Understanding Access Path Virtual Field Entries
	Identifying Relations with Virtual Fields
	Specifying File and Access Path Relations
	Editing Virtual Field Entries
	Tailoring Virtual Fields for Access Paths

	Choosing Select/Omit Criteria
	Understanding Select/Omit
	Specifying Selection
	Specifying Conditions

	Changing a Referenced Access Path
	F4 Prompt Function Assignment

	Modifying Access Path Auxiliaries
	Understanding Access Path Auxiliaries
	For DDS Query (QRY) Access Paths
	For SQL Access Paths with *IMMED Maintenance
	Editing Access Path Auxiliaries


	5: Deleting Access Paths
	Deleting an Access Path
	Determining the Usage of an Access Path

	6: Defining Arrays
	Understanding Arrays
	Structuring Field Data Using Arrays
	Passing Parameters
	Storing Data Between Calls

	Defining an Array
	Editing an Array
	Viewing Function References
	Changing the Name of an Array

	Deleting an Array

	7: Generating and Compiling
	Implementing
	i OS Index Versus CA 2E Index
	Setting Your Options
	Changing Compiler Overrides from DDS to SQL
	Identifying the Implementation Attributes
	Generating an Access Path


	8: Documenting Access Paths
	Documenting an Access Path
	Creating the Documentation


	9: Tailoring for Performance
	Considering the Types of Data in the Physical File
	Minimizing the Number of Active Indexes
	The Active Index
	Sharing Active Indexes

	Access Path Maintenance (Immediate, Delay, or Rebuild)
	Maintenance for Query (QRY) Access Paths

	Using Select/Omit Maintenance
	Using Join Logicals
	Using Multi-Format Access Paths
	Using Open Data Paths
	Creating Default Retrieval Access Paths

	Index


